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Once we have states with the abbve properties we f'Toceed to apply them

to the discussion 01 the lorm lactor 01 the protml as a system 01 three quark5.

RESUMEN

En este trabajo construiremos explícitamente estados de oscilador armóni-

co para sistemas de tres partículas cml las siguif!Tltes propiedades: a) Qu(' s('an

translacionalment(' invariantes, b) Que tengaTl un momento angular orbital total

delinido c) Que correspondan a una representación delinida d(J1grupo simétrico di'

tres partículas S(3).

Una vez obtenidos los es tados con las propiedades mencionadas procedf'Ti'-

mos a aplicarlos a la dir;cusión del {actor de lorma del protall como sistema de tres

quarks.

l. INTRODUCTION

In tnis poper we sha II be interested in t'he construc:tion of harmonic-osc:i 1-

lotor stotes of three porticles with tne following Droperties: a) That they are

tronslationally invariant, b) Tnot tney hove definite total orbital anQular momentum.

c) That they correspond to definite irreducible representations of the symmetric

group of three porticles S(3).

The restriction to translational invoriance implies that the three-lXIrticle

states will be functions of only two of the relative coordinares, which we could

ehoose as rhe Jacobi coord;:10tes1 defined below. We would have then two single-

partiele harmonic-oscillaror states associared with these two coordinates whichwe

could couple to a definite tota I orbita I angubr momentum. Thus states having the

prooerties a), b) ore triviol to constructo The moin problem then, which we discuss

in the next section, is to obtain states that also hove the property e).

Once we hove the states with the abo ..•e praperties we proceed te "lpoly ihem

to the discussion of the form factor of the proton as a system of three quarks.
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11. TRANSLA TIONALLY INVAR)ANT THREE-PARTICLE

STATES OF DEFINITE PERMUTATIONAL SYMMETRY

Our three particles could be characterized by the ordinary coordinates

xl, X2,)(3, or by those related to them by the orthogonol Jacobi transformatían

;, = _1_ (x'- x')
v1 .

(1)

The f¡rst two of this Xl, x2 are obviously translationally ¡ovariant and so

arbitrory translationally iovariant three-particles stotes could be expand.d in terms

01

(2)

where <; I n/m> are single-particle hormonic-oscillotor states in the full Dirac

nototion, where for convenience in whot follows we sha JI assume thot our units

are such thot 15 , the mOSS m of the porticle, and the frequency W of the oscillator

are 1 •
lnstead of (2) we could hove kets coupled to a tota 1angular momentum A

and proiection M, i.e.

1" " " " ", 1"" "' 1" "n ¡,n I,AM>:=[<X nl><x n/>]
1 1 2 2 1 1 2 2 11M
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The ket (3) could olso be expressedl os o polynomiol P in the creotion operotors

7)', __ 1 (., ."')__ X -'P ,
./2

octing on the ground stote lo> i.e.

s = 1,2 (4)

In i, ~ 1" A.\I>1 1 ,
(5)

where, P is given by

p (~ i ,,; i, AM)
I 1 2 2

ond

A' • l' • (7)'1 • 7)' 1 )
PI 1 .• PI 1
1 1 2 2

" "l. • 2
(7)' • 7)')' (6)

11' '1, exp {-} rnW

T
(7)

The ground state lo:> is clearly invariant under permutatian of the coordinates

xl, x2, xJ so that the discuss ion of the symmetry properties of linear combinotions

of kets (3) reduces to the anolysis of the symmetry proDerties of the sarne linear

combinotions of polynomials ,;. For example, if we wont to symmetrise the poiy•

nomial p(,¡ i,,; i , ,\.\1) we have to apply 011 the SIX permutations of the group
I I 2 2

Sd) to ,; ond then add the resulting polynomials.
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AII elements of 5(3) can be built up from the transposition (1,2) ond the

cyc tic permutotion (1,2,3), which from (l), (4) hove the following effect on the

c,.~otion operotors

~I • 1 O ~I' ~1 1 ,/3
~I'2 2

(1,2) ; (1,2,3)

i¡' O ~, 1)' /3 1 1¡'2" '2

(8)
The effect of any permutation of S(3) on P can be obtained once we hove the

effect of (L2) ond (1,2,3) on this polynomiol. But from (8) ond (6), it is clear

. 2'i.;
thot the opplication of (1,2) to P iust multiplies it by (_) 2 2, while the appli"

cotion of (1,2,3) to ¡~gives a linear combinotion of 1-' whose coefficients are

tronsformotion brockets2 ossocioted with on ongle /3/2 such thot

cos 1
'2 sin (9)

Using these results we could build up in a straightforword but loborious monner

the symmetrícol stote of the previous porogroph.

We shall show though that o much s impter procedure for constructing the

symmetrised stote, or for that matter a three.porticle tronslotionolly invariont

hormoníc-oscillotor stote of orbitrory symmetry, con be obtoined if we introduce

the ouxiliory operotors

1)1 __ 1_(_ i ~1 +~')
12

(10)
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In this paper r¡l, 7]2 will be given by the definitions (10) ond ore not to be con.

fused with ereation operators assoeioted with the eoordinates xl, xl. From (8)

it is e leor that under the generators of S (J), 7] 1, 7]2 transforms as

2TTi

71' O 711 711 • ,
(1,2) (1,2,3)

712 O 712 712 O

O 711

(11)

We now eonsider polynomiols 1'(11 1, 1l 1, ,.\,\1) thatare defined in exaetly
1 1 2 2

the sorne woy os (6) but only with Tl\'1 ,1 reploeing';'!f."i , i , s ::: 1,2. The'1 !f. s 'I.'!i S

applicotion of (1,2),(1,2,3) to P means earrying out the inverse operation" on

7]1, 7]2 so from (11) ond (6) we get

where

2g ~ 2" + I - 2" - I
1 1 2 2

(14)

To obtain polynomiols of definite permutationol symmetry we require op.

ptopriate projeetion operotors. We refer the reoder to Hamermesh's book4 where
I

the projection operator FJ associated with o definite irreducible representation /

of a finite group G is given by

1"1 ~ di L )(1' (p) P
[e] P

246

(15)



where p is an elernent of the group, Xl(p) the'character associated with this ele-

-ment for the irreducible representation 1, [G) is the arder of the group and di the

dimens ion of the irreducible representation l.
For the group of permutations SO) there are three irreducible re.p-csentationss

c horoc ter is ed by the port jt jon~ f = 131, 1211 ond 11111 01 dime ns ion di

equal to 1,2 and 1, respectively. The first and third are the familiar completely

symmetric and antisymmetric representotions. From the table of characters of 5(3)

given, for example, in Hamermesh5, we get for the projection operators of SO)

"'[,] I
~ = - [e' (1,2)' (1,3)' (2,3)' (1,2,3)' (1,3,2)] (16)

6

[2111 l¡ .t]J'l = - [2e-(1,2,3)-(1,3,2)]= - 2e-(1,2,3)-(1,2,3) (17)
3 3

¡a [111]= !- [e- (1,2) -(1,3) -(2,3)' (1,2,3)' (1,3,2)] (18)
6

where ~ is the identity elemento
'" [21 1We shall first apply 1" to the polynomial

(13) get

P('l /,11 /, AM) ond from
1 1 2 2

f2l] 1 ( 3.!!..i-2R .~2g)fJ P ('1 1 , 11 / , AM) = _ 2 - ~ 3 - ~ 3 P (11 / , 11 / , AM)
1122 3 1122

= ~sin'(:'C2g) 1'(" 1," ',/\,\1)= (1-S o) 1'(" '" ", ',,/\,\1) (19)3 3 1122 ti 1

where vis defined by the congruence relation

2K ~ l' (mod 3)
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From (19) we see thot vmust be either 1 or 2, os when v: O the projected stote

of portition 1211 vonishes.

As the dimensionolity of the irreducible representotion 1= 1211 of SO) is

di::' 2 we hove two stotes in it thot ore chorocterised by the Young tableaux6

m
~ -(211), m

2

13o- -(121) (210, b)

They could olso be chorocterised by the Yomonouchi symhols (r r r ) which, , ,
specify the row in which we find eoch of the numbers 3,2,1 os .::lIso indicated in

(21) •

From the Young tobleoux one concludes thot the stotes characterised by

the Yamonouchi symbols (211) and (121) ore respectively symmetric ond antisym-

metric under exchonge of particles 1 ond 2. To get then the states chorocterised

by (211) ond (121) we need toopply tothe polynomiols }J(n /,11 /, ¡Ul) with
I 1 2 2

v= 1,2 the projection operotors thot give stotes symmetric or ontisymmetric in the

first two porticles i.e.

J'l [, J 1
= 2 [. +(1,2)] ",[l1J _ 1

IV 2['-(1,2)J (22)

From (12) this immediotely gives fa' vI:- O

1[ I.'-~ ]- 1'(11 '" ", ',' .\.\1) + (-) 1 2 1'(11', 7l , , ,\.\1)2 1 2 2 I I

-';'40(",'" ",'",\,11;1211 (211))
12
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,,[11]
1" P (n I ,'1 I , ¡\.\l)

I I :2:2

1[ I.I-~ ]- P(n /, ti 1, ,\,\1) -(-) 1 :2 P(n '2' ti /,' AM)2 1 1 2 2 2 1

~ _,_o ( - 1) v'" (n I ." l. A .\1; 1211 (121))/2 I I :2:2
(24)

where in (23) and (24) 'he'" are ,he narmoli,ed palynomiol, [recall tho.

P (11 ¡ , n/, AltO is never identica J to P (n 1,'1 / , A,\!) s ¡nce
1122 2211

I/= 2n + / - 2n - / ! O] charocterised by the pOrfition 1211 and the corresponding1 1 2 2

Yomanouchi symbol os well os by n/, n ¡ ,A.u. In (24) the phase factor ;(-1)1!
1 1 2 2

is prescribed by the lodder procedure 7.

To get the symmetric ond antisymmetric states we could apply ¡or31 and

" [111] . 1 be' h 11 . be d .1'"" res pectlve y, remem rmg t at a permutonons can expresse 10 terms

of (1,2) and (1,2,3). A more elegant Pl'ocedure though is to note that from the

onalysis corried out for 1= 1211 we conclude that only lineor combinations of poly-

nomials P (n / 1'1 1, ,\,\1) for whích 2'1 + / - 2n - / == O (mod 3) would be either
I I 2 2 1 1 2 2

symmetrie or ontisymmetrie. Those thar are symmetric are eharaeterised by the

Young tableaux

~ -(111) (25)

ond thus would a Iso be symmetrie under permutation of portie/es 1 and 2 as is quite

obvious. Those that are antisymmetrie ore ehoroeterised by the Young tableaux

2

3

- (321)
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ond thus would be ontisymmetric under permutotion of particles 1 ond 2, os is olso

obvious. We could then get the 131 (111) ond 11111 (321) norma [ised stotes by
[2] [u]

opplying respectively the operotors ¡a ond rv of (22) to the polynomiol

P (ni ti' n2 '2' A,\l) i.e.

= !- [p (n 1 n I AM) t (_)/.+ 1,' A P (n, 1" ''¡ 1" AM) ]
211'22'

The expression (27) is volid when 2n +, - 2n -, =
1 1 2 2

different from (n , ). When, ,

(27)

o but with the lXJir (n 1 ), 1

1 = 1 =1 ,
(28)

we gel from (27)

{

q,(nl, ni, A,II;131 (111))

P (ni, nI, A,\I) ;:

q, (ni, ni, A.II; 11111 (321))

if A even

ifA odd. (29)

Thus we obtoined polynomiols with definite permutotional symmetryforthe

three-particle tronslotionally ,nvariant problem in terms of the creation operators

7]1, r¡2 of (lO). For the coiculation of the matrix elements of the Homiltonion,
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os well as for the form factor of tne proton to be discussed in the next Section, it

'¡s muen more convenient to nove the polynomio 15 expressed in terms of the creation

operators .ryl, ~2 i.e. in terms of P(,~ i , ~j j , A.\I). This is easily achieved
1 1 2 2

when we realise that the transformation motrix (10) connecting 171,172 with ~1, f}2

can be decomposed in the follow ing form

o 1 1 O - j O--
\/'2 ff /2 ff

- ABCD.
O 1 O O--

ff /2 /2 ../2"

(30)

The effect of A = e on the poiynomia I P is given by (12), (11), while that of D
2" +,

just multiplies the polynomial by (- i) I l. Finally the opplication of B to P

gives o linear combination nf p's whose coefficients are standard transformotion

brackets (ST8). Combining al! of these operotions we arrive ot the result

~. ~
1 ,

i i
1 ,

P (,j i ,
1 I

. ~ +,
", '" A.II)(-1) 1 I ,. '1 <,~ i ,"~ i , A 111 1 , 11 1 , A >

1 1 2 2 1 1 ? 2

(31)

where we 0150 mode use of the symmetry relotion8 of the ST8.

From (31) and the aboye discussion we see thot

A(v,¡,r) [
¡.¡-A ]

P(n 1,') /,,.\,\1):1:(-1)1 2 1'(11 1,,, 1,1\.\1)
1 1 2 2 2 2 I 1
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n n
1 ,

I I
1 ,

1,; j, ~ 1,,1\,\1>
1 1 , {

; d
,,(v. f. ,)(-1) 1 1

•
1

i 1 X

[
1+1+1]' •

x l:t (-1) 1 2 1 <,~ / ,,~ I , ,\ 111 / , 11 / , A>
1 I 2 2 1 1 2 2

~ I,~,a,;¡ i,¡\,\l'><,; i,: i,,\lu /,11 I,A,/,r>
•• 1122 11221122
n n
1 ,

I I
1 ,

(32)

where land r are short hand notations for the partitions 1{ I 11 and Yamonouchi1 , ,

symbols (r r r) and in deriving (32) we mode use af a symmetry property ef the, , 1

rronsformation brackets8• The coefficient A (v, /, r) ond the value +or - in (32)

ore specified in (23,24,27). It is clcar incidentallv thot the last transformation
l+/+i

brocket in (32) is either real or pure imaginary as the factor rl ::t (- i) 1 2 1] for

fixed J , / restricts i to either even or odd values. We could then give o trivial
1 , 1

redefinition af the ket (32) so that the last transformotion brocket is alwoys reol.

Let us des ignate by

(33)

the three-particle spin-isospin state1 with SMs(TM"f) being the total spin(isospin)

ond its projection and f, r hoving the SOrne rn~aning as in the previous paragraph.

The cornpletely ontisyrnrnetric state1 under exchange of coordinotes, spín ond

is os pin is then given by
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In> -

(34)

In (34) 1, ";' refer to IXJrtition and Yamonouchi symbol ossociate to 1, r e.g. if

f, r = 131, (111) ,1, ';'= 11111, (321). The ohose (-1)' is defined in sueh woy

thol(-1)' = +1,+1+1,-1 for r =(111),(321),(211).(121), respeetively. The

symbol h stands the" for the set af quontum numbers

(35)

We hove thus constructed explicitly the trans lationo Ily jovariont three.

IXJrtic le state.

11I. FORM FACTOR OF THE PROTON AS A SYSTEM OF THREE QUARKS

It is aften useful to describe boryans and mesons os systems af quarks and

antiquorks 9. In PJrticular the protan can be thouqht af os a system af three quarks.

Assuming thot the quarks ore particles of spin .!.. sotisfying Fermi stotistics, the
2

wove funetían describing the protan could be developed in terms af three-particle

stotes similar to those discussed in (34). We willshow in this section that ex.

perimentol evidence suggests then that the configurotion spoce part of this three-

quork wove function is ontisymmetrlc ond of total orbital angular momentum zero.. . . .
If we know the coefficients a (ti I , ti I ) of the expansion of the configurotion

I 1 2 2

space ~rt of the wove function in terms of hormonic-oscillotor stotes (32), ond if

the quarks ore token os point particles, the form factor of the proton would be

given by
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F (ql) = :la: (n' ¡' , ni l') a (n / , ni)
11221122

. .,
<'J'¡' n'/'A-O 1_11311 SlnKx n,I¡,",I,/\=O,I=1131>1 l' 2 2 - , - .2

KX
(36)

as shown in reference 10. In (36) K is given by

K=J2-1S q
3mw

o, (37)

where ~q is the momentum transfer.

Thus the quark model gives o theoretical prediction for the form factor,

obout which we hove also experimentol informotionll•

We now proceed to prove the remark made aboye i.e. that experimentol

evidence suggests on antisymmetric form fer the configurotion space Plrt af the

three quork stote that represent the protan.

We need first af 011 to descri!:>e the states associoted with the interna I

coordinates af the quarks. For this Durpose we take as On anologous model the

stotes iCTT> ossociated with the interno I coordinates af the nucleon, where

(38)

ond lO" >, IT> beinQ the spin and isospin states with CT= 1:1, T= 1: l. A.22
nueleon then has four spin-isospin states which form a basis for an irreducible

representotion (1 R) of a unitary unimodular group in four dimensions SU(4) eharoc.

terised by the partition 11!12. Bes ides the two-eomponent s tates ICT > and I T >
are independently basis for IR of the unitory unimodular groups in two dimensions

(0") (,)
SU(2) and SU(2) I charccterised clso by 111. The stote (38) is then com-

pletely defined by the 1 R of the groups in the chcin

(O") (,)
SU~)JSUD) x SUD)
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where x denotes tne direct ¡xooduct of tne group In questlon.

Tne nucleon can be found in two isospin states caresponding to neutron

or ¡::roten. The quark can be found in three stotes denoted by P, n, A. which can

be ehorocferised by the ket

(40)

where for P, u, A. the quantum number takes respectively the values p= 1,2,3.
Bes ides os the quark has spin it is described by a stote Icr >, cr = i ,12 identical

to the ene oppeoring in (38). Thus the interna I state of the quark is represented

by the ket

I po- > Ip>lo->, p= 1,2,3 , 0-= t ~ (41 )

Cleorly then this state is completely defined !:Iy the IR of the groups in the ehoio

(42)

In a system al delinite number al quorks, a partition / = 1/ f / / / / I
1 2 " <4 5 6

of this number, with o maximum of six rows13 will define not only the IR of the

U(6) group for this system, but olso charaeterise the symmetry of the state under

permutotion of the interna I coordinates 12. As tne quarks obey Fermi stotistics

this implies thot the configurotion part of the state has o symmetry related to the
~

assoeiate portition I .
(o-) (p)

The IR of 5U(2) and SU(J) are olso ehoroeterised by partitions l'
and /" respectively, of the number of quarks, where j' onf /" are restrieted to a

moximum of two ond three rows 13 i.e. f' = lf' j' 1, /" -= 1/" f" /".1. the problem
1 2 1 2 3

I I d '" I (o-) (p) do in ing the IR Ixl o SU(2) )( SU(J) contoine in a given IR I of 5U(6)
is similar in structure to the problem of finding the [R m of the rototion grouPR(2,
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contained in a given /of R(J). The solution of the latter oroblem is given by the

inequality - / ~ m ~ /. For the former we need to use the phletysm procedure 14

to obtain for the three-quark system the relations

56

CLe

70

EP

+

20

1/2 8 3/2 10

EP ITD ITD
x + x

(430)

1/2 8 3/2 8

EP EP ITD [TI
x + x O +

1/2 10 1/2

EP ITD + EP 8x x

(43b)
1/2 8 3/2

EP EP ITD Bx + x

(43c)

,
In (43) we hove on the left hand ,ide 01 ::J the pO'tition' 1= 131. 1211 .11 I

that characterise the IR of SU(6) for the three-quork system. On the right hond

side of ~ we have the partitions j' x f" in Young diagram form that characterise

M (pi (pI
the IR 015[1(2) x 5[1(]) • Above lhe 1.1" 015[1(6). 5U(]) we Dut ,he

dimens ion of the IR, whi le aboye j' of SV(l/cr) we put the tato I spin 5. The d i-

mens ion of the lotter is of COLXse 25 + 1 •

Experimento Ily we ore interested in the IR,I = 131 of S ('(6) of dimens ion

56 os this is the one that contoins the octet of spin ~ (:\, .\, ~, ::::) and the

decuplet of spin ~ (N.,l., S., n.) and we thus expect that it represents the
2

lowest lying states of the baryon spectrum. As the proton is one of the members
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óf the octet of sPin.!..-, we see that in this model its state is symmetric under the
2

exchange of the interno I coordinates of tlle three-quork systemo This implies then

thot the configuration spoce state of the proton must be antisymmetric under ex .•

chonge of the quork coordinotes ioe • .belong to the portition 11310 Furthermore ex-

perimentolly the total angular momentum of the baryons in the octet is J = l while
2

from (430) the totol spin of the octet is S = l. If we want to hove just one octet
2

of J = l in our lO"Nest Iying states we must ossume thot the total orbital angular
2

momentum A of the configll'otion spoce three-quork system is A = O so that S +A

when S = l give just one J = l o
2 2

We ore then interested in three-porticle translationally invoriant configu-

ration spoce states that ore ontisymmetric ioe. 1= 1131 and hove /\ = O. From

(27) we see that these states con be expended in terms of the hormonic-oscillator

states

I nI 1, n, 1, 00; 11111 (321) > ~

where

1
v"2

(44)

2 (n, - n,) ~ O (mod 3), and N = 2 (r/, + n, + 1) (45)

-Nith N being the total number af quontao From (44) we see that these states

vanish if '1 = '1 o Without loss af generolity we can then toke n <'1 ond os 2
1 2 1 2

is not d ivis ible by 3, we conc lude from (45) that n-n is d ivis ible by 3 o We
I ,

can then write

n
2
= TI + 3v ,
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where tI ccn be O a positive integer while v is o posítive integer only. Using

the exponsion (31) we con then write the stcte (44) os

Inl, n +3vl, 00; 11'1 (321) >

•• ~ •. 1 j j~ 1;' l.;' /,00> (-1) I '[1-(-1)] x• 1 ,
• • I
1 ,

x < ;'1 i, ';2 i, O I ni, n + 3lJI, O>

,/'2 ~ 1,; 2i+l,~ 2i+1,OO>
" :: i 1 ?
I ,

x

~ •. I •. l •• o"

x(-l) 1 <11 2/+1,11 2/+1,OI1l1,n+31/I,O> (47)
I ,

where, if we wish, we could eliminate the phose factor j and have o real stateo

In (47) the < I > are standard transformation brackets tabulated in reference 8 o

Clearly the state of lowest number of qlJOnta is from (46) given by

11 = 1= O, lJ = 1 or N = 6 ioeo

100,30,00; 11'1 (321) > • (48)

We could in a first opproximation consider this as the state wi1h whose help we

ca Iculote the form factor of the proton, given by (36). Us ing (47) the ca Iculation

IS strajghtforword ond we obtojn

258



F (K') -K', { !- K2 +~
, 31 K' +• _ 1- , - 33602 160

+ l:!- K'- 1
K

10
}

(49)7168 14336

where K2 is reloted to q2 by (37).

We could fixm by demonding that ot q2 = O the tangent to the curve

F(q2) os function af q2 is equal to the tcngent af the experimento 1curve. The

curve F (q2) with this '1Jw and the experimental points ore graphea in fig. 1. The

curve comes consistently below the experimental points and besides, though this

is not shown in the graph, the curve becomes negative at lorge q2 in such o way

thot

417 J ~ F (q') q' dq =
o

[
iq' r ]J F (q) • dq, = o p(O) O. (50)

We con prove thot píO) = O for On orbitrory combinatían af stotes (47) by

noticing thot the chorge density p(x) become.s o linear combinatían af motrix

elements10

(',,'2i' +1, ,;' 2i' +1,00 lé(. +
1 ,

ti ;,')1; 2i + 1 , ~ 2i + 1 , 00 >¡3 1 2
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Fig. l. Ferm factor of the proten as a function of the squore of the rnomentum

transfer when this portie le is represented as a system of three quarks.

The wove function of this system is token os en harmonic.oscillotor

stote of six quanto whose frequency was adjusted to give the experi.

mentol slope of the curve ot q2 = O. As discussed in the article this

is the state of lowest number of quanto antisymmetric under exchange

of the coordinates of the three quorks and of orbital angular momentum

zero.
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where r = 1 x j. From the form of R ni glven in reference 10, we see that }51) is

o gaussion in r multiplied by a polynomial whose lowest order term is r41 +2.

Cleorly then even for i = O we start with o term r2 ond so the motrix element (51)

vonishes for r = O, q. ('. d ••

The experimental doto on the form factor of the proton up to the q2

meosured so forll do not suggest thot 1: (q2) con become negotive and so Ore not

in ogreement with the possibility thot the chorge density of the proton vonishes ot

the center of mass of this porticle. It is cleor therefore thot the quork model of

the proton, with the assumptions made ot the beginning of this section, does not

describe correctly the form factor of the proton. Some of the ossumptions could

be reloxed but os this poper deals with the hormonic oscillator ond not the quork

mooel, we shall not discuss the problem further here.
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