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En est£' trabajo llevamos a cabo un análisis variacional para ('1 probl£'ma

del deuterón, usando una función de onda de ('nsaya que ('s una combirJación lineal

de estados d£'l oscilador armónico hasta con 10 cuaTltos. Se calcula la ('nergía

como función d(' la frl!cul!ncia del oscilador armónico para varios potenciall!s gau.

ssianos propu£'stos por Fl!l!nbt'Tg para I!l deuterón. y para el potencial dI! Eikem£'i<r

y Hack£'nbToich que tiene un carozo repulsivo blando. Los resultados del análisis

variacional para ambos casos se comparan con el resultado exacto, £'5 decir. con

la energía de ('nlace del deuterón. Se indica tambié,: la variación d,.1 radio m('dio

•Supported by the Notiona r Se ienee f oundotion.
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cuadrado d~l d~uterón en /unció,¡ d~l número máxima dt' cua,¡tos empkados en ~l

dt'sarro//o. El ob;do principal del trabajo es establec~r la rapidez d~ convng~"a

cia para ~l proceso d~ aproximación, /as cuales podría,¡ t'mplearse posteriorm~nte

e'l problemas i"volucrando más d~ dos partículas.

ABSTRACT

In the pesent paper w~ carry out a variational analysis o/ the deut~ron

probl~m with a frial wav~ junction that is a linear combination o/ harmonic 05cila

lator stat~s o/ up to 10 quanta. The energy is computed as a /unction o/ the
/requt""cy o/ the harmonic osci/lator /ar several Gauss ian potentials /or the deutt'ra

on proposed by Pet"nberg. and /a the Eikemeit'r-Hackenbro;ch potential wh;ch has

a so/t rt'pulsivt' coreo The fJariational (J"(Jlysis is compared with th~ exact result.

id •• th, binding energy o/ the dt'utaon, /ar both pott'ntials. W~ also indicate the

variation o/ the root.mean square radius o/ the d~utt'ro,¡ as /unction o/ the maximum

numb~r o/ quanta considered in th~ expansiono The main purpose o/ tbis paper is

to ~stablish bound and cmwergblce rates /ar tbe approximation proc~ss, which we

could use latt'r in problems ;,wol!J;,¡g more than two particl~s.

l. INTRODUCTION

Variational analysis of the ground states of light nuclei has been carried

out almost since the achievement of a clear understanding of the nuclei as proton

neutron systems. Usually the trial wave functions used were of a very simple

type, e.g., for the a particle one taok o Geussian in the relative coordinotes of

the four nucleons1• The paremeters in these trial WOve functions were adjusted

soos ta minimize the expectation value of the Hamiltonian proposed, hoping to

obtain bindlng energy in reosonoble ogreement with experlment for en interaction

potentiol between the nucleons deduced from two body binding ond scottering data.

Up to relotively recently no direct experimental information on the trio!

wove function itself could be obtoined. This situotion has chonged radicolly with
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the measurernents of form factors by eledron scattering experiments2• From the

FOll'ier transform of ,he form'factor we get ,he charge distribution whi~h we coul.d

olso determine directly f,om ,he tria+ wave function, thus testíng ,hes e wave

functions In much more detoil than was done before through ,he evaluation of the

binding energy.

It is interesting to note tha', for example, ¡n.,he case of the a. particie, t~e

simple Gaussia" wcve funetion mentjoned abo,ve is no looger 5ufficient as it leeds

to a Gou5sian char-ge-density distrihution and a Gou5sian form factor. The actual

ferm factor ,os meosured in recent experiments3 confOins besides a Gaussion factor

a polynomial of sixth arder in ,he squore of the momentum transfer. This implies

,hat if ,he wave function of the four-nucleon system is developed in terms of har" .

monic oscilJotor stotes 'in the rekJtive coadinotes., it would hove to ¡nelude stotes

oF up to 6 quema in oddition to the states of O quanto involved in the standard

symmetric Guoss ion wove function. Construction of these four ..nuc leon stOfeS, ond

more generolly of the n-nucleon states, characterized by definite irreducible repre.

sentatian of the rototion group R and the symmetric group S in a translationoJly. , .
invariont harmonic osC'illota- potentiol has been ochieved by Kromer and Moshinsky'"

These states could then be used foran expanston of the triol wave functions of the

ground stctes of light nuclei, Whieh would hove a mueh better chonce of givinp ot

the SOrne time the bind íng energy and the careet. charge distribution.

Befare engaging in a progrom of this type it is of great i"terest to see

whether a superpositlon of harmonic oscillator states could constitvfe a gocx:l triol

WQve function fa the two ..body, problem. It is impatant to see fiow quick is. the

convergence rote to the binding energy as o function of the maximum number of

quantc considered. It is 0150 of interest to see how this convergence rote depends

on whether the two body interoction has a repulsive core or not.

In the present paper we sho J I anO Iyze three types of potentio Is between two

portie les:

(a) A family of Goussion potentials without repulsive core introduced be

Feenberg fa- the proton"neutron system whose p::Jrameters were adjusted numerically

to give the appropriate bindlng -2..2 MeV fa the deuteron.
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(b) A superposition of three Goussian potentials, one of which is positive

and represents o repulsive core, wh.ch has introduced by Eikemeier ond

Hockenbroich5 to adjust numerically both the binding energy of the deuteron and

the nucleon scattering in the triplet state.

(e) The Coulomb potential between electron and proton. In 011 three cases

we shall calculate the matrix elements of the Hamiltonian with respect to hormonic

oscillator states of up to ten quanta ond then proceed to study the variotion of the

binding as o function of the frequency w of the oscillotor. We shall, in particular,

be interested in the values of the root mean square rodius ~f the two porticle state

for this frequency.

We first discuss the details of the voriationol onalysis and then proceed to

opply them to the potentiols considered.

11. THE VARIATIONAL ANALYSIS

The Homiltonian for the two-body problem would be written as

JI = (21-')" I p' 2 .• V(r'), (1 )

where f.1 is the reduced moss of the two particles ond ,', p' ore the relative coordi.

nates and momento of the two particles. It proves ver y convenient to use instead

of ,', p' the following dimensionless coordinates ond momento

%r = (¡.w//J) , r' , (20 )

(2b)

where w is some frequency which we sho 11 later identify wlfh the frequency of the

harmonic oscillotor stotes we use. The Hamiltonian ji takes then the form
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(3 )

Now the harmonic ascillator stotes af frequency w could be designoted by

the ket.

I ,dm> ,

N = 2n TI,

(40)

(4b)

where n is the radial quontum number, I the orbital angular momentum, m its pro.

¡ection and N the total number af quonto.

The triol wove function we 5hall use will be a lineor combinatían cf (4a),

but as we shall be concerned only with stotes with orbital angular momentum 1 = O,

both in the deuteron ond hydrogen atom case, we could restriet curse Ives to the

wove function I n, O, O, > , which in what follO'NS we sholl designate in the short

hond nototion

We hove then that

1./J= ¿a"ln>,
•

1a~::: 1 ,
•

(5)

(60 )

(6b)

ond a voriotiona lana Iys is cf the expectotlon va lue af Ji subject to the restriction

that tj; is na-molized leads to a system cf lineor equotions in the Q". The secular

•determinont is then
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del 1<n'l U In> - F.8.,. I = O,

with n', n being integers restricted to

O~n',ns.~N,
2

VOL.18

(7)

(8)

with N being the moximum even number of quanta considered in the.problem.

The motrix elements in (7) can be eosily shown to bé6

,
• + •

1+ p~ o B(n'O,nOp) lp ,

where lp are the Talmi integra Is.7

(9)

(10)

and B(n'O,nO, p) are coefficients algebraically determined and explicitly tabu.
IOled by Brody ond Moshinsky'.

We shall now consider the particular cases of the deuteron dnd the hydrogen

otOm se p:note Iy, to intrcxfuce dimensionless Hamiltonians convenient in each cose.
For the deuteron case we define
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(11 )

with m, ,\1 being the mOsses of the electron and protan respectively. Insteod of

the frequency w, it is more conveníent to introouce in the motrix e lements of 11

corresponding to (9) the dimensionless poro meter

E= I!w (12),
me

The potentia! will be given by o Gaussian or a 5uperposition of Gaussian's of the

lorm

(13)

It is more convenient to give the parameters of this potential in terms of the

d imens ion les s variables

A= (140)

(,\1::' f = 9.01961m ,

17
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thus being able to write the ratio of this potential to 4.3mc2 as

-.4 exp [_ 2~r'].

VOL.18

(15)

From (10) we eonelude Ihol Ihe Tolmi inlegral lor polenliol (15) is

(16)

In the units 4.3mc2 of energy used here the binding energy of the deuteron

is

(17)

ond this is the number we must opproach in OUT voriotionol colculotions.

For the Hydrogen atom case6 o convenient dimensionless Hamiltonion is

defined by

4 • I
1/ = (m.) JI.

26'

[L=m, (18)

with m being the

first Bohr orbit.

mass of the electron, so we are dividing by the energy of the

Jnsteod of the frequency úJ it is more convenient in this ~ase to

use the porameter

/3, ( 4)"
=?>-u !!.!.!..-

2{i'

18
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The Tclmi integral for the Coulomb potentiol divided by the energy of the first

Bohr orbit, is the" given5 by

and the bínding energy of the hydrogen atom il) these units is

Eb=-l.OO.

(20)

(21)

As a final poi"t in this general discussion we shall analyze the expec-

tofion value of the square of the radius r'2 with respect to the state (6), i.e.,

~N x
-.£ [~ + 2 1 {na' - [n(n + ~)] , a -1 a }] ,
j.1JJ.J 2 n==1 n 2 11 n

(22)

where we made use both of the matrix element6 of r2 and the normalizatían con-

dition (6b), the Ictter to eliminate Go• Using the dimens ionless parameters dis-

cU5sed aboye we see that we can write in the cose of the deuteron

(fjjJffiJ) = 2(~'!Mmc') ,-' ~ 2x81.353/m'x ,-',

and in the case of the hydrogen atom

19
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with (J being the Bohr radius. The root-meon-squore rodius is of course ~>.
B

III. THE FEENBERG POTENTIAL
FOR THE NEUTRON-PROTON SYSTEM

Feenberg determined numerico lIy o series of Gouss ion potentio ls that gave

the same binding energy -4.3 in units of mc2, for the lowest bound state of the

neutron ¡:l'oton system. In table 1 we reproduce the values of V , r in MeV and
o o

fermis res pective Iy and the corresponding values of A and a for these nine po.

tentio Is enumerated in order of ¡ncreas ing range.

To analyze how well the harmonic oscillator states approach the lowest

bound state of these potentiols we first discuss the bínding energy as o function

of E defined in (12) in the zeroquantum approximotion for the potentiols 1,3,6,9

of table l. The other case s were olso analyzed, but as the corresponding curves

lie between those presented in figs. 1,2,3,4 we do not reproduce them here.

An interesting point is that the energy, which in this case is just

E (,)o (24)

has ver y different behavior as o function of E in these four cases, des pite the foct

thot the bindíng energy of the ground state in 011 of them is the SOme. For the

very short range potentiall of fig. 1, Eo(E) is not only always positive, it does

not even show a minimum. If the ronge ¡ncreases somewhat as for the potential 3,

the Eo(E) shows a minimum at E = 30.86, though this minimum is still slightly

aboye zero thus not leading to a bound state in this approximation. For the longer.

range potentials 6 and 9 the minimum is negative and in the case 9, we alreody in

this very rough approximation get 69.72% of the binding energy at the minimum

,= 13.88.

We see then that for a Gaussian potential the validity of approximating the

ground state of fixed energy by a Geussian wave function, i.e., en harmonic-oscil.
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loter stafe of O quanto, is strongly dependent on the range the Gouss ion potentiol,

becoming better as the range ¡"creases.

We now extend the anolysis of potentials 3 and 9 from zero to up to ten

quonto. We selected the potentiols 3 and 9 for this more thorough analysis fOl" the

follO'Hing reascnS:

(o) Case 3 Mot eniy gives the correc:t binding energy of the deuteron as do

011 the ot~ers, but a Iso can be shO"Nn to give cn effective range 9 e lose to the ene

required experimentally fOl" the scattering of "ueleons in the triplet state at low

energy. Furthermore, the mínimum of E(E) at O qucnta comes quite clase to the

ene obto ined at Oq uenta fOl" the Hackenbroich potentia 1, thus a lIowing Us to Com-

pare the speed of convergence to the binding energy of the deuteron of two po.

tentials, one without and one with repulsive core.

(b) Case 9 has rhe langesr range 01011 rhe Feenberg parenlials and so ir

is interesting to see the speed of convergence in this cose, the most fovouroble

one in the cose of the zero quantum opproxímation.

The quantum numbers of the states ore n = 0,1,2,3,4,5 ¡OS the number of

quanto is 2n, for the last, n = 5, we hove 10 quanta. Altogether we hove then a

6x 6 matrix in eq. (7). we evo luated the motrix e lements as a function af E ond

proceeded todiagonalize and find the lowest eigenvalue, not anly for the f.,xf.¡

matrix but also for its submatrices of 5x5,4x4,3x3, 2x2, and 1xl. Thus we

were abJe to draw fig. 5 for potentia I 3 and fig. 6 for potentia I 9, ind icating by En

fa eoch of the curves the (n + 1) x (n + 1) motrix ta which it OOlongs.

We immediotely notice in both figures that we approach the binding energy

-1 when We increase the number of quanto, but that this approach dces not take

place in o uniform way. First when we inelude only states with n = 0,1, i.e., a

2x2 matrix, the minimum does not even diminish though the new curve comes

below the lxl curve as it should. But ifwe include n = 0,1,2, i.e., a 3x3

matrix, we get a considerable ¡'ump toward the eorrect binding energy..- Again when

we pass to n = 0,1,2,3, i.e., o 4x4 matrix we do not decreose the minimum of the

3x3 matrix, but for the 5x5matrix, i.e., n = 0,1,2,3,4 we get another jump
followed by no improvement for the 6x6 matrix, i.e., n = 0,1,2,3,4,5. Clearly

.21
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then, our binding energy fa the value of E fO' which it ;s a m;nimum, decreases

only when we increase our states by iumps of four and not by only two quanta, i.e.,

when we go from number of quanta = O, •.. N to number of quanta = O, ... N, N + 2,

N + 4 with N a multiple of 4. This is a general result as will be seen in the

following sections.

For potential 3 the O-quanta approximation dces not even give binding as

seen in fig. 2, but a lready we get bind ing for N = 4, w ith lowest energy E2 = - 0.68
lar E = 30.8, and lar N = 8wilh lawest energy 8, = -0.87 lar E = 27.8. 'In the
latter case we get a Iready 88% of the binding energy.

For potential 9 the zero quantum approximation already gives a considerable

part of the binding. Nevertheless the binding increases with increasing number of

quanta though by smaller steps and again significant changes occur only by jumps

of four quanta. For N = 10 we get the lowest energy Es = -0.93 for an lO = 10.8.
It is clear that if we carry our calculations up to 10 quanta, we get o Imost os goOO

binding energy for case 3 os for case 9, des pite the fact that in the latter our

storting point fo N = Owas much better.

In the process of diogonc;dizing the 1 xl, 2x2, ..• 6x 6 matrices we get the

corresponding a ,'J = 0,1, ... ~N, N = 0,2,4, .•• 10. For the E that gives the
n 2

minimum for the respective submatrices we calculate the root mean square radius

/<,'2> using (22). In table 20 we give the results for the potential3and in

table 2b for the potential 9. Though not strictly equivalent it is interesting to

compare lhese volues wilh the socalled radius R = ¡¡¡2/MB = 4.31 1m 01 the

deuteron where B is the binding energy. For potential 3, /<,'-2> increases from

2.81 to 3.76 frr when N goes from Oto 10, thus approaching, but keeping be low R,

while for potential 9/<,'2> ¡ncreases from 4.080 to S.OS6fmwhen N goes from

Oto 10, thus exceeding almost immediately the value of R. This seems to indi •.

cate that potential 3 provides a more reolistic description of the deuteron though

both potential 3 and 9 give the same binding energy.

In conclusion we see that the ground state in a Gaussian potentio/ could be

opprooched quite effectively by a superposition of hermonic oscillator states of up

to ten quanta, though en approximation by a state of zero quanta is only reos ona ble

lar a long range Gaussian potential.
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IV. THE EIKEMEIER-HACKENBROICH POTENTIAL

FOR THE NEUTRON-PROTON SYSTEM

Recently E ikerne ier and Hackenbroich proposed a centro I potentia I for the

two-nucleon system thot ¡"eludes a 50ft repulsive core and describes correctly

both the binding energy of the deuteron and the scattering of nucleons by nucleons

for up ta 300 MeV in the laboratory system. This potential is a superposition of

three Gaussians ond for the triplet case, which is the only one oppearing in the

discussion of the binding energy of the deuteron, the parameters Vo' ro and the

corresponding A, aof (14) are given in roble 3.

The ca Iculations were corr ied out in the SOrne way as for the case of the

Feenberg potentiaJ. In fig. 7 we give the energy as o function of E in the O-quanta

approximation (24). We note the presence of o minimum, but os in case 3 of the

Feenberg potentiols, the minimum though close to zero, is posltive, thus not

giving o bound stote in this approximotion. When we increase the number of auanta

up to N := 10, we get the s ix curves of fig. 8 in wh ich the s ¡ze (n + 1 ) x (Tl + 1) of

the motrix diagonalized is indicoted by En for eoch curve. Again we note the

property thot ¡ncreases in the binding energy appears for jumps of four quanta and

for N:= 4 we get binding with o lowest value of the energy E = -0.54 for E:= 24,,
while lor N = 8, E, = - .635 lor E = 22. The percentoge 01 1he binding energy 01

the deuteron thot we get even for N:= 10 is 64% cons iderobly lower than the 88%

which we got for the comparable case 3 of the Feenberg potential. This is to be

expected in view of the presence of the repuls ive coree

In the sarne way as indicated in Section 3, the root mean square radius was

colculated for up to N = 0,2,4,6,8,10 quonta and the results are given in table 4.

As Eikerneier and Hackenbroich give olso o wave function

U(r') = r'</1(r') , (25)

for the deuteron by meOns of a groph, we tried to estimate the expectotion value of

r'2 with respect ta this wave function. For this purpose we approximated the

23



W.W. YEH

wove function U(,') by on anolytical function of the following type

U(,') = e sin (17,'/2'0) for O ~,':f'1 '

U(,') = [) exp (-,'IR) for'l ~,' ~ 00 I

where the p::nometers take the following volues

VOL.18

(26a)

(26b)

1 %e = O.55fm D = O.8476fm " R = 4.3lfm, ',= 1.99fm. '0= l.72fm.

(26c)

In fig. 9we reproduce, morking it with a fullline, the function U(,') of Eikemeier

ond with a broken line drow curve (26). The exponentiol toil is the correct one

obtoined from the binding energy of the deuteron ot distances in which the at-

tractive potentiol almost vonishes.

With (26) the root mean squore radius is

1<.'2> 38439f• • m , (27)

which compares reosonobly with sorne of the volues of table 4.

We sholl discuss the implicotions of the onolysis of the Hackenbroich

potential in section 6, but before thot we olso onolyze for comparison value, the

results for the Coulomb potential.

V. THE COULOMB POTENTIAL IN THE HYDROGEN ATOM

This problem wos discussed fully by Moshinsky ond Novero6• Here we

would onJy like to present in fig. 10 the groph of their results for the energy as

function of the parometer j3 for up to N = 10 quento. In this case the O-quonto
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approximati"on (24) gives already 84% of the binding energy which is improved up

to 97.5%whenwe 90 up to N = lOquanta. As befare, the 9Oil15 in the binding

energy occur at jumps of four quonto, rather than two.

The excct wcve function for the hydrogen atom ground state is

• %
W = (77a~) , exp (- (28"

where t1
B

is the Bahr radius. The root-meon-square radius for this wcve tunction

is

(29)

For the opp-oxlmate wave function for up to ten quonto the root meon square radius

is given in table 5. In this case we see thotel! the opproximate values ore quite

c10se lo Ihe exocl volue (29).

VI. DISCUSSION

The potential of Eikemeier and Hackenbroich would be a reosonobly real .•

¡stic potentiol for the description of two nucleon IOTerOCflons. In :lo'Cl,.llOn 5 we

saw the apPl"oximation we could get with this iflteraetion for the binding of the two

nucleon svstems, i.e., the deuteron when we used a tria I wove funetion built from

hormonic oseillotor stotes. The question orises as to whot sort of approximation

we eould get for heovier nuclei sueh as the a particle and beyond, w ith the SOrne

potentiol but with On n"porticle trial wove funetion built from harmonic oseillotor

states of the type diseussed by Kramer ond Moshinsky" •

While no rigorous Onswer can be given before earrying out the calculation,

it is interesting to note that for the Feenberg potentiols the hormonie oscillator

tTia I wave funetion is mueh better for long range potentia Is than for short range

ones. This means that it works mueh better if most of the wave funetion is ins ide
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the potential, ond not, as is the case of the Eikemeier-Hockenbroich potentiolond

other two nucleon potentiols, where most of the deuteron wave function is outside

the potential. In the case of the a.pcrticle though, the strong binding will keep

most of the wave function inside the potential, thus possibly favouring the

harmonic oscillotor trial wave function vis o vis the corres pond ing wove function

for the deuteron problem. In this case, the approximotion for the a.porticle when

we increase the number of quanto should possibly converge more rapidly thon in

the two bodv problem, ond thus the latter problem (X"ovides uS with o kind of lower

bound for convergence. lt is interesting t~ note olso that fa' a reasoooble Feenbera

potentia 1, such as case 3, we get a closer a p(X"oximation to the correct bind ing

energy than for the Eikemeier-Hackenbroich potentiul which has o repulsive core.

This cleorly indieates that for a reolistic potential, the contribution of stotes with

a higher number of quonta is fundamental which seemS to be in agreement with the

foct thot these states appear in the a.porticle as discussed aboye.
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Table 1

The nine potentiols of Feenberg

Type 1 2 3 4 5 6 7 8 9

Vo 122.33 83.04 61.00 47.62 38.6 32.24 27.53 23.93 21.13

r 1.082 1.353 1.624 1.894 2.164 2.435 2.706 2.976 3.247o...,
'" A 55.1 37.4 27.48 21.45 17.38 14.52 12.4 10.78 9.56

a 69.4 44.4 30.86 22.68 17.36 13.72 11.11 91.82 7.72

A/a 0.79 0.84 0.89 0.95 1.001 1.06 1.116 1.186 1.25

Va in MeV"o in fm, i\ and a are dimensionless
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Toble 2

(a) Rool-meon-squore rodius ollhe Feenberg polenliol 3 (1m)

n

10'>•

o

2.8122 2.8175

2

3.2985

3

3.2681

4

3.8624

5

3.7649

(b) Rool'meon-squore rodius ollhe Feenberg patenliol 9 (1m)

n o

4.080 4.1045

2

4.6103

29

3

4.624

4

5.048

5

5.056
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Table 3

The porometers of the Eikemeier-Hoekenbroich potentiol

VOL. 18

2 3

v. 600 -70.0 - 27.6o'

r . 0.4264 1.414 1.622o'

a. 447.44 40.6765 30.914,
A. 270.3 - 31.53 - 12.43•

Va in MeV, ro in fm, A, a ore dimensionless

Table 4

Root.meon.squore rodius for Eikemeier .•.Heekenbroieh potentiol (fm)

" o

3.0638 3.055

2

3.69

Table 5

3

3.669

4

4.1592

5

4.2777

Root.meon.squere rodius for Coulomb potentiel in units of the

Bohr red ius

" o

1.634 1.5956

2

1.622

30

3

1.63

4

1.669

5

1.67
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Fig. l. Energy Ea (E) for the Feenberg potential of case 1, in the zero quantum
approximation as function of E = (Jiú>/B). The energy is given in units
of the binding energy n of the deuteron in this and the following figures
except for figs. 9and 10.
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Fig.2. Energy E
o
(€) for the Feenberg potential of case 3 in the zeroquantum

approximotion.
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Fig.3. Energy I?O (E) for the Feenberg potential of case 6 with zera quantum
a pprox ¡maticn.
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Fig.4. Energy EO (E) for the Feenberg potential of case 9 in the zero quantum

approximotion.
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Fig. 5. Energy E (E) ... E (E) for approximotions of up to ten quanto for the.
o 5

Feenberg potentiol of case 3. Note the difference in scale for the

Eo' 1\, curves and the E
2
, ••• Es curves.
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Fio. 6.

VOL.18

Energy E (E) ••• B (E) for approximation of up to ten quanta for the
o 5

Feenberg potentia I of case 9.
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Fig.7. Energy Eo(£) for the Eikemeier-Hackenbroich potentials in the zero
quontum approximotion.
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F ig. 8. Energies 1: (E) ... E (E) for approximations of up to ten quanta for the
o 5

Eikemeier-Hackenbroich potentials. Note the differences in scale for

the 1:0, El curves and the £2' ... Es curves.
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Fig.9. Wave lunclion V(,') 01 Eikemeier and Hackenbraich (Iull line) and ils
opproximotion by the onalytic wove function (dotted line) given in text.
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Fig.10. Energies E (E) for approximation of up to ten quantum for the hydrogen
o %

otom problem in terms of the para meter j3 = [Ik.u/(mr"'/W)) 2 The
unit of energy is that of the first Bahr orbit.
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