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ABSTRACT

The Gruneisen parameters of cubic metals copper, silver, gold, aluminium,
sodium and potassium are determined from the measured elastic constants and their
pressure derivatives, using de Launay and Sharma-Joshi's models of electron-ion
interaction, The calculation makes use of Houston’s six-term approximati on. The
results of the calculations are compared with available experimental information,

It is found that Sharma-Joshi's model yields a better agreement with experiment,

RESUMEN

A partir de las determinaciones experimentales de las constantes eldsticas
¥ sus derivadas respecto a la presicn y mediante el uso de los mode los de inter-

accion electrdn-ion propuestos por de Launay y Sharma-Joshi, se determinan en
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este trabajo los pardmetros de Gruneisen para cobre, plata, oro, aluminio, sodio y
potasio. Los cdlculos se hacen con una aproximacion de Houston a seis términos
y se comparan con la informacion ex perimental disponible, Se encuentra que el

mode lo de Sharma-Joshi estd en mejor concordancia con los valores ex perimentales.

I. INTRODUCTION

In the theory of the thermal expansion of crystals, an important part is

played by the Grineisen parameter v defined by the relation

aVK,
y g I (M
C

v

where K. is the isothermal bulk modulus, @ the volume thermal expansion coef-
ficient, V the crystal volume and C, the specific heat at constant volume of the
material. This quantity provides a measure of the anharmonicity in a crystal and
is related to the variation of lattice frequencies with volume. Grineisen's theory
assumes ¥ to be a constant, independent of lattice frequency and temperature.
This picture has now been shown to be inadequate.

In recent years the expansion coefficients of crystals have been the subject
of a considerable theoretical and experimental literature. The various experiments
on thermal expansion at low temperatures provide strong evidence that the parameter
v varies with temperature. The theoretical work of Barron® and Blackman® on
thermal expansions using idealized models for the lattice dynamics shows that
drastic variations in the value of v with temperature occur in the temperature region
T = 0.20. Sheard® has related the volume dependence of the normal-mode frequen-
cies with the pressure dependence of the elastic constants for an anisotropic
elastic continuum. From the suitably weighted average of Yq.p OVer the phonon
spectrum, he has obtained the values of v for the two extreme cases of high enough
(T > @) and very low temperatures (T<<@®), respectively. Though the anisotropic
continuum model is an oversimplification, Sheard’s results for noble metals show a

reasonable agreement with the experimental data. The same model has also been
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used by Collins ’ to compute the temperature dependence of v for a number of ma-
terials of cubic structure. Horton® investigated the temperature dependence of
by incorporating the observed temperature variation of the elastic constants intoa
central nearest and next nearest model. The agreement between theory and experi-
ment is quite satisfactory.

Sharma and Joshi "' have propounded a mode! for studying the lattice vi-
brations in metals taking congnizance of electrons as a compressible gas. [n this
mode | the effect of the gas of valence electrons on ionic vibrations is taken into
account by attributing to it a bulk modulus. The model is found to give a plausible
explanation of temperature variation of heat capacities and Debye-Waller factors
of a number of cubic alkali and noble metals'!, De Launay'? has also proposed a
simple phenomenoclogical model in which conduction electrons are assumed to be-
have like an ordinary gas supporting no shear stress. This model has been suc-
cessfully used for the calculation of the frequency spectra and the temperature
dependence of the specific heats of a number of cubic metals by Dayal and his
coworkers'*.  |n both models the contribution of ions to the elements of the
dynamical matrix is exactly the same. The electronic contribution is, however,
different.

In this paper we have utilized the models of de Launay and Sharma-Joshi
for the calculation of the temperature variation of ¥ for some cubic metals from
the experimental values of the pressure derivatives of elastic constants. The
results for copper, silver, gold, aluminium, sodium and potassium are presented

and compared with the available experimental information.

II. THEORY

The general method of computing the volume expansion coefficient a is to

use the thermodynamic relation

1 (*F
) I ; 2
K, BVBT) @
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where F is the Helmholtz free energy. In the quasi-harmonic approximation the

temperature-dependent part of the free energy is given by

l' . i
F= kBTcEp In [2 smh(ﬁwq'p/QkBT)], 3)
where w_ . is the angular frequency of normal mode of wave vector q and polari-

9,2
zation p, kg the Boltzmann constant and the summation is taken over all the normal

vibrations of the crystal. From Egs. (2) and (3), it follows that

aVK, = kg q%p Ya, » E(bwq'p/kB’r} " (4)

where E(x) is the Einstein specific-heat function

E{x) = x?e"/(e* -1)°, (5)
and

¥ b = = (a|nc'¢3q'p/’?3‘nV)T . (6)

Equation (4) gives the Grineisen relation (1) ,when 7 is the mean of Ya,p defined

by

The quantity » sodefined is a parameter which will vary with the temperature.
Replacing the summations over q by integration over the allowed values of g

within the first Brillouin zone, Eq. (7) becomes
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q
b0 [ E (¥ ) /k, T) q* dq dQ
o S L 7pa) B, (a) Jhg =

q
% jo fQ E(bw,(q) /ky T) q° dg dQ

where () is the solid angle in wave-vector space.

IlI. NUMERICAL COMPUTATIONS

The calculation of 7 at different temperatures has been carried out by using
a modification of Houston's method. The integration over g was performed numeri-
cally and the integration over () was carried out by using the modified Houston's

.Y Horton

spherical six-term integration procedure as elaborated by Betts et a
and Schiff'® have discussed the applicability of Houston's method in the calcu-
lation of specific heat, and Collins’ and Ganesan and Srinivasan'” have shown
that this method may give reliable temperature dependence of v . The six di-
rections used in the present calculation are: [100], [110], [111], [210], [211]
and [221].

In order to use Houston's method, the secular equations °** for the determi-
nation of the angular frequencies of lattice waves in fcc and bcc metals were solved
in each of the six directions. The limiting values of q along the six directions for
both types of structure are given in Table 1. The quantities Yq,p Were expressed
in terms of the three elastic constants o C1z°"d Cu and their pressure deriva-
tives. The values of these quantities were taken from experiment. In the
calculation we used the measured temperature variations of the elastic constants
and the lattice parameter. The elastic constants in the high-temperature region
were exfrapolated from the existing experimental values. For the pressure deriva-
tive we have used their room-temperature values because experimental data for

them below room temperature have not yet been reported.
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IV. RESULTS AND DISCUSSIONS

Figs. 1=6 show the calculated values of ¥ as a function of reduced tempera-
ture {T/@O) from de Launay’s and Sharma-Joshi’s models for copper, silver, gold,
aluminium, sodium and potassium for which data on pressure derivatives of the
elastic constants are available. For comparison we have also shown the value of
v derived from the experimental measurements of the thermal expansion. The
sources of the elastic constants and thermal expansion date together with the ex-
perimental values of the pressure derivatives of elastic constants are summarized
in Table II. The lattice-parameter values at various temperatures were taken from
Pearson'®, Because of the considerable variation in the values of pressure deriva-
tives of elastic constants for noble metals as reported by Daniels and Smith!®, and
Hiki and Granato,2° our calculated curves for new and old elastic data do not
coincide.

A survey of Figs. 1=6 reveals that the calculations based on Sharma and
Joshi's model yield a better agreement with the experimental values of 7 for copper
and silver. A possible source of discrepancy at low temperatures seems to be the
use of room-temperature values of the pressure derivatives of elastic constants. In
view of insufficient experimental data for sodium, potassium and gold, it is difficult
to draw any definite conclusion for these metals. In the case of aluminium, though
the shape of theoretical and experimental curves is similar, it is disconcerting to
find how widely the calculations deviate from the experimental measurements. The
discrepancies observed in this case are not so surprising and can be attributed to
the approximate description of the electron-lattice interaction and to the assumption
of short-range interatomic interaction in both the models. Recent experimental in-
vestigations of phonon dispersion relations in aluminium?! show that the interatomic

forces in this metal are of a fairly long-range and noncentral nature.
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TABLE 1

Maximum values of wave vector q for body=centred and face-centred

cubic crystals

Direction Maximum values
body-centred face-centred

[100] Lt 4,
a a
[110] o 3
/2 @ 2/2 4@
[ 3 on V3 n
2 a 2 a
[210] V5 oa V5 @
3 a 2 a
[211] V6 n 3/6
3 a 8 a
[221] 3 7 9
4 a ]O a
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Table II

Elastic and thermal-expansion data for cubic metals.

Pressure derivatives of the elastic

constants
Metal ?1(.‘11 /op 3Cu /P BC“ /3p Elastic constants Thermal expansion
a § = f
Copper ) 5363 520 2.350 Bierbon and idkingy Robikeral,™
*) 5.940 5.190 2.630
Silver . 7.032 5.754 2310 Neighbours and Alersg) Corruccini and
b
sy 3.607 3.040 i
Gold o 7.014 6.138 1.790 Neighbours and A|ersg) Corruccini and
b
V.17 4.957 1.520 —
h
Aluminium = 7.350 4.110 2310 Sutton ! Corruccini ond
Kamm and A|ersl) Gniewekn)
d) . ; i 5
Sodium 3.901 3.449 1.630 Quimby and Siegel Corruccini and
k n
Diederich and Trivisonno Gniewek )
e bl )
Potassium ! 4.305 3.803 1.620 Marquardt and Trivisonno Monfort and Swensonu
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Fig. 1. 7 as a function of reduced temperature (T/@”) for copper ((ﬁ)O = 331°K).
The solid curve is obtained from Sharma and Joshi’s model and the
dashed curve shows the calculation using de Launay’s model. The curve

with a circle shows the experimental behaviour.
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Fig. 4. 7 asa function of reduced temperature (T/'@O) for aluminium.
| - 407°K). The solid curve is obtained from Sharma and Joshi’s
model and the broken curve represents calculation from de Launay’s

model. The curve with a circle shows the experimental behaviour.
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