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RESUMEN

E'l ~sta nota s(' presenta un método Jir('cto para int~grar las ~cuacion~s

ma~stras d~ una teoría ~stocástica propu('sta r~ci~nt~m~nt~. Se estudian dos

casos importantes: el movimiento d~ la partícula ba;o la acción de una fuerza

cons~rtJatitJa y de rm campo ~ lectromagnético externo. Las ecuaciones d~

Schr;-jcJing~ry d(" Pokk("r-Planck SigU("7l inm~diatam('nte como casos particulares

d~ las ("cuacio7l("s g("n("rales .
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ABSTRACT

Ir} Ihis notr, w(' present a Jire.! method 01 integra/ion o/ lhe mas/u

equations (JI a sfochastic thf!("Y recenlt)' proposed. Two importan! cases Off!

studÜ'd. name/y. the molían o/Ih!! particlf' tmdn a cmlservotive /orc(" aud lindeT

QTJ ('xlrmal {'/('clromagndíc field. The schriJdingl"T and flokkn~planck equatiOTlS

10/1001 imml"diale!y as particular cases o/ lhe more g£'Tlera/ equa/ions.

(. INTRODUCTION

In a recent poper1, one of us presented o new forrTIulation of stochastic

theory developed from first principIes. Two basic equotions of matian were thus

obtoined, os o generalizotion of Newtonion mechanics for the case of a stochastic

force. It was further shO'W'n that the first integro I of these equotions leads to

SchrOdinger's equation when non-Morkoffian terms are neglected and some parame-

ters take on specified va lues, and that quantum mechanics can therefore be interP'"et-

ed as o stochastic process.

The scope of this paper is to present a more genera I method of integrotion

of the equations of motion. This integrated set moy be considered the fundamental

system of equations for further development of the theory.

Two different cases are considered: firstly, the motion under a conservotive

force and secondly, the general electromagnetic problem. In both cases the corre.

s.ponding Fokker.Plonck and Schrodinger equations are obtained.

11. MOTION UNDER THE ACTION OF A POTENTIAL

The two fundamental equotions of stochastic motion arel:

(1 )

19c u + f)s v = O ,
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where the systemotic ond stochostic derivotives, J)e ond f)s resPdctively,ore ex.

~essed os follows:

(2)

v ond u ore the systemotic ond stochostic velocities respectively, given by

v:: [)ex and u = 1Jsx; fa is the externa I force (per unit mass) and IJ -+ ' IJ_ ore

related to the diffusion coefficient1• Le and Ls are linear operatars containing

derivatives of arder>,. 2; the volue of their coefficients depends upon the noture

of the particle's stochastic interoction with its surroundings. . .
Let us Ossume that n + ' lJ_ ond the coefficients appeoring in Le and Ls

do not dePBnd on the coordinates; in this case, [)c ond [)s satisfy the commutation

rules

(3)

~«lv.) o .•
j J 1 1

These rules con be readily generalized far variable coefficients, in which cose

the corresponding derivatives must be added to the right side of eqs. (3).

In studying the case of conservotive forces, we may write fo:: - \7V. Le.

us introduce two real dimensionless functions R ond S, satisfying

(40)

(4b)
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. with /Jo constOnt. For simplicity, we restrict ourselves to the case X. = 1.

Eqs. (1) can be readily integroted with the oid of (3) and (4), ta obtain:

2[) (iJC S - iJs 1<) - 2[)' [('15)' - (VR)'] = - V • (5b)o . o

which are the integrated fundamental equotions. A combination of them allows uS

to write

V • (6 )

where we hove introduced the following definitions:

U! = R + iS •

(7a)

(7b)

Eq. (6) is our new fundamental equotion of stochostic theory. It describes

the motion of o particle sub¡ect to the action of On externo I conservotive force 'o
ond a stochostic force due te' the interoction of the particle with its surroundings.

In particular, we can derive from it the equation of motion far a quortum-mechani.

col porticle, i .e., SchrOdinger's equotion. For this purpose, we introduce the

function tj; given by

f! R + j.S
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and rewrite (6) with the aid of (8), to obroin

3,/, 2 2'"
'f' __ 20' '7 >jJ + [V + 20 (O - 0Q ) '7 [,,y' - 21J LQ • '7/.,y,] >jJ •F- o o o o

(9)

where LQ == Ls T ;Le and DQ == lJ+ - 0)_ o

This general, non-linear equation reduces to SehrOdinger's equation by

making lJQ == f)+ == Do' ioe. 1>_ == O; LQ == O and toking Do == tr/2m, (<Jlsorecoll

tnal 11.= 1):

, ,
-1J12m'7 >jJ + U>jJ • (10)

u == mV is the total potentiolo

1II • MOTION UNDER THE ACTION OF AN APPLlED

ELECTROMAGNETIC FIELD.

Let us now study the more general ~oblem of e portie le under the aetion

of en externol electromognetie field choracterized by the pOfentiels ep ond A o

As o first step, we must generalize the original system of bosic equations,

to take into aecount 011 the terms of the externa I force. Ciear/y, in this cose, ,o
is given by the Lorentz force, whieh contains o term proportionei to the total

•• 1
velocitye == v + u:

(11)

The T,,'m u" H must be token into occounT os beeomes obvious during the working OuT 01
theolgebra: without it, it is impossible to recove, the usuol IO'mulation 01 quantum me-
chanics for the erectromognetic case.
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Since by hypothesis v changes its sign under time inversion, while u does not,
(.) (-)

we see that 1 has two components, which we snall ea 11 1 and 1 • behavingo , o
d¡fferently under time ¡nversion, namely,

(12 )

(-),
" me

u x H

'-)
The set of eqs. (1), which was written under the assumption l' O,o

must now be rewritten os follows:

De v - Ds u , (+)

o
(13)

De u + Ds v =
(-)

'0

Furthermore, we must modify our definition of the funetion S. We krlON"tl-otin

the Newtonian limit,1is may be identified with the aetion2• In eleetrodynomies,

there exists o well.known relotion between the aetion, the veetor potentiall.;,d the

velocity of the porticle, namely]

v= .!.-V(M)- ' A •
m me

This relation is o direet generalization of eq. (40) for the eleetromagnetic case;

therefore, we define the new function S by

v = 2f) 'YS - (>

o me
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Eq. (14) implies thot the mean value of mv ii given by the expectation volue2 of

_ jfJ\] - ~ A, i.e., thot the electromognetic field contributes to the momentum with
e

_ ~ A, as is well knawn. However, for the stochostic velocity u we use the sarre
e

relalian (4b), which guarantees that ils mean va lue remains equal la ,era. Wilh

the oid of eqs. (4b) and (14) the integrotion is readily performed.

Following now o procedure similar to thot used in the preceding section,

we obtoin for the fundamental integrated equotions:

- \'- _'_' __ A' + _'_(-{)_\/. A + Le. A) •
2m2e2 me

Combining these results with the oid of (7), we obtoin:

(150)

(15b)

2D
O
f,)Q w-21J; (\/w)' = V + .!.'--.(IJ \/. A - ~ A' + LQ• A) (16)

me Q 2mc

which con be considered the bosic equotion of mation for o stochostic portie le

under the action of On electramagnetic field. Following the previous procedure,

we may rewrite it in terms of Ij;:

(17)
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where .• = mV is the total sealor potential. As is expected, (17) reduces fa

SchrOdinger's equation in the Iimit LQ = O, with 1) = lJ = ~/2m ond IJ = O:o •

i~ d, __ l_(-ifi'V-'-A)'>jJ+<tc,
~ - 2m e

It is easy to show that \/; plays the role of o probobility omplitude. In

foct, by introducing

(18)

ond rewriting (150) in terms of P, we abtoio

v- L . v- i. . u ]S e

(19)

i.e., o continuity equotion with sources for the probability density p. Thus,

ene of the bosic equotions of stochostic theory is essentiolly the continuity

equation, while the second one, eq. (15b), expresses the conservation of energy,

os has beeo shown in eorlier papers1•2•

lt is evident from (19) that the non-Markoffion ferms account for self-inter-

octions. The usual quontum mechanics is obtoined by postulating tnat the ¡:rocess

is Markaffian, i.e., that such self-interactions may be neglected.

Eq. (19) was written having in mind the continuity equation of quantum

mechanics. Clearly, we can give it the form of o Fokker-Plonck equotion; in foct,

it i~ simple to show tho: eq. (19) is equivalent to
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op + V. (ep) -1J'V'p =
01

- J...-F [(O - O )(V .
LJ + o
o

e + ~ 1- 20. (V .
00

where f) = D•. - D_ is the diffusion coeHicient. For the quantum-mechanrcal case,

eq. (20) reduces to the usual Fokker.Plonck equation"

op + V • ep- oV' p = O •o/ al)

Since eq. (20) is written in terms af the velocities v ond u, it is olso valid for

the previous cose af a conservative force.
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