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RESUMEN

Se da, en forma cerrada, una [ormula general para los coeficientes de 3nj
para R, considerdndolos como generalizaciones del coeficiente de Racab. La
formula es aplicable a una definicion del coeficiente de 3nj que incluye como ca-
sos particulares las formas usuales de coeficientes de 9j y de 12j. Se discuten

algunas propiedades del coeficiente de 3nj.

ABSTRACT

A general formula is given in closed form for the 3nj coefficients ofR3 .
considered as generalisations of the Racah coefficient, The formula applies to a
type of 3nj coefficient which includes the standard forms of 9j and 12j coefficients,

Some properties of the 3nj coefficient are discussed.

*
Work supported by the Comisién Nacional de Energia Nuclear, Mexico.
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I. INTRODUCTION

Recently, considerable effort has been devoted to the investigation of
nuclear sfructure through the fechnigque of obtaining successive moments of the
interaction Hamiltonian {(French 1947); in deve loping the matrix elements of powers
of the Coulomb interaction in order to study isospin mixing (Flores and Mello, to
be published), 12 coefficients appeared for the square, and higher moments will
require coefficients with 15 and more i's. This led the authors to search for o
general expression. Such a formule for the 3nj coefficient seems to have beer
obtained (Sharp 1958), but we have not been able to trace it in the literature.
Since these coefficients clearly have @ number of other applications, it appeared
useful to publish the general expression for them, together with an exact de-
scription of the recoupling scheme it corresponds to. This is done in section I
of this paper. Section IIl discusses some properties of the 3nj coefficient. Ir
section IV some particular cases are presented that either give rise to useful sun

rules or because they are required for work at present being carried out.

II. THE GENERAL 3#rj CCEFFICIENT

The simplest case of interest of a 3nj coefficient occurs for n = 2, as the
overlap between two wave functions determined by three angular momenta coupled

in two different ways. |t is the well-known Racah coefficient (Racah 1942, 1943)

I

defined as follows:
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wiere [@a] = 2a+1. The two couplings are made explicit in the diagramme of
ge 1. In this and the diagrammes that follew, the right-hand side shows the
coupling scheme for the ket, and the left-hand side that for the bra; the vertical

line in the centre represents the total angular momentum | ; the outer sides of the
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polygon stand for the fundamental momenta and are therefore repeated on each side,
though .in a different order; the interior lines are the momenta which occur as inter-
mediate steps in the coupling. The order of the coupling is given by considering
all lines as vectors which are always taken to be pointing upwards rather than
down’ .

When the number of fundamental angular momenta is four, we have the case
n = 3, i.e. the 97 coefficient. The coupling scheme employed by Wigner (1951)

and Jahn and Hope (1954) is shown in Fig. 2 and corresponds to the definition

P _ CUy7,) dyye Gy 4y im’.-’!(‘fzjl}ju’.{f-tjs) Tasid?
s T3 143 - ] . ] .-
(07,10, Ui 1 14,1)
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In Figs. 1 and 2, the coupling of the bra is simply a reflection of that for
the ket in the vertical line associated with J. For three fundamental angular
momenta all other possible diagrammes reduce to that of Fig. 1 by a trivial re-
naming of the angular momenta; however, this is not so for Fig. 2, nor for n > 3.
In this paper we shall only consider the “symmetric” case, where the difference
between bra and ket consists only in the ordering of the fundamental angular
momenta,

The restriction to the “symmetric” case does not eliminate completely the
multiplicity of possible diagrammes; thus for » = 3, another symmetric diagramme
is shown in Fig. 3, which will not reduce to that of Fig. 2. It is trivial to show
that, whatever the type of diagramme, there are exactly n = 1 intermediate angular
momenta on each side; they may not intersect, of course, since this would imply
that one and the same angular momentum is coupled twice, in twodifferent triangles.
Since the number of fundamental angular momenta, excluding J, is » + 1, the total

*
In the diagrammes, this could be indicated by arrowheads on all the lines; but since they

would all point the same way, they have been omitted for simplicity.
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number of angular momenta involved in the [3nj] coefficient is

2r=1)+(n+t1)+1=3n.

To eliminate the remaining multiplicity among [3nj] diagrammes, we shall
adhere to the following rule: All interior lines of the ket shall go through the
same vertex of the outer polygon; the fundamental angular momenta are numbered
downwards from this vertex, up to iplk=1,..., n), continuing clockwise with
Thsy from the upper end of J. Thus there are £ - 1 interior lines from the chosen
vertex downwards, labelled successively Lyvlyveees ly;and n = kinterior lines
vpwards, labelled 7,  ,..., I,« The bra has the reflected configuration and the
value of & is thus the same; the numbering of the fundamental angular momenta is
the same except that jl and I+, (which adjoin the chosen vertex) are inter=
changed and the interior momenta are labelled L;. It should be noted that £ = 0
or k= n+1 give no new cases, since they only differ by a phase factor from
k= 1and k= n, respectively. The k-dependence is further discussed in section
1.

This rule reproduces the coupling schemes normally used for n = 2,3 and 4
(Jahn 1954, Ord-Smith 1954), if the resulting diagramme is interpreted as follows:
in the ket, j and j, are coupled (in that order) to Ly jaond L, are coupled to ki
and so on, up to /,. Then fy 41 9nd j,_ are coupled to [ ; I and Jnu-1 are coupled
to/, ., ;and soon, upto /, 41+ Finally, I, and 7, | are coupled to J. The rule
for the bra is analogous.

Dencting the bra and ket so obtained by < Fply: J ' and ‘jl- l;; 1>, the

general [3nf] coefficient is tien defined by the corres ponding diagramme as

C 3 T ¥ e I o S
(3nf] - 1; ,,]\1,,,{ 3)

” /2
0 CLed Ligdd
P =2

It should be noted that for » = 2, Eq. (3) defines the Racah coefficient and not the
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usual 6j symbol; for n = 3 or 4, the 9j and 12 coefficients are obtained in their
standard forms.

The general expression for the 3nj coefficient may now be obtained
straightforwardly by writing out explicitly the coupling of bra and ket in (3) in

terms of Clebsch-Gordan coefficients. Applying the well-known result”

<7 q j=m, >< "m' i -
E jr1‘12”!1’;'12"1:! ms lllzmxmzilsms -

3
3 Lr34-1;3"-'”1 ; ’ '
™ = ; ] =
_lm'() i, +1) ]112m1m2“3 By ?
373
1z, 7
< , [] '
11]2m1m2|13m3>
Lr i
L% s @

and the orthonormality of the Clebsch-Gordan coefficients, one obtains

A Loj, ! ! 1
) & 1 8 3 2 43 T3 k k+1
[3nj] = S(=)" [x] .
x
L;g ¥ jn+1 L:l, 2 Lg Lk+1 = Lk
lk+1 jk+1 1'Ja+'), [n—l JT.rz-l‘ In [n jn jn+1
’
Ly x Lpy L, ¥ L,y I, = L,
(5)
where
n+1 n
p=Rt(n=1)x= ,21;',-+,2 (L)t j+@m=1)x, (8)
fi= i=12

It may be useful to note that in giving this result as their eq. (15.14), de-Shalit and Talmi
(1963) omit the factor (2‘}’3 +1)
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writing R for the sum of all angular momenta involved in the [3nj] coefficient.
The sum over x in (5) is over all values compatible with the triangle conditions of

the 6j symbols (not Racah coefficients).

Ill. SOME PROPERTIES OF THE [3»j] COEFFICIENT

Since there is no generally accepted notation for the [3nj] coefficient, we
will use the obvious extension to the general case of the Mobius-strip notation
introduced by Ord-Smith (1954). The 37 angular momenta involved in the coef-
ficient are written on three lines with alternating spacing, and the ends are con-
sidered to be joined after a turn through 180° to form a Mabius-strip. Corre-

sponding to the diagramme of Fig. 4, the coefficient (5) then becomes

i 7 byoonly I
Ts Jyees dp ] faqwie B, (7)
ey, Koy el By e dy

One of the advantages of this notation is that it displays clearly which

aroups of angular momenta must obey the triangle condition

]a—b‘$c$a+b, (8)

if the coefficient is to differ from 0: they form triangles with their vertices on the
central line. There are two friangles not immediately obvious in (7), (pingin+1)
and (L, j; ). which are obtained at once by considering the closed Mobius strip.

Another advantage of the notation (7) 1s that it allows to write the general
expression (5) in a very compact way: Calling the elements in the three lines of
ti e Mobius strip a;, B, , ¥; s respectively, with 1= 1,..., n, and defining

Brr =Y Yy +1' = a (which corresponds to closing up the Mobius strip), the
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expression (5) may be rewritten

L2 S
1 Ty ? " a; B; Db
131 *: f"” = 2(-) [xj H
x 1=1
Ty Yoga *

In this new notation, it is trivial to show that the Mobius strip representing
the [3nj] coefficient may be opened up anywhere, without any change in value.
Furthermore, the Mobius strip may be read either from left to right or frem right to
left, These two operations generate 4n symmetry operations with respect to which
the coefficient is invariant,

It should be noted that (9) is invariant under a change in the value of & in
the range 1 to n, in the sense that the formal expression does not change; the
interpretation of the angular momenta in (9), however, does change, as will be
seen by comparison with (5).

Two interesting relations are obtained by putting some angular momentum
equal to zero. |f the zero is chosen on the middle row of the Mobius strip, say

B,,+ then only a single 6; symbol in the expansion (9) is affected:

a 0 a

m m +1 a_ +y +x
m
A ) B B 5
;/2 % m a’ﬂ"‘l }’m')'m.q.l
@ B ([a,)[7,])
(10)
This yields at once a reduction to the [3 (z= 1) j] coefficient:
a b Mg W ety a 25 O e 9, 1
1
B 0 B B |= ——" BveBuer By A
_ (la,10%,1)* !
J"l. Vm Vm ym +2 yﬂ 'yl ym —’Vm +2 ’n
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If on the other hand, the zero is on the first or third row, two 6; symbols now
contain a zero and the sum over x disappears, due to (10). We then have, taking

@, to be zero,

C 3 e}
'11 im‘l 0 ~m '],”
2 n
}le ’Bm-l Pr m 41 ‘Sn =
71 e Yo Y 41 5. _’
o B
( )R+(”+l)ym+ﬁm+'3m-l +?'Jl'n-li")'m+1 171 2
= 1
((8,118,.,1) o
m /3”’ 1 ) )/2 Y Y
. e ,, o
A=y ’Bm-g fsm-l ‘Bm Pmo4l Ym o2 “n n /1
Ym-1 Ym  Vme2 Y +2 Ym Vmaer e Ym Vn

(12)

Special cases of (11) and (12) are well known (e.g. Jahn 1954). When
n = 2 or 3, the results (11) and (12) coincide after some rearrangement. For
n = 4, the Biedenharn-E [liott identity (see e.g. De Shalit eq. 15.32) is obtained

from a similar argument.

IV. SOME PARTICULAR CASES

For the case » = 1, we have from (9)

[x] . (13)
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The corresponding coupling diagramme, Fig. 5, yields the matrix element

Fobgem .
Gy i) TG, i) 1> = () 278G D

where A = 1 or 0 according as the triangle condition between its arguments is

satisfied or not. Hence we obtain the sum rule (de-Shalit 1963, eq. (15.17))

Wi, iy iggiyidyJ) = Zl=

[x] (15)

which corresponds to Eq. (15.11) of de-Shalit (1963).
The 9 coefficient, with the coupling of Fig. 2, is seen to be

Iy 4y Iy 4 Iy T 43 Bk g
Iy I3 g = 1, I 15 = E =
Tae T1s T /4 124 13

[«] (16)



which, with an interchange of columns in the 9j symbol, coincides with a result
given by Jahn (1954).
For the sake of completeness, we give the formulae for » = 4 and » = 5,

which are occasionally used in work at present being carried on.

1 L L A = PO L Iy N
fy s J iy |= 2= (=)
x
I L2 I‘s L4 L2 L L3 X 1',2
la. J 14 L T4 15
(17)
L, x LB j1 x .L4
I 12 Ia 14 ls
i, 1y J i, is | =
Te Lz Ls L4 15
R Iy 1 h L 15 13 13 | A 14 Iy s
= Z(=) [«]
x
L, ¥ dg L, x L, L, * L, L, x L,
15 ]5 "16
(18)
L = &

Eq. (17) is a result given by Ord-Smith (1954). Eg. (18) has not, to our
knowledge, been given previously.

To obtain numerical values needed in applications, the general expression
in the form (9) is easily programmable, if a suitable routine for the evaluation of
4j symbols is available, This has been done in FORTRAN by one of the authors
(TAB) and is available from him.
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