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ABSTRACT

In this paper we shall construct explicitly three-particle harmonic-ascillator
states with the following properties: a) That they are translationally invariant,
b) That they have definite total orbital angular momentum, c) That they corres pond
to definite irreducible representations of the symmetric group of three particles

5(3).
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Once we have states with the abbve properties we proceed to apply them

to the discussion of the form factor of the proton as a system of three quarks,

RESUMEN

En este trabajo construiremos explicitamente estados de oscilador arméni-
co para sistemas de tres particulas con las siguientes propiedades: a) Que sean
trans lacionalmente invariantes, b) Que tengan un momento angular orbital total
definido c) Que correspondan a una representacion definida del grupo simetrico de
tres particulas $(3).

Una vez obtenidos los estados con las propiedades mencionadas procedere-
mos a aplicarlos a la discusicn del factor de forma del proton como sistema de tres

quarks.

I. INTRODUCTION

In this paper we shall be interested in the construction of harmonic-oscil-
lator states of three particles with the following properties: a) That they are
trans lationally invariant, b) That they have definite total orbital angular momentum.
¢) That they correspond to definite irreducible representations of the symmetric
group of three particles §(3).

The restriction to translational invariance implies that the three-particle
states will be functions of only two of the relative coordinates, which we could
choose as the Jacobi coordinates’ defined below. We would have then two single-
particle harmonic-oscillator states associated with these two coordinates whichwe
could couple to a definite total orbital angular momentum. Thus states having the
properties a), b) are trivial to construct. The main problem then, which we discuss
in the next section, is to obtain states that also have the property c).

Once we have the states with the above properties we proceed tc 1pply them

to the discussion of the form factor of the proton as a system of three quarks.
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II. TRANSLATIONALLY INVARJANT THREE=-PARTICLE
STATES OF DEFINITE PERMUTATIONAL SYMMETRY

Our three particles could be characterized by the ordinary coordinates

x, x%, x>, or by those related to them by the orthogonal Jacobi transformation

X! :VL (xl- x2)_
V2

P W LR )
V&

o ] (xl+x2+x3)

)

The first two of this x*, x* are obviously franslationally invariant and so
arbitrary translationally invariant three-particles states could be expanded in terms

of

<xlln im><x|n Lm> 2)
111 222

where < X ‘ nlm > are single-particle harmonic-oscillator states in the full Dirac
notation, where for convenience in what follows we shall assume that our units
are such that % , the mass m of the particle, and the frequency w of the oscillator

are 1.

Instead of (2) we could have kets coupled to a total angular momentum A

and projection M, i.e.

. ° 9 ¥ i F *y . ‘> )| e ')
nlll'nZ 2'AM>*[<X 1”111 tx n212 ]AM @

243



The ket (3) could also be expressed' as a polynomial P in the creation operators

7oL at=ip%), s=1,2 (4)
2
acting on the ground state | 0> i.e.
ERE 1'2,1\“»=ﬁ(r%lfl,nzl,'\M)|0> (5)
where, P is given by
5(';1 1.1' ;'2 Ez’AM) =
B4
= Ay Ay () (MPen?)- [u, )ul ] (6)
Lo %l AM

and
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e
N
(8]
el

The ground state |0 > is clearly invariant under permutation of the coordinates

x*, x2, x* so that the discussion of the symmetry properties of linear combinations

of kets (3) reduces to the analysis of the symmetry properties of the same linear

combinations of polynomials P. For example, if we want to symmetrise the poly-

nomial P(r}I 11, 5 1, , AM) we have to apply all the six permutations of the group

$(3) to P and then add the resulting polynomials.
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All elements of §(3) can be built up from the transposition (1,2) and the
cyclic permutation (1,2,3), which from (1), (4) have the following effect on the

creation operators

S} i A 21 - 1 V3 53
g 1 0 U] 7 5 5 Ul
(1,2) = 12,8 =
H2 0 1 n? 72 _:E il 72
2 2
(8)

The effect of any permutation of S(3) on P can be obtained once we have the

effect of (1,2) and (1,2,3) on this polynomial. But from (8) and (6), it is clear

. . an_ + 1
that the application of (1,2) to P just multiplies it by (<)° 2 2, while the appli-
cation of (1,2,3) to P gives a linear combination of P whose coefficients are

transformation brackets? associated with an angle /3/2 such that

L

1
§ ’

e}
SR e =

w2 . 9
22 9

N T

cos B. - 1’5
2 2
Using these results we could build up in a straightforward but laborious manner
the symmetrical state of the previous paragraph.
We shall show though that @ much simpler procedure for constructing the
symmetrised state, or for that matter a three-particle trans lationally invariant
harmonic-oscillator state of arbitrary symmetry, can be obtained if we introduce

the auxiliary operators

1 e . |
e (~in'+7n?)
V2
nt= L (intea) . (10)
v2
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In this paper 1!, n? will be given by the definitions (10) and are not to be con -
fused with creation operators associated with the coordinates x!, x2. From (8)

it is clear that under the generators of 5(3), !, n?* transforms as

_zni
n' o 1\[ Uk e 3 0 '
“,2) = 1] (]l'2l'3) = i
2\t of\n n? 0 e s ||

(1
We now consider polynomials P(nl l‘, ", 12, AM) that are defined in exactly
the same way as (6) but only with n°, n_, I_ replacing e, Ly fs ,s=1,2. The
application of (1,2),(1,2,3) to P means carrying out the inverse operation® on

n', m* so from (11) and (&) we get

L +1=A
2

(L2) P(n L, n b, AM) = (=)

2!

P (rz2 1'2 A 1'1 , AM) (12)

2mi

(L2,3) P(n d,my b, AM)=e * “ Pnl,n L, AM) (13)

/
2 3!

where

2g = 2nl+!l-2n2-12 . (14)

To obtain polynomials of definite permutational symmetry we require ap-
propriate projection operators, We refer the reader to Hamermesh's book* where
- ! :
the projection operator I associated with a definite irreducible representation f

of a finite group G is given by

ol e % sy (pp (15)
(¢ #



where p is an element of the group, Xf(p) the ‘character associated with this ele-
*ment for the irreducible representation f, [G] is the order of the group and d the
dimension of the irreducible representation f.

For the group of permutations §(3) there are three irreducible representations S
characterised by the partitions f = {3},121} and {111} of dimension d
equal to 1,2 and 1, respectively. The first and third are the familiar completely
symmetric and antisymmetric representations. From the table of characters of 5(3)

given, for example, in Hamermesh®, we get for the projection operators of §(3)

[3] 1
P s Lt L+ 0,3+ 23+ (1,2,3)+ (1,3,2)) (16)
p@l_ ;_ [2¢~(1,2,3)~(1,3,2)] = L [2e=(1,2,3)=01,2,3) '] (17

w

P 1 le= (L2 =(1,3)-@23) + (1,2,3)+ (1,3,2)) (&)

where e is the identity element.

We shall first apply p[zﬂ to the polynomial P(n l

o 2,/\M) and from
(13) get
2 ELAPPIY L. PP
pmp(nl Pony b, AM) = §( LT e ) Plnd ., n 1, AM)
= & st (T 20) Pln oy Ly AN = (1=8,0) Pln by, Ly AN (19)
where 1 is defined by the congruence relation
26 =1 (mod 3) . (20)
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From (19) we see that v must be either 1 or 2, as when v = 0 the projected state
of partition {21} vanishes.
As the dimensionality of the irreducible representation f = {21} of §(3) is

d, = 2 we have two states in it that are characterised by the Young tableaux®
L 2 1 3
= 2T , = (121) 21a,b)
3 2

They could also be characterised by the Yamanouchi symbols (r, 7, r.) which
specify the row in which we find each of the numbers 3,2, 1 as also indicated in
(2159

From the Young tableaux one concludes that the states characterised by
the Yamanouchi symbols (211) and (121) are respectively symmetric and antisym-
metric under exchange of particles 1 and 2. To get then the states characterised
by (211) and (121) we need to apply to the polynomials p (n1 11’ n, b, AM) with
v= 1,2 the projection operators that give states symmetric or antisymmetric in the

first two particles i.e.

pll _ Llevra,n], L N N (22)

From (12) this immediately gives for v £ 0

Iamp(nlf,n N =

1.* g gt

L+ [2-.’\

o ]
X ; [I (rrl L, nyd, AM) + (=) P(n2 12, ” 1], AM)

=L Bt n 1, AN; 1218 @11) (23)

= 1
V2
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pm]P(nI 1 i, MY =

I 41
1 oo 2 (
. , Plnd,m L, AM)=(=) P(n, 1, n 1, AM) I

n

f;_ (=1 dm 1, n L, AM; 1211 121)) (24)
where in (23) and (24) the ¢ are the normalised polynomials [recall that
F'(n1 t'i ' 7 12, AM) is never identical to P(r;e2 L, n 1, AM) since
v=2n +1- 2n,= 1 4 0] characterised by the partition {21} and the corresponding
Yamanouchi symbol as well as by nlyn L, AM. In (24) the phase factor i (~1)"
is prescribed by the ladder procedure?.

To get the symmetric and antisymmetric states we could apply p(ﬂ and
P (1] respectively, remembering that all permutations can be expressed in terms
of (1,2) and (1,2,3). A more elegant procedure though is to note that from the
analysis carried out for /= {21t we conclude that only linear combinations of poly-
nomials P (n, 11' m, I, AM) for which 2n + e B l, = 0 (mod 3) would be either
symmetric or antisymmetric. Those that are symmetric are characterised by the

Young tableaux

1 3] - oy (25)

and thus would also be symmetric under permutation of particles 1 and 2 as is quite

obvious. Those that are antisymmetric are characterised by the Young tableaux

2 = {(321) (26)
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and thus would be antisymmefric under permutation of particles 1and 2, as is also
obvious. We could then get the {3} (111) and {111} (321) normalised states by
applying respectively the operators Ta[ﬂ and p[llj of (22) to the polynomial

P(n1 li, n, 12, AM) i.e.

Ta[ﬂ

P(n i

p{lﬂ 110 ™ lz’ AM) =

Lil=h oy
=%,[P(nlll,n212,ﬁ\M)i(—)i : Pln2[2'n111'AM)]

b (n 1 amy b, AM;E3EATT))
! .

qb(nlll,nziz,!\M,'“”] (321)) (27)

l

2

Vv

The expression (27) is valid when 2+l - 2n2 -l = 0 but with the pair (n, ll}

different from (n, 1), When

we get from (27)

b (nil, nl, AM; 13} (111)) if A even
P (nl, nl, AM) =
@ (ni, nl, AM; 1111} (321)) if A odd. (29)

Thus we obtained polynomials with definite permutational symmetry for the
three-particle translationally invariant problem in terms of the creation operators

nt, m? of (10). For the calculation of the matrix elements of the Hamiltonian,
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as well as for the form factor of the proton to be discussed in the next Section, it
ds much more convenient to have the polynomials expressed in terms of the creation
operators 71, 7?2 i.e. in terms of ﬁ(ﬁlil, ;;2 1‘2, AM). This is easily achieved
when we realise that the fransformation matrix (10) connecting 7!, 72 with 7!, 52

can be decomposed in the following form

-8 b o 1\fL -1y fo 1}[-i o
V2 V2 V2 V2
_ = ABCD.
g 1 ool L 1 1 0 0 1
v2 /2 V2 V2
(30)

The effect of A = C on the poiynomial P is given by (12), (11), while that of D
2n +1

just multiplies the polynomial by (=4)" ! !, Finally the application of B to P

gives a linear combination of P's whose coefficients are standard transformation

brackets (STB). Combining all of these operations we arrive at the result

P(n1 11, ", !2, AM) =

.
. X n +1 1 . .
_ . . - 1 1 1 . ..
= 2. P 1,4, 1, AM)(=1) il <nl,m :2,/\371111,”, 1oA>
A
I 2
' @n

where we also made use of the symmetry relation® of the STB.

From (31) and the above discussion we see that

" ll, n, 12,;’\.%!,' fir>m= (25(7;1!1, ", LoAM; [, 1) ‘ 0=

Il+12-A s ; ! l &
L, I(r12 N 1,.’\M} 0> =

ghoeny b AM) £(=1)

= Alv; [ r) [P(n
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. & +1
= 5, I”Jt'"z L AM> {A(Vufnf)('])l Lilox
n n
12
i 1
152

= _}..Inlll,nz LyAM><n I, n 12,,:\'n111,n2 LA for> (32)
n n
12
i1
1 2

where fand r are short hand notations for the partitions ”1 f2 fsz and Yamanouchi
symbols (e, w2 and in deriving (32) we made use of a symmetry property of the
transformation brackets 8. The coefficient A (1, f, r) and the value +or = in (32)
are specified in (23,24,27). It is clear incidentallv that the last transformation
bracket in (32) is either real or pure imaginary as the factor [1+ (-i)tl *h +[1] or
fixed I, 1, restricts 171 to either even or odd values. We could then give a trivial
redefinition of the ket (32) so that the last transformation bracket is always real.

Let us designate by

| SMg TM,., fr> (33)

the three-particle spin-isospin state! with SMg (TM.) being the total spin (isospin)
and its projection and f, r having the same meaning as in the previous paragraph.

The completely antisymmetric state' under exchange of coordinates, spin and

isospin is then given by
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In> =

n

&)=

S0 (B Lon b A 1) |0>[sTH ] T3], (34)

In (34) ?, ¥ refer to partition and Yamanouchi symbol associate to f, r e.g. if
fir=13}, 11, ?, T = {1111, (321). The phase (-T)' is defined in such way
that (-])r = *+1,+1+1,=1for r = (111),(321),(211),(121), respectively. The

symbol 1 stands then for the set of quantum numbers

h= nlon L AfSTMp, JM . (35)

We have thus constructed explicitly the translationally invariant three-

particle state,

IlI. FORM FACTOR OF THE PROTON AS A SYSTEM OF THREE QUARKS

It is often useful to describe baryons and mesons as systems of quarks and
antiquarks ®. In particular the proton can be thought of as a system of three quarks.
Assuming that the quarks are particles of spin 1 satisfying Fermi statistics, the
wave function describing the proton could be developed in terms of three-particle
states similar to those discussed in (34). We will show in this section that ex-
perimental evidence suggests then that the configuration space part of this three-
quark wave function is antisymmetric and of total orbital angular momentum zero.

If we know the coefficients a(r;II.I, ’;2 l;) of the expansion of the configuration
space part of the wave function in terms of harmonic-oscillator states (32), and if

the quarks are taken as point particles, the form factor of the proton would be

given by
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F(qz) =Zal (n; l:’ n;. I;) a(n111’ﬂ2 l!’2)

oyt ' i X2
m%ﬁ,gJZAzo,/qlﬂ|imggwngﬂnzéA=o,f=nﬂ>

K
(36)
as shown inreference!®. In (36) « is given by
k= | 2_ o k1= F_ g (37)
3mw 3meco

where #q is the momentum transfer.

Thus the quark model gives a theoretical prediction for the form factor,
about which we have also experimental information!! .

We now proceed to prove the remark made above i.e. that experimental
evidence suggests an antisymmetric form for the configuration space part of the
three quark state that represent the proton.

We need first of all to describe the states associated with the internal
coordinates of the quarks. For this purpose we take as an analogous mode| the

states |0 7 > associated with the internal coordinates of the nucleon, where

ler> = |oe>|7>, (38)
and |0 >, | 7> being the spin and isospin states with o = 4—:% , T= ilé_ « A

nucleon then has four spin-isospin states which form a basis for an irreducible
representation (IR} of a unitary unimodular group in four dimensions SU(4) charac-
}12

terised by the partition {11°°. Besides the two-component states o >and | 7>

are independently basis for | R of the unitary unimodular groups in two dimensions

(o) (1)
su2) and SU@) ', characterised also by {1}. The state (38) is then com-
pletely defined by the IR of the groups in the chain

(o) (7)
SUM4) D SUR2)  x SUR) (39)
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where x denotes the direct product of the group in question.
The nucleon can be found in two isospin states corresponding to neutron

or proton. The quark can be found in three states denoted by p, n, A which can

be characterised by the ket

lp> (40)

where for p, n, A the quantum number takes respectively the values o= 1,2,3.
Besides as the quark has spin it is described by a state |o' >, 0= t1/2identical
to the one appearing in (38). Thus the internal state of the quark is represented
by the ket

iPG'>=|;O>TfT>’. L= 10213 ’ O—=t1 » (4])

Clearly then this state is completely defined by the | R of the groups in the chain

)
SU() D sum{rr X sum(’o) . (42)

In a system of definite number of quarks, a partition f = ifl L1l ‘fs fﬁ%
of this number, with @ maximum of six rows!® will define not only the IR of the
U(6) group for this system, but also characterise the symmetry of the state under
permutation of the internal coordinates!?, As the quarks obey Fermi statistics
this implies that the configuration part of the state has a symmetry related to the

~

associate partition [ .

7) )
The IR of SU(Z)(W and S‘U(})(p are also characterised by partitions f'
and " respectively, of the number of quarks, where /' anf " are restricted to a

maximum of two and three rows ™ j.e. f' = lfl' f;l i !fl" f; f;’} . the problem

)
of finding the IR /' x [" 0fSU(2)(U) x SU(})(p contained in a given IR f of SU(6)

is similar in structure to the problem of finding the |R m of the rotation group R(2)
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contained in a given / of R(3). The solution of the latter problem is given by the
inequality = [ < m 1. For the former we need to use the phletysm procedure 4

to obtain for the three-quark system the relations

56 1/2 8 3/2 10
LR Bi N =
i L X + x
(43a)
70 V2 8 3/2 8
o R -
1/2 10 1/2 1
T B’j X +# _l x @
(43b)
20 142 8 3/2 1

ngﬂxyﬂﬂﬂx@

(43c)

In (43) we have on the left hand side of O the partitions /= 13},1211, N’
that characterise the |R of SU(6) for the three-quark system. On the right hand

side of O we have the partitions f' x / in Young diagram form that characterise
c ) (p)
the IR ofsurzjm X 50(3)“’ . Above the f, /" of SU{s), SU(3) 7 we put the

)
dimension of the IR, while above /' 0\‘5[’(2.‘}(T we put the total spin §. The di-

mension of the latter is of course 25 +1.

Experimentally we are interested in the IR ,f = {3} of SU(6) of dimension

56 as this is the one that contains the octet of spin ;_ N, A, 2, Z) and the
decuplet of spin % (N*, £, 2%, Q") and we thus expect that it represents the

lowest lying states of the baryon spectrum. As the proton is one of the members
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of the octet of spin 12_, we see that in this model its state is symmetric under the

exchange of the internal coordinates of the three-quark system. This implies then
that the configuration space state of the proton must be antisymmetric under ex-
change of the quark coordinates i.e. belong to the partition {13}, Furthermore ex-

perimentally the total angular momentum of the baryons in the octet is J = ;_ while

from (43a) the total spin of the octet is § = ;_ . |f we want to have just one octet
1

of J = 5 in our lowest lying states we must assume that the total orbital angular

momentum A of the configuration space three-quark system is A = 0 so that § +A

when § = ;_ give just one | = 1 .
We are then interested in three-particle translationally invariant configu=

ration space states that are antisymmetric i.e. /= {17} and have A = 0. From

(27) we see that these states can be expanded in terms of the harmonic-oscillator
states

ln 4, n 1, 00; 111} (321) > =

/;_ [P(n[ lyn 1,00) = P(nl,nl, 00)] 10> (44)

¥

where

2(n1-n2)50 (mod 3), and N:Z(n1+n2+1) (45)

with N being the total number of quanta. From (44) we see that these states
vanish if T AT Without loss of generality we can then take n <m, and as 2

is not divisible by 3, we conclude from (45) that no=mn, is divisible by 3. We
can then write

n=mn, n, = nt3v , N=202n+3p+D] (46)
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where 1 can be 0 or positive integer while 1/ is a positive integer only. Using

the expansion (31) we can then write the state (44) as

L1, # +351, 00,117} (321) > =

x<nl,ni, 0|nl,n+3vi,0> =

-2 S |n 2041, 20+1,00> x
nonl ‘
1 2
r'x+[+.lT i _* " .
x (=1)1 < A+, n,2041,0]|nl,n+301,0> (47)

where, if we wish, we could eliminate the phase factor / and have a real state.
In (47) the < | > are standard transformation brackets tabulated in reference®.
Clearly the state of lowest number of quanta is from (46) given by

n=1=0,v=10r N=6 i.e.

100, 30, 00; {17} (321) > - (48)

We could in a first approximation consider this as the state with whose help we

calculate the form factor of the proton, given by (34). Using (47) the calculation

is straightforward and we obtain
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+ 27 KB_ 1 KlO (49)
7168 14336

where 7 is related to ¢ by (37).

We could fix#w by demanding that at g = 0 the tangent to the curve
F (¢*) as function of ¢° is equal to the tangent of the experimental curve. The
curve F (g°) with this % and the experimental points are graphed in fig. 1. The
curve comes consistently below the experimental points and besides, though this
is not shown in the graph, the curve becomes negative at large g° in such a way

that

= J[om Flq") g’ dq -
= [IF(q)?‘q rdc] _D:p(0)=0. (50)

We can prove that p(0) = O for an arbitrary combination of states (47) by
noticing that the charge density o(x) becomes a linear combination of matrix

elements!?

<'ﬂ'21"+1,,}'21"+1,005(x+ ﬁi’)\é 2041, 1 2/ +1,00>

1 a4 3 1 2

=5, 8, . L _R, . (ﬁ ,)R. : (Fr) (51)
™ I!V/E’; n221+1 2 n22[+1 yi
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Fig. 1. Form factor of the proton as a function of the square of the momentum
transfer when this particle is represented as a system of three quarks.
The wave function of this system is taken as an harmenic-oscillator
state of six quanta whose frequency was adjusted to give the experi-
mental slope of the curve at g2 - 0. As discussed in the article this
is the state of lowest number of quanta antisymmetric under exchange
of the coordinates of the three quarks and of orbital angular momentum

Zero.
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where r — |x . From the form of R ; given in reference 10, we see fhaf.(Sl) is
a gaussian in 7 multiplied by a polynomial whose lowest order term is 4/ *2 ,
Clearly then even for !': 0 we start with a term r? and so the matrix element (51)
vanishes for r = 0, g.e.d..

The experimental data on the form factor of the proton up to the 4
measured so far!! do not suggest that F (g°) can become negative and so are not
in agreement with the possibility that the charge density of the proton vanishes at
the center of mass of this particle, [t is clear therefore that the quark model of
the proton, with the assumptions made at the beginning of this section, does not
describe correctly the form factor of the proton. Some of the assumptions could
be relaxed but as this paper deals with the harmonic oscillator and not the quark

model, we shall not discuss the problem further here.
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