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RESUMEN

En este trabajo llevamos a cabo un andlisis variacional para el problema
del deuterén, usando una funcion de onda de ensayo que es una combinacion lineal
de estados del oscilador arménico hasta con 10 cuantos, Se calcula la energia
como funcion de la frecuencia del oscilador armonico para varios potenciales gau-
ssianos propuestos por Feenberg para el deuteron, y para el potencial de Eikemeier
y Hackenbroich que tiene un carozo repulsivo blando. Los resultados del andlisis
variacional para ambos casos se comparan con el resultado exacto, es decir, con

la energia de enlace del deuterén., Se indica también la variacion del radio medio
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cuadrado del deutercn en funcion del nimero mdaxima de cuantos empleados en el
desarrollo. El objeto principal del trabajo es establecer la rapidez de convergen-
cia para el proceso de aproximacion, las cuales podrian emplearse posteriormente

en problemas involucrando mds de dos particulas.

ABSTRACT

In the present paper we carry out a variational analysis of the deuteron
problem with a trial wave function that is a linea;combl'ﬂation of harmonic oscil-
lator states of up to 10 quanta, The energy is computed as a function of the
frequency of the barmonic oscillator for several Gaussian potentials for the deuter-
on proposed by Feenberg, and for the Eikemeier-Hackenbroich potential which has
a soft repulsive core. The variational analysis is compared with the exact result,
ice., the binding energy of the deuteron, for both potentials, We also indicate the
variation of the root-mean square radius of the deuteron as function of the maximum
number of quanta considered in the expansion. The main purpose of this paper is
to establish bound and convergence rates for the approximation process, which we

could use later in problems involving more than two particles.

I. INTRODUCTION

Variational analysis of the ground states of light nuclei has been carried
out almost since the achievement of a clear understanding of the nuclei as proton
neutron systems. Usually the trial wave functions used were of a very simple
type, e.g., for the a particle one took a Gaussian in the relative coordinates of

the four nucleons?

+ The parameters in these trial wave functions were adjusted

soas to minimize the expectation value of the Hamiltonian proposed, hoping to

obtain binding energy in reasonable agreement with experiment for an interaction

potential between the nucleons deduced from two body binding and scattering data,
Up to relatively recently no direct experimental information on the trial

wave function itself could be obtained. This situation has changed radically with
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the measurements of form factors by electron scattering experiments” . From the
Fourier fransform of the farm factor we get the charge distribution which we could
also determine directly from the triat wave function, thus testing these wave
functions in much more detail than was done before through the evaluation of the
binding energy.

It is interesting to note that, for example, in the case of the a particle, the
simple Gaussian wave function mentioned above is no longer sufficient as it leads
to a Gaussian charge-density distribution and a Gaussian form factor. The actual
form factor as measured in recent experiments® confains besides a Gaussian factor
a polynomial of sixth order in the square of the momentum transfer. This implies
that if the wave function of the four-nucleon system is developed in ferms of har- -
monic oscillator states in the relative coordinates, it \.nvou[d have to include states
of up to 6 quanta in addition to the states of 0 quanta involved in the standard
symmetric Guassian wave function. Construction of these four-nucleon states, and
more generally of the n-nucleon states, characterized by definite irreducible repres
sentation of the rotation group R, and the symmetric group §,, in a translationally
invariant harmeonic oscillator potential has been achieved by Kramer and Moshinsky*
These states could then be used for an expansion of the trial wave functions of the
ground states of light nuclei, which would have a much better chance of giving at
the same time the binding energy and the correct charge distribution.

Before engaging in @ program of this type it is of great interest to see
whether a superposition of harmonic oscillator states could constitute a good trial
wave function for the two=body.problem. It is important to see how quick is th.e
convergence rate to the binding energy as a function of the maximum number of
quanta considered. It is also of interest to see how this canvergence rate depends
on whether the two body interaction has a repulsive core or not.

In the present paper we shall analyze three types of potentials between two
particles:

(a) A family of Gaussian potentials without repulsive core introduced be
Feenberg for the proton-neutron system whose parameters were adjusted numer ically
to give the appropriate binding =2.2 MeV for the deuteron.
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(b) A superposition of three Gaussian potentials, one of which is positive
and represents a repulsive core, which has introduced by Eikemeier and
Hackenbroich® to adjust numerically both the binding energy of the deuteron and
the nucleon scattering in the triplet state.

(c) The Coulomb potential between electron and proton. In all three cases
we shall calculate the matrix elements of the Hamiltonian with respect to harmonic
oscillator states of up to ten quanta and then proceed to study the variation of the
binding as a function of the frequency w of the osciliator. We shall, in particular,
be interested in the values of the root mean square radius of the two particle state
for this frequency.

We first discuss the details of the variational analysis and then proceed to

apply them to the potentials considered.

II. THE VARIATIONAL ANALYSIS

The Hamiltonian for the two-body problem would be written as

H=@ur'p'?+ v, (1)

where /1 is the reduced mass of the two particles and r’, p’ are the relative coordi-
nates and momenta of the two particles. [t proves very convenient to use instead

of r’, p' the following dimensionless coordinates and momenta
PE (/.m)/'b)l/z r, (2a)

—— (2b)

where w is some frequency which we shall later identify with the frequency of the

harmonic oscillator states we use. The Hamiltonian X takes then the form
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3 ;_bcupz + V(6 uw)? 1) @3)

Now the harmonic oscillator states of frequency w could be designated by

the kets

|nim> : (4a)
N=2nt1l, (4b)
where 7 is the radial quantum number, / the orbital angular momentum, m its pro-
jection and N the total number of quanta.
The trial wave function we shall use will be a linear combination of (da),
but as we shall be concerned only with states with orbital angular momentum / = 0,
both in the deuteron and hydrogen atom case, we could restrict ourse lves to the

wave function |n,0,0, >, which in what follows we shall designate in the short

hand notation

|n>=Rr__(r). (5)

We have then that

[ﬂ> " (6a)

%d:: ] ’ (6b)

and a variational analysis of the expectation value of ¥ subject to the restriction
that i/ is normalized leads to a system of linear equations in the a, . The secular

. determinant is then
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det |[<n'|H[n>-E8, |- 0, (7)

with n’, n being integers restricted to

0<n', n

(7788
| =

N, (8)

with N being the maximum even number of quanta considered in the.problem.

The matrix elements in (7) can be easily shown to be®

(n'|3~*{|n>= ;__ﬁw{[n(n'{* ;_)] ’ Sn'n-l #(2n F %) Smx' + [n(rz it %)] ! 5”1u+1 }

’
n+n

+ % B(»'0,20p)1, , (9)
I p=o0 14
where I, are the Talmi integra Is

3 o 2p+2 -r2 L
I, = [2/I“(p # f)] fo r e  V(#/uw)?r)dr, (10)

and B(n'0,70, p) are coefficients algebraically determined and explicitly taby-
lated by Brody and Moshinsky®.
We shall now consider the particular cases of the deuteron dnd the hydrogen

atom separately, to introduce dimensionless Hamiltonians convenient in each case,

For the deuteron case we define

=

i
=153
=

4.3 mc?
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Binding energy of deuteron,

(am

with m, M being the masses of the electron and proton respectively. Instead of

the frequency w, it is more convenient to introduce in the matrix elements of H

corresponding to (9) the dimensionless parameter

(12)

The potential will be given by a Gaussian or a superposition of Gaussian’s of the

form

=V, exp [— (:_')2] 3

(13)

It is more convenient to give the parameters of this potential in terms of the

dimensionless variables

4.3mc?
2
e #
Mmc* 72
: 0

5

(14a)

(14b)
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thus being able to write the ratio of this potential to 4.3mc? as

-4 exp [— M] " (15)

|
From (10) we conclude that the Talmi integral for potential (15) is

'P"/;

1,=-A(1+22) . (16)
&

In the units 4.3mc’ of energy used here the binding energy of the deuteron

E,=-B=-1.00, (17)

and this is the number we must approach in our variational calculations.

6 a . . . . .
For the Hydrogen atom case® a convenient dimensionless Hamiltonian is

defined by

- me“l
H= (™) H,
252

H=m, (18)
with m being the mass of the electron, so we are dividing by the energy of the

first Bohr orbit. Instead of the frequency «w it is more convenient in this case to

use the parameter

B = pw (me*)™t (19)
252
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The Talmi integral for the Coulomb potential divided by the energy of the first

Bohr orbit, is then given® by
-2 B [p!/F(p + %)] ¢ (20)

and the binding energy of the hydrogen atom in these units is

E, = =1.00 . (21)

As a final point in this general discussion we shall analyze the expec-

tation value of the square of the radius r'? with respect to the state (6), i.e.,

[

N
<r'2>zftp*r'2gbd’7"=% : d;lﬂ”<ﬂ"f2|ﬂ>
nn =0

N

“ %
Sl A fe b ]

(22)

where we made use both of the matrix element® of r* and the normalization con-
dition (6b), the latter to eliminate @ . Using the dimensionless parameters dis-

cussed above we see that we can write in the case of the deuteron
#/uw) = 2% /Mmc?) €' = 2x81.353fm* x €71, (23a)
and in the case of the hydrogen atom

@/ uw) = 2(4%/me®) B2 = 2 a;ﬁ" . - (23b)
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3o 2
with ag being the Bohr radius. The root-mean-square radius is of course TN

Ill. THE FEENBERG POTENTIAL
FOR THE NEUTRON-PROTON SYSTEM

Feenberg determined numerically a series of Gaussian potentials that gave
the same binding energy =4.3 in units of mc?, for the lowest bound state of the
neutron proton system. In table 1 we reproduce the values of Vet in MeV and
fermis respectively and the corresponding values of A and a for these nine po-
tentials enumerated in order of increasing range.

To analyze how well the harmonic oscillator states approach the lowest
bound state of these potentials we first discuss the binding energy as a function
of € defined in (12) in the zero quantum approximation for the potentials 1,3,6,9
of table 1. The other cases were also analyzed, but as the corresponding curves
lie between those presented in figs. 1,2, 3,4 we do not reproduce them here.

An interesting point is that the energy, which in this case is just

E,(€) = <0|H|0>, (24)

has very different behavior as a function of € in these four cases, despite the fact
that the binding energy of the ground state in all of them is the same. For the
very short range potential 1 of fig. 1, E, (€) is not only always positive, it does
not even show a minimum. |f the range increases somewhat as for the potential 3,
the E (€) shows a minimum at € = 30.86, though this minimum is still slightly
above zero thus not leading to a bound state in this approximation. For the longer-
range potentials 6 and 9 the minimum is negative and in the case 9, we already in

this very rough approximation get 69.72% of the binding energy at the minimum
€= 13.88.

We see then that for a Gaussian potential the validity of approximating the

ground state of fixed energy by a Gaussian wave function, i.e., an harmonic-oscil-
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lator state of 0 quanta, is strongly dependent on the range the Gaussian potential,
becoming better as the range increases.

We now extend the analysis of potentials 3 and 9 from zero to up to ten
quanta. We selected the potentials 3 and 9 for this more thorough analysis for the
following reasons :

(a) Case 3 not only gives the correct binding energy of the deuteron as do
all the others, but also can be shown to give an effective range” close to the one
required experimentally for the scattering of nucleons in the triplet state at low
energy. Furthermore, the minimum of E(€) at 0 quanta comes quite close to the
one obtained at 0 quanta for the Hackenbroich potential, thus allowing us to com-
pare the speed of convergence to the binding energy of the deuteron of two po-
tentials, one without and one with repulsive core.

(b) Case 9 has the longest range of all the Feenberg potentials and so it
is interesting to see the speed of convergence in this case, the most favourable
one in the case of the zero quantum approximation.

The quantum numbers of the states are n = 0,1,2,3,4,5; as the number of
quanta is 2n, for the last, n = 5, we have 10 quanta, Altogether we have then a
6x 6 matrix in eq. (7). we evaluated the matrix elements as a function of £ and
proceeded to diagonalize and find the lowest eigenvalue, not only for the Ax &
matrix but also for its submatrices of 5x5,4x4,3x3, 2x2, and 1x1. Thus we
were able to draw fig. 5 for potential 3 and fig. 6 for potential 9, indicating by E,
for each of the curves the (n + 1) x (n + 1) matrix to which it belongs.

We immediately notice in both figures that we approach the binding energy
=1 when we increase the number of quanta, but that this approach does not take
place in a uniform way. First when we include only states with » = 0,1, i.e., a
2x 2 matrix, the minimum does not even diminish though the new curve comes
below the 1x1 curve as it should. But if we include » = 0, 1,2, i.e.,a3x3
matrix, we get a considerable jump toward the correct binding energys Again when
we pass ton = 0,1,2,3 i.e., a 4x4 matrix we do not decrease the minimum of the
3x3 matrix, but for the 5x 5 matrix, i.e., n = 0,1,2, 3,4 we get another iumﬁ
followed by no improvement for the 6x 6 matrix, i.e., n = 0,1,2,3,4,5. Clearly
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then, our binding energy for the value of ¢ for which it is a minimum, decreases
only when we increase our states by jumps of four and not by only two quanta, i.e.,
when we go from number of quanta = 0, ... N to number of quanta = 0,...N, N+ 2,
N + 4 with N a multiple of 4. This is a general result as will be seen in the
following sections.

For potential 3 the 0-quanta approximation does not even give binding as
seen in fig. 2, but already we get binding for N = 4, with lowest energy E, = = 0.68
for € = 30.8, and for N = 8 with lowest energy E, = -0.87 for € = 27.8. In the
latter case we get already 88% of the binding energy.

For potential 9 the zero quantum approximation already gives a considerable
part of the binding. Nevertheless the binding increases with increasing number of
quanta though by smaller steps and again significant changes occur only by jumps
of four quanta. For N = 10 we get the lowest energy E. = -0.93 foran € = 10.8.
It is clear that if we carry our calculations up to 10 quanta, we get almost as good
binding energy for case 3 as for case 9, despite the fact that in the latter our
starting point fo N = 0 was much better.

In the process of diagonglizing the 1x1,2x2,...6x 6 matrices we get the

corres ponding a,,n=0,1, ...;_N, N=0,2,4,...10. For the € that gives the

minimum for the respective submatrices we calculate the root mean square radius
Ver' 2> using (22). In table 2a we give the results for the potential 3 and in
table 2b for the potential 9. Though not strictly equivalent it is interesting to
compare these values with the so called radius R = VFHE: 4.31 fm of the
deuteron where B is the binding energy. For potential 3, v/ <r'2> increases from
2.81 to 3.76 fm when N goes from 0 to 10, thus approaching, but keéping below R,
while for potential 91/<7'2 > increases from 4.080 to 5.05¢ fm when N goes from
0to 10, thus exceeding almost immediately the value of R. This seems to indi-
cate that potential 3 provides a more realistic description of the deuteron though
both potential 3 and 9 give the same binding energy.

In conclusion we see that the ground state in a Gaussian potential could be
approached quite effectively by a superposition of harmonic oscillator states of up
to ten quanta, though an approximation by a state of zero quanta is only reasonable

for a long range Gaussian potential.,
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IV. THE EIKEMEIER-HACKENBROICH POTENTIAL
FOR THE NEUTRON=-PROTON SYSTEM

Recently Eikemeier and Hackenbroich proposed a central potential for the
two-nuc leon system that includes a soft repulsive core and describes correctly
both the binding energy of the deuteron and the scattering of nucleons by nucleons
for up to 300 MeV in the laboratory system. This potential is a superposition of
three Gaussians and for the triplet case, which is the only one appearing in the
discussion of the binding energy of the deuteron, the parameters V_, r and the
corresponding A, a of (14) are given in table 3.

The calculations were carried out in the same way as for the case of the
Feenberg potential. In fig. 7 we give the energy as a function of € in the 0=quanta
approximation (24). We note the presence of a minimum, but as in case 3 of the
Feenberg potentials, the minimum though close to zero, is positive, thus not
giving a bound state in this approximation. When we increase the number of quanta
up to N = 10, we get the six curves of fig. 8 in which the size (n + 1) x (n + 1) of
the matrix diagonalized is indicated by E_ for each curve. Again we note the
property that increases in the binding energy appears for jumps of four quanta and
for N = 4 we get binding with a lowest value of the energy E, = =0.54 for € = 24,
while for N = 8, E, = =635 for €= 22. The percentage of the binding energy of
the deuteron that we get even for N = 10 is 64% considerably lower than the 88%
which we got for the comparable case 3 of the Feenberg potential. This is to be
expected in view of the presence of the repulsive core.

In the same way as indicated in Section 3, the root mean square radius was
calculated for up to N = 0,2,4,6,8,10 quanta and the results are given in table 4.

As Eikemeier and Hackenbroich give also a wave function

u(r'y= #"Y(r" , (25)

for the deuteron by means of a graph, we tried to estimate the expectation value of

r'2 with respect to this wave function. For this purpose we approximated the
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wave function U(r') by an analytical function of the following type
U(r') = C sin (wr'/?ro) for 0<r' & L (26a)

U(r') = D exp (=7'/R) for 4 Ll € e, (26b)

where the parameters take the following values

| |
4

C=0.55fm °, D= 0.8476fm  , R = 431fm, r = 1.99fm, r = 1.72fm.

(26¢)

in fig. 9 we reproduce, marking it with a full line, the function U(r') of Eikemeier
and with a broken line draw curve (26). The exponential tail is the correct one
obtained from the binding energy of the deuteron at distances in which the at-
tractive potential almost vanishes.

With (26) the root mean square radius is

V<r't> - 3,8439fm , (27)

which compares reasonably with some of the values of table 4.
We shall discuss the implications of the analysis of the Hackenbroich
potential in section 6, but before that we also analyze for comparison value, the

results for the Coulomb potential.

V. THE COULOMB POTENTIAL IN THE HYDROGEN ATOM

This problem was discussed fully by Moshinsky and Novaro®. Here we
would only like to present in fig. 10 the graph of their results for the energy as
function of the parameter 3 for up to N = 10 quanta. In this case the 0=quanta
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approximation (24) gives already 84% of the binding energy which is improved up
to 97.5% when we go up to N = 10 quanta. As before, the gains in the binding
energy occur at jumps of four quanta, rather than two.

The exact wave function for the hydrogen atom ground state is

b= (mad) * exp( ;;) , (28
B

where ag is the Bohr radius. The root-mean-square radius for this wave tunction

is
VT 5 R ag = 1.732a, . 29)

For the approximate wave function for up to ten quanta the root mean square radius
is given in table 5. In this case we see that all the approximate values are quite

close to the exact value (29).

VI. DISCUSSION

The potential of Eikemeier and Hackenbroich would be a reasonably real-
istic potential for the description of two nucleon interactions. in seviion 5 we
saw the approximation we could get with this interaction for the binding of the two
nucleon svstems, i.e., the deuteron when we used a trial wave function built from
harmonic oscillator states. The question arises as to what sort of approximation
we could get for heavier nuclei such as the a particle and beyond, with the same
potential but with an n-particle trial wave function built from harmonic oscillator
states of the type discussed by Kramer and Moshinsky* .

While no rigorous answer can be given before carrying out the calculation,
it is interesting to note that for the Feenberg potentials the harmonic oscillator
trial wave function is much better for long range potentials than for short range

ones. This means that it works much better if most of the wave function is inside
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the potential, and not, as is the case of the Eikemeier-Hackenbroich potentialand
other two nucleon potentials, where most of the deuteron wave function is outside
the potential. In the case of the a-particle though, the strong binding will keep
most of the wave function inside the potential, thus possibly favouring the
harmonic oscillator trial wave function vis a vis the corresponding wave function
for the deuteron problem. |In this case, the approximation for the a-particle when
we increase the number of quanta should possibly converge more rapidly than in
the two body problem, and thus the latter problem provides us with a kind of lower
bound for convergence. It is interesting to note also that for a reasonable Feenbera
potential, such as case 3, we get a closer approximation to the correct binding
energy than for the Eikemeier=Hackenbroich potential which has a repulsive core.
This clearly indicates that for a realistic potential, the contribution of states with
a higher number of quanta is fundamental which seems to be in agreement with the

fact that these states appear in the a-particle as discussed above.
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The nine potentials of Feenberg

Table 1

Type

3 4 3 6 7 8 9
¥, 122.33 83.04 61.00 47.62 38.6 32.24 27.53 23.93 21.13
A 1.082 1.353 1.624 1.894 2.164 2.435 2.706 2.976 3.247
A 55.1 37.4 27.48 21.45 17.38 14.52 12.4 10.78 9.56
a 69.4 44.4 30.86 22.68 17.36 13.72 11.11 91.82 7.72
A/a 0.79 0.84 0.89 0.95 1.001 1.06 1.116 1.186 1.25

vV, in MeV, r, in fm, A and a are dimensionless

MM

H3A

g1 "10A
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Table 2

(a) Root-mean-square radius of the Feenberg potential 3 (fm)

FISICA

n 0 1 2 3 4 5
y<r? -9 2.8122 2.8175 3.2985 3.2681 3.8624 3.7649
(b) Root-mean=square radius of the Feenberg potential 9 (fm)
n 0 1 2 3 4 5
5 4.080 4.1045 4.6103 4.624 5.048 5.056
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Table 3

2
-2a.r /€
The parameters of the Eikemeier-Hackenbroich potential Aje !

i 1 2 3
V., 600 -70.0 -27.6
- 0.4264 1.414 1,622
a; 447.44 40.6765 30.914
A 270.3 -31.53 -12.43

V, in MeV, r_in fm, A, a are dimensionless
Table 4

Root-mean-square radius for Eikemeier-Hackenbroich potential (fm)

n 0 1 2 3 4 5
verts 3.0638 3.055 3.69 3.669 4.1592 4.2777
Table 5

Root-mean-square radius for Coulomb potential in units of the

Bohr radius

Verts 1.634 1.5956 1.622 1.63 1.669 1.67
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)
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Fig. 1. Energy E, (€) for the Feenberg potential of case 1, in the zero qucnfEJm
approximation as function of € = #Fw/B). The energy is given in units
of the binding energy B of the deuteron in this and the following figures
except for figs. 9and 10.
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Fig. 2. Energy E_(€) for the Feenberg potential of case 3 in the zero quantum
approximation.
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Fig. 3. Energy E (€) for the Feenberg potential of case 6 with zero quantum
approximation.
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Fig. 4. Energy E_(€) for the Feenberg potential of case 9 in the zero quantum

approximation.

34



E(in units of B.)

1969
REV. MEX. FISICA

g8l Eo
-2 \
) £
E
2.2
o] } ‘ i
25 o ] 30
}f € —
- 60}

3

- 80 E,
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Eg
Ep=-B=-1.00
-100 2

Fig. 5. Energy E _(€)...E_(€) for approximations of up to ten quanta for the
Feenberg potenhol of case 3. Note the difference in scale for the
E, . E ,curves and the E,y...E_curves.
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Fia. 6. Energy E_(€)... ES(E) for approximation of up to ten quanta for the

Feenberg potential of case 9.
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Fig. 7. Energy E_(¢€) for the Eikemeier=Hackenbroich potentials in the zero
quantum approximation.
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Fig. 8. Energies E_(€)... Es(e) for approximations of up to ten quanta for the
Eikemeier-Hackenbroich potentials. Note the differences in scale for

the £, E curves and the E_, ... E_curves.
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Fig. 9. Wave function U(r') of Eikemeier and Hackenbroich (full line) and its
approximation by the analytic wave function (dotted line) given in text.
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Fig. 10. Energies E, (€) for approximation of up to ten quantum for the hydrogen

atom problem in terms of the parameter 5 = [#w/(me*/2#2)] . The
unit of energy is that of the first Bohr orbit.
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