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ABSTRAeT

We stud)' some variational proper/ies of barmonic oscillator wave furlC/ions,

wben /be frequenc)' of tbl!! oscilla/or is considerl!!d as a varia/ional parame/I!!r.

Sf'veral Varia/ional Tbeorl!!ms rl!!la/ing /0 matrix elements of an arbitrar)' J/ermi/ian

operator witb respE'et /0 oscillator fUTlctions, and to the oVl!!rlap uf an arbitrar)'

mJrmalizabl1!! functian with /bese wave funetions, arl!! E'stablisbl!!d.

RESUMEN

SI!!analizan algunas propil!!dadl!!s dE' las funciones de onda dE'1 oscilador ar.

máuico, mediante principios l)ariacio7la/es, cuando 5E' consid ••ra a la frf."cuencia d('/.
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m.cilador comu rl parámrtro f'ariaciOTlal. Se consideran Iw. E"/t'mrntos de matriz

dr WI o/X'rador homitiarlO arhitrario con respecto a junciorles dr oscilador )' se

('stablrcrn algunos trf}rrmas t'ariacioTlales que sati5jacefl ('stú5 ('Irmrntos de ma-

triz. Asimismo sr drmurstran algutlos teoremas t'ariacimlal("s qu(" ..satis/acl!' el

traslape' dr lIT/a {unciórl normalizada arbitraria con las /urJCiorl("S dE"o5cilador.

I. INTRODUCT ION

The harmonic oscillator has played o ver y important role in some of the

recent developments in the theory of finite many.body systems, especially in

nuclear theory, in which it has been used extensivelyl. This is of course due to

the foct thot harmonic.oscillotor wave functions (HOF) ore eosy to calculate with,

since they hove o number of particular properties. Among these, one could mention

the symmetry belWeen configuration and momentum spoce, the existence of the SU
3

symmetty ond most importont of all, the possibility of seporoting the relativemotion

from the center-of-mass motion in the two.body system, which makes the ca Icu.

lation of the nuclear"¡nteraction matrix elements with respect to HOF, quite simple2•

In this poper we shall discuss some variational properties of the harmonic

oscillotor which, to the best of OUT knowledge, have not previously been discussed

in the literolure. Whenever one uses a set of HOF to salve SchrOdinger's equation,

the eigenvolues ond eigenvectors of the syslem depend on the frequency W of the

oscillotor. In some calculotions, this frequency is fixed by a simple com¡xJrison

belWeen theory ond experimento More frequently, however, w is used os a free

poro meter to be determined 01 the end of the calculation. The properties of the

hormonic oscillotnr we now discuss, ore relevant when w is used as o voriotionol

para meter ond the colculation follows essentiolly the ideas of the Ritz voriotionol

method.3 •

The theorems lo be discussed below were first discovered when o voriotionol

calculation af the ground.slate energy of the hydrogen alom was carried out using

a finite set of HOF4• After diogonolizing the motrix of the Coulomb Hamiltonion

we noticed Ihal if we max imize the overlap of the lowest eigenstate of this matrix
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with the ground state HOF, using the frequeney of the hormonic oscillator os a

• variotional paro meter, then the overlop of this eigenstote with the first excited HOF

is zero. This is shown in Fig.l. In section 11we generolize this result, one!

show thot the result is independent of the actual Homiltonion used, being a proper"

ty of HOF.
The second type of properties we discuss he re has to do with the variotiOflJI

properties of the matrix elements of an Hermitian operotor with respect to HOF.

These properties ore ogoin independent of the specific form of the Hermitian oper.

otor O ond hove to do solely with speciol choracteristics of the hormonic oscil~

ator ond its eigenfunctions.

As in the cose of the overlop theorem, the variotionol properties concerning

motrix elements of O, were discovered when colculoting the ground-stote energy of

the hydrogen otom, using a finite set of HOF. We reo lized thot when the va lue of

the frequency w is chosen to get o minimum va lue for

<00111100>

the matrix element

< 00111110>

vonishe::.. Here loo> and 110> represent the ground-state ond first exdted HOF,

with quontum numbers tl = O, 1= O ond 11 = 1, 1= O, respectively. In the numeri.

cal exomple we refer to, JI is the Coulomb Ho'miltonion. If one now uses the volue

of w so determined, it is extreme Iy simple to prove thot the lowest eigenvolue d thp.

two motrices coincide; one of these motrices is built by using zero-quontum HOF

only ond the other by including both zero ond two-quontum stotes. This is shown

for the Coulomb problem in Fig. 25 •

11. VARIATIONAL PROPERTY OF THE OVERLAP

Let us consider on orbitrary normalizable function, charocterized by angular

momentum I and projec;tion m,
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(2.1 )

and the eigenfunction of the harmonic oscillotor

which corresponds to the principal qucntum number 11 and the some ongulor quantum

numbers os ll'/m (r). Here {1= vMW/6 , where M is the oscillator mass.

We define the averlap between lJIlm ond 4>,,/m as

"J~ R '= (1 '2 VI (r) , n/(fJr) r dr
o

(2.2)

and consider this averlap integrol for 011 volues af 11, from zera to o moximum

volue IV. We now form the sum of its squores

'. '[/]'K,. Vi) = ~ In (;3) •
¡ 11 ,... O

(2.3)

If S goes to infinity, since the set of functions tJ>,,/m is O complete system of

orthogonal functions ond 11', (r) is normolized, K/ (fi) = 1, independently af them ~
volue af (1. Far ony finite vOlue of N, on the other hand, we hove

(2.4)

We con now state the genera [izQtion of the result mentioned In the introduction,as

the following theorem:
I I

If I•..•,(B) I O, the volue of the porometer fJ that makes K
J

,/f3) en extremum,
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is such that

(2.5)

/
In arder to prove the theorem, we derive K,.,/(3) and equate the result to

zero,

Since

2 ~ / (13) d/~ (j:J~= O
n = o n df3

(2.6)

the conditian given in eq. (2.6) is equivalent to

N
:£ 1(2"+2/+ 1)2"

n = 1

(2.8)

lo obtain this expressian, use has been made of the following relation

2", dRn/(j:J,)1 R 1'---- R R
l' ------ (2"+2/+3)(2"+2) n+l,/ - (2"+2/+1)2" n+I,/-3 n/'

d (j:J')

(2.9)

Changing the dummy index from n ta 1/' - 1 in the first summatian af Eq. (2.8),

this equation becomes

1(2N +2/+ 1)(2N) 17 -ON N +1 -

which proves the theorem.
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It is cleor, from the woy the proof 9oos, thot the result is velid for ony

volue of 1 ond for e ncrmolizohle function 'Vlm of arbitrory r"¿ependence.

11I. VARIATIONAL PROPERTY OF THE MATRIX ELEMENTS.

We shall nO'Wconsider the voriotional properties of the motrix elements of

en orbitrory scolor Hermition operotor 11, with respect to HOF. If we use Eq. (2.9)

it is very simple to prove thot

2f3~<m/luln/> 1(2,,+2/+3)(2,,+2) <mIIUI,,+ll>
dfJ

- /(2" +21+ 1)(2,,) <mllul,,-ll>

+/(2m+21+3)(2m+2) <m+l /Iul,,/>

- 1(2m +2/+ l)(2m)

(3.1)

which in the cose m = ti, beca use 11 is o Hermition operota, reduces to the

following relotion,

1(2,,+21+3)(2,,+2) <,,/lul,,+I,/>

- /(2" + 21 + 1)(2") <"llul,,-l/> •

(3.2)

This result clearly represents the generolizotion of the voriotionol property

of the motrix elements of 11, mentioned at the end of the introduction. This is so,

since for'!l = O, the second term in the right.hond side of (3.2) does not existo
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Us ing the property given in Eq. (3.1) we can prove sorne variationa 1 proper-

.ties of the spectrum of an orbitrary central Hamiltonian H, when the spectrum is

calculated in the finite space generated by o set of N HOF. Let uS consider the

case of the second cumulant 0-2, as an example. As is well know(16, if we perfam

a variotional calculotion of the spectrum of 11, and look for the best representotion

of each eigenstote of 11, on the average, in terms of a single HOF, then we should

look for the minimum value of a2• We now discuss what this will imply.

We define the trace of 11 by the following equation

N

~ <"IIHI"I>
11 "" o

(3.3)

and the second cumulant O"~ ' as

1 ' 1_.[YII]
N r N

1 } 2 •[Y, 11]
N

(3.4)

Using Eqs. (3.1) and (3.2) the derivotive of 0--2 with respect to{3 can be readily
N

cakulated¡ one obtoins, after some single algebraic manipulations,

/(2N+21+3)(2N+2)
N
¿

11 =: o {
.!- <NIIIII"I><"IIIIIN+1 1>
N

--I_<"IIIII"I><Nl111IN'I,I> }
,\,2

(3.5)

We see from this expression that the derivotive of 0-
2 is equol to zero if
N

" = O, 1, ... , N • (3.6)
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In other words, we hove N + 1 independent conditions oltogether. As we only hove

one voriotionol poro meter, nornely {j, conditions (3.6) connot in general 011 be

fulfilled for the sorne va lue of {3. One could, however, impose the leost squore

fH condition, no me Iy thot

N 2
:£ 1<,,/1111,'1'+11>1

n = o

be o minimum, ond determine 13 by this requirement.

IV. CONCLUSION

(3.7)

We see from our discussion thot when one is using o set of HOF in o vori-

otionol colculotion, the frequency e¿J OT the hormonic oscillotor con be determined

by mony different criterio. Some of them, os the one mentioned in connection with

Eq. (3.7), can be useful in speciol circumstonces. The best criterion will, of

course, depend on the type of colculotlon one wishes to perform

The outhors would like to thonk Prof. M. Moshinsky for interesting ond

voluoble discussions.
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FI~. 1.- Overlop of the ground-state wove function of the Coulomb problem with
the zero-quantum state (salid line) ond with the two-quantum state (dotted

line) as a function of the paro meter E:= [1.lW/(m(''1 /2ti2)] /2 where m ond
(' are the e lectron moss ond ehorge.
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Fig. 2.- Energies Ho ond HI for opproximations of up to zero and two-quontum
states for the hydrogen atom Dtoblem as o function of the para meter,.
E::= f1k.J.J/(mt>4/2f52)] i}. The energy unit is that of the first Bahr orbit.
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