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ABSTRACT

We study some variational properties of harmonic oscillator wave functions,
when the frequency of the oscillator is considered as a variational parameter.
Several Variational Theorems relating to matrix elements of an arbitrary Hermitian
operator with respect to oscillator functions, and to the overlap of an arbitrary

normalizable function with these wave functions, are established,

RESUMEN

Se analizan algunas propiedades de las funciones de onda del oscilador ar-

mdnico, mediante principios variacionales, cuando se considera a la frecuencia del
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oscilador coma el pardmetro variacional, Se conmsideran los elementos de matriz |
de un operador bermitiano arbitrario con respecto a funciones de oscilador y se
establecen algunos teoremas variacionales que satisfacen estos elementos de ma-
triz. Asimismo se demuestran algunos teoremas variacionales que satisface el

traslape de una funcion normalizada arbitraria con las funciones de oscilador.

I. INTRODUCTION

The harmonic oscillator has played a very important role in some of the
recent deve lopments in the theory of finite many-body systems, especially in
nuc lear theory, in which it has been used extensively!. This is of course due to
the fact that harmonic-oscillator wave functions (HOF) are easy to calculate with,
since they have a number of particular properties. Among these, one could mention
the symmetry between configuration and momentum space, the existence of the SU3
symmetry and most important of all, the possibility of separating the relative motion
from the center-of-mass motion in the two-body system, which makes the calcu-
lation of the nuclear-interaction matrix elements with respect to HOF, quite simpleZ,

In this paper we shall discuss some variational properties of the harmonic
oscillator which, to the best of our knowledge, have not previously been discussed
in the literature. Whenever one uses a set of HOF to solve Schrodinger’s equation,
the eigenvalues and eigenvectors of the system depend on the frequency @ of the
oscillator. In some calculations, this frequency is fixed by a simple comparison
between theory and experiment. More frequently, however, @ is used as a free
parameter to be determined at the end of the calculation. The properties of the
harmonic oscillator we now discuss, are relevant when w is used as a variational
parameter and the calculation follows essentially the ideas of the Ritz variational
method 3.

The theorems to be discussed below were first discovered when a variational
colculation of the ground-state energy of the hydrogen atom was carried out using
a finite set of HOF*. After diagonalizing the matrix of the Coulomb Hamiltonian

we noticed that if we maximize the overlap of the lowest eigenstate of this matrix
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with the ground state HOF, using the frequency of the harmonic oscillator as a
. variational parameter, then the overlap of this eigenstate with the first excited HOF
is zero. This is shown inFig.1. In section Il we generalize this result, and
show that the result is independent of the actual Hamiltonian used, being a proper-
ty of HOF.

The second type of properties we discuss here has to do with the variational
properties of the matrix elements of an Hermitian operator with respect to HOF.
These properties are again independent of the specific form of the Hermitian oper-
ator O and have to do solely with special characteristics of the harmonic oscil-
ator and its eigenfunctions.

As in the case of the overlap theorem, the variational properties concerning
matrix elements of O, were discovered when calculating the ground-state energy of
the hydrogen atom, using a finite set of HOF. We realized that when the value of

the frequency @ is chosen to get a minimum value for

<00|n|00>
the matrix element

<00|#[10>

vanishes. Here | 00> and |10> represent the ground-state and first excited HOF,
with quantum numbers n = 0, /= Qand n= 1, /= 0, respectively. In the numeri-
cal example we refer to, H is the Coulomb Hamiltonian. |f one now uses the value
of w so determined, it is extremely simple to prove that the lowest eigenvalue of the
two matrices coincide; one of these matrices is built by using zeroquantum HOF
only and the other by including both zero and two-quantum states. This is shown
for the Coulomb problem in Fig. s

II. VARIATIONAL PROPERTY OF THE OVERLAP

Let us consider an arbitrary normalizable function, characterized by angular

momentum / and projection m,
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¥y () = gy (1) Y, (6, ) 2.1)

and the eigenfunction of the harmonic oscillator

q)rﬂ'm (= Bag Rn,(ﬁr) Y. (6, )

which corresponds to the principal quantum number » and the same angular quantum
numbers as W, (r). Here 3 - vMw/F , where M is the oscillator mass.

We define the overlap between ¥, . and ®,,, as
I *
1,B) = [ ¥ () @, (1)

=B Y jm L'J] (r) Q.n[(ﬁr) ridr (2.2)
0

and consider this overlap integral for all values of n, from zero to @ maximum

valve N. We now form the sum of its squares

! 4 i 2
KB = X [In{ﬁ)] . (2.3)

93 =

If N goes to infinity, since the set of functions ®, ;. is a complete system of
orthogonal functions and l[—’i,m(.r) is normalized, KL (B) = 1, independently of the

value of 8. For any finite vaive of N, on the other hand, we have

0g K B < 1. (2.4)
We can now state the generalization of the resu!t mentioned in the introduction, as
the following theorem:

I
If I,(B) # 0, the value of the parameter 3 that makes K‘i(,B) an extremum,
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is such that

g (2.5)

IN+1(B):0 .

)
In order to prove the theorem, we derive KN(B) and equate the result to

zero,
4Ky () ; E a2 dL. () . ,
dB - n:@"’(B) dB_-z A
Since

I
d’n(B)AB 0 E 1/2r2r
7 mz_fo W, (N R, (Br)B” r'd

b *r d r 3/=!r3
Bl Bl R, (B B% rar,

the condition given in eq. (2.6) is equivalent to

i N i
= EZ VQu+2i+1)2n L., 1, = 0.
n=1

V@R @t I, L
0
(2.8)

Iz

To obtain this expression, use has been made of the following relation

dR r R TR LT
Brﬂ: }/(271+2z+3)(271+2) Rn+1’j -1/(2n+2l+])2ﬂ Rn+1,1-3Rn!'

d (Br)
(2.9)

Changing the dummy index from n to n' = 1 in the first summation of Eq. (2.8),
this equation becomes

e e RS /
Ven+2Is N @N) 1n L =0 (2.10)

which proves the theorem.
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It is clear, from the way the proof goes, that the result is valid for any

value of 7and for a normalizable function ¥, of arbitraty r-dependence.

II. VARIATIONAL PROPERTY OF THE MATRIX ELEMENTS.

We shall now consider the variational properties of the matrix elements of
an arbitrary scalar Hermitian operator H, with respect to HOF. If we use Eq.(2.9)

it is very simple to prove that

28 %<m:|n[nz> =V@n+21+3)2n+2) <mllH|n+1 1>

-V (2n+21+1)(2n) <ml|H|n=11>

+VQ2m+20+3)2m+2) <m+11|H|nl>

—\/(2m+21+]}{2m) <m—]l‘H‘nl>,

(3.1

which in the case m = n, because H is a Hermitian operator, reduces to the

following relation,
B diﬁoﬂ\u! > = V2 t2143)@2n+2) <al|lH|n+1,01>

- V(@2n + 21+ 1) (2n) <nllH|n=11> .
(3.2)

This result clearly represents the generalization of the variational property
of the matrix elements of H, mentioned at the end of the introduction. This is so,

since for'n = 0, the second term in the right-hand side of (3.2) does not exist.
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Using the property given in Eq. (3.1) we can prove some variational proper-
*ties of the spectrum of an arbitrary central Hamiltonian H, when the spectrum is
caleulated in the finite space generated by a set of N HOF. Let us consider the
case of the second cumulant &*, as an example. As is well known®, if we perform
a variational calculation of the spectrum of H, and look for the best representation
of each eigenstate of H, on the average, in terms of a single HOF, then we should
look for the minimum value of o0?. We now discuss what this will imply.

We define the trace of H by the following equation

! N
[, H] = X <nl|H|ni> (3.3)
N =
and the second cumulant O’; a8
7 i 2
ol Llra’l =L ¢ [14a] ; (3.4)
N N2 N

Using Eqs. (3.1) and (3.2) the derivative of 0’; with respect to 3 can be readily

calculated; one obtains, after some single algebraic manipulations,

BU‘% N ] |
B?f\_:\/(mﬂﬁa)(m-’rz) b3 N<1\(1\hr|;r11><n1-hr|N+1l>
n=10 J

| —

)
B

N

<nl|H|nl><NI|H|N+1,1> .

(3.5)

We see from this expression that the derivative of o'; is equal to zero if

<nl|lH|N+1I> =0, w0 Do N (3.6)

295



In other words, we have N +1 independent conditions altogether. As we only have
one variational parameter, namely B, conditions (3.6) cannot in general all be
fulfilled for the same value of 8. One could, however, impose the least square

fit condition, namely that

N 2
S {<al|lH|N+11>} (3.7)
n=20

be a minimum, and determine 3 by this requirement.

IV. CONCLUSION

We see from our discussion that when one is using a set of HOF in a vari-
ational calculation, the frequency w or the harmonic oscillator can be determined
by many different criteria. Some of them, as the one mentioned in connection with
Eq. (3.7), can be useful in special circumstances. The best criterion will, of

course, depend on the type of calculation one wishes to perform-

The authors would like to thank Prof. M. Moshinsky for interesting and

valuable discussions.
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Fio. 1.= Overlap of the ground-state wave function of the Coulomb problem with
the zeroquantum state (solid line) and with the two<quantum state (dotted

line) as a function of the parameter € = [M/(me"/%z) 17 where m and
e are the e lectron mass and charge.
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Fig. 2.- Energies E_ and E, for approximations of up to zero and two-quantum

states for the hydrogen atom problem as a function of the parameter
1

€= [#w/(me* /285%) ] 7. The energy unit is that of the first Bohr orbit.
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