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RESUMEN

En esta nola se presenta un metodo directo para integrar las ecuaciones
maesiras de una teoria estocdstica propuesta recientemente., Se estudian dos
casos importantes: el movimiento de la particula bajo la accicn de una fuerza
conservativa y de un campo electromagnético externo. lLas ecuaciones de
Schrodinger y de Fokker-Planck siguen inmediatamente como casos particulares

de las ecuaciones generales,
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ABSTRACT

In this note, we present a direct method of integration of the master
equations of a stochastic theory recently proposed. Two important cases are
studied, namely, the motion of the particle under a conservative force and under
an external electromagnetic field. The Schrodinger and Fokker-Planck equations

follow immediately as particular cases of the more general equations,

I. INTRODUCTION

In a recent paper!, one of us presented a new formulation of stochastic
theory developed from first principles. Two basic equations of motion were thus
obtained, as a generalization of Newtonian mechanics for the case of a stochastic
force. It was further shown that the first integral of these equations leads to
Schrodinger’s equation when non-Markoffian terms are neglected and some parame-
ters take on specified values, and that quantum mechanics can therefore be interpret-
ed as a stochastic process.

The scope of this paper is to present a more general method of integration
of the equations of motion. This integrated set may be considered the fundamental
system of equations for further development of the theory.

Two different cases are considered: firstly, the motion under a conservative
force and secondly, the general electromagnetic problem. |n both cases the corre-

sponding Fokker-Planck and Schrodinger equations are obtained.

II. MOTION UNDER THE ACTION OF A POTENTIAL

The two fundamental equations of stochastic motion arel:
E’Cv—P\igSu: fU i
.LQCU Jrlgsv: 0,
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where the systematic and stochastic derivatives, lDC and DS res pectively,are ex-

pressed as follows:
2

=U‘V+D+V\7'+LV. (2)

vand u are the systematic and stochastic velocities respectively, given by

v = locx and v = ﬂsx; f, is the external force (per unit mass) and D, , D_ are
related to the diffusion coefficient! . EC and ‘:S are linear operators containing
derivatives of order > 2 ; the value of their coefficients depends upon the nature
of the particle’s stochastic interaction with its surroundings.

Let us assume that D, , D_ and the coefficients appearing in L and LS

10

do not depend on the coordinates; in this case, Y

and }95 satisfy the commutation

rules

(3, 81 = ]z(a,.uj) 3
(3)
[a‘-, EC] = Z(a,v”) B} ’

7

These rules can be readily generalized f or variable coefficients, in which case
the corresponding derivatives must be added to the right side of eqs. (3).
In studying the case of conservative forces, we may write fo ==VV, Let

us introduce two real dimensionless functions R and §, satisfying

v = 2DO VS ’ (du)

U= 21)0 VR (4b)
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" with D constant. For simplicity, we restrict ourselves to the case A = 1.

Eqgs. (1) can be readily integrated with the aid of (3) and (4), to obtain:

DR+ 0;5-20 VR Vs - 0, (5a)
20, (0 5= B R) =22 [(V$)' = (VR)*] = = v , (5b)

which are the integrated fundamental equations. A combination of them allows us

to write
0, 0, w=20! (Vu) = v , (6)
where we have introduced the following definitions:
JQQ =B +i ‘@C i (7a)
w=R*ti§ . (7b)

Eq. (6) is our new fundamental equation of stochastic theory. |t describes
the motion of a particle subject to the action of an external conservative force !0
and a stochastic force due te the interaction of the particle with its surroundings.
In particular, we can derive from it the equation of motion for a quartum-mechani-

cal particle, i.e., Schrodinger’s equation. For this purpose, we introduce the

function ' given by

= ER+£S

330



and rewrite (6) with the aid of (8), to obtain

2ip, 2% - - 203 V') + [V +2D, 0y~ D) 7 tmp =20, Loy Vimp1

(9

~

where LQ = Ly +il; and Dy = D,-iD_ .

This general, non-linear equation reduces to Schrodinger’s equation by
making D = D, = D, ise. D= 0; LQ - 0 and taking D = #/2m, (also recall
that A= 1):

i# §¢ - = FRT Y U . 10)
4
U = mV is the total potential.

III . MOTION UNDER THE ACTION OF AN APPLIED
ELECTROMAGNETIC FIELD.

Let us now study the more general problem of a particle under the action
of an external electromagnetic field characterized by the potentials ¢ and A.

As a first step, we must generalize the original system of basic equations,
to take into account all the terms of the external force. Ciearly, in this case, fo
is given by the Lorentz force, which contains a term proportional to the total

. *,1
velocity ¢ = v + u:

g:%[e+%w+wxn] (1)

*
The term U x H must be taken into account as becomes obvious during the working out of

the algebra; without it, it is impossible to recover the usual formulation of quantum me-
chanics for the electromagnetic case.
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Since by hypothesis v changes its sign under time inversion, while u does not,
: ’ (+) =)
we see that f has two components, which we shall call f and f, . behaving

differently under time inversion, namely,

{H) =8 [E+l.va] ,
0 m c

(12)
o)

fq =% uxH .
mc

The set of eqs. (1), which was written under the assumption fG‘ ) = 0,

must now be rewritten as follows:
(+)
iQC v - 395 u fo i
D.u+l f(-)
Pew v =F; .

Furthermore, we must modify our definition of the function 5. We know that in
the Newtonian limit, 5 may be identified with the action?. In electrodynamics,
there exists a well-known relation between the action, the vector potential ¢nad the

velocity of the particle, namely?

This relation is a direct generalization of eq. (4a) for the electromagnetic case;

therefore, we define the new function § by

v = 2D Vs~ . E T (14)

mc
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Eq. (14) implies that the mean value of mv is given by the expectation valuve? of

-i#V =% A, i.e., that the electromagnetic field contributes to the momentum with
C

- € A, as is well known. However, for the stochastic velocity u we use the same
c

relation (4b), which guarantees that its mean value remains equal to zero. With
the aid of eqs. (4b) and (14) the integration is readily performed.
Following now a procedure similar to that used in the preceding section,

we obtain for the fundamental integrated equations:

2, (0. R+0;5)=4D}VR Vs = = (D, V- AtLg* A), (150)

2!1’0 (iQC §=- JDS R) +2[);‘; [(VR)Z- (VS)EJ =

-v- & A+ € =DV A+L. ‘A . (15b)

2 mc

Combining these results with the aid of (7), we obtain:

., 2 . 3 ; g =
.z,DnJQQw-QD‘; (Vw) = V+ 2, VA= 2 AT +L,4), (16)

mc = < 2mc

which can be considered the basic equation of motion for a stochastic particle
under the action of an electromagnetic field. Following the previous procedure,

we may rewrite it in terms of i/ :

ip b oV inVa S AV [ 4BD =)V =Ly s Vin] Y,

ot m c

(17)
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where & = mV is the total scalar potential. As is expected, (17) reduces to

Schrodinger’s equation in the limit LQ =0,withD =D, =%/2m and D = 0:

ip 0 _ 1 iaV-C AV Ytdy

l
e

It is easy to show that |/ plays the role of a probability amplitude., In
fact, by introducing

and rewriting (15a) in terms of o, we obtain

30 4+ . 1 : s G Lo B
%+V (vp):lTop[D_v o [Ds DYV ¢ Ve e ® el u],

(19)

i.e., a continuity equation with sources for the probability density p. Thus,
one of the basic equations of stochastic theory is essentially the continuity
equation, while the second one, eq. (15b), expresses the conservation of energy,
as has been shown in earlier papers!+?,

It is evident from (19) that the non-Markoffian terms account for self-inter-
actions. The usual quantum mechanics is obtained by postulating that the process
is Markoffian, i.e., that such self-interactions may be neglected.

Eq. (19) was written having in mind the continuity equation of quantum
mechanics. Clearly, we can give it the form of a Fokker-Planck equation: in fact,

it is simple to show that eq. (19) is equivalent to
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ap 8T - 2
-HT- (CP) Dv p=’

- 1 - % lJ2 = . Uz ; P . % .
- FOpl:(D+ DO)(V c+q’ 21)_(\7 3+E;)+LS vt L, -],
20)

where D = D, =D_ is the diffusion coefticient. For the quantum-mechanical case,

eq. (20) reduces to the usual Fokker-Planck equation:

STP_+v-cp-pv2p=o. 1)

Since eq. (20) is written in terms of the velocities v and v, it is also valid for

the previous case of a conservative force.
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