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RESUMES

1969

I.a dt'/Mndl'ncia t'1l tt'mpuatura dl' las Tt'sistividadt's ,./éctricas y térmicas

d,. los m,'a/('s alcalinos litio, sodio, potasio)' rubidio sr d,.tumina a partir dtl

,./('mento d,. ma/rix dl' lJardl't'Tl para la intuQcción ,.leclrón.jOTlórl. utilizando,.1

m,xülo d,. Sharma )' Joshi para su dinámica Tt'/icu/ar. Un proct'dimit'Tlto más rt'a-

lis/a pt'rmitt' st'parar las cOlltribuciorlt's a la Tt'sistividad d('bido a procesos norma-

1,.5 y umklapp. Los va/ort's calculados para las Tt'sistifJidadt's st' comparar¡con

la información t'xperimt'n/a/ disponible: Tt'su/Ja qut' las curvas dl' Tt'sistividad It'ó-

ricas concut',dan satis/actoriamt'ntt' con ,.1 ~xperim~nto para sodio)' potasio. prro

no para litio)' rubidio. Aunque el aspecto dr las CUTrJasexpnim~ntal)' t~órica

resulta s~r similar. el acu~rdo es pobre para Irmperaturas bajas y altas.
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Th~ t~mp~ratur~ d~~nd~nc~ o/ th~ ~l~ctrical and th~rmal r~sistiviti~s o/

alkali m~tals lithium. sodium. potassium and ruhidium is d~t~rmin~d /rom Bard~~n's

~kctron •.phorlOn matro: ~l~m~nt and using Sharma and Joshi's mod~l /or th~ir lattict!

dynamics. Th~ s~paration o/ normal and UmklaPIi contrihutions to th~ rt!sistivity

is ~ff~ct~d hy adopting a mor~ realistic proc~dur~. Th~ calculat~d t)alu~s o/ th~
resistivities are compar~d with availahlt! ~xpuim~ntal in/ormation. lt is /ound

that the th~or~tica/ resistivity curves ShOliJsatis/actory agrt!emt!nt with ex~ri1'Mnts

/or sodium and potassium, hut not /or lithium andrubidium. Though th~ natUTt! o/

th~ the ort!tical and ~x~ri~nta/ therma/ res is tivity curves is /ound to h~ s imilar, th~

agreemt!nt is poor at low and high temp~ratUTes.

l. INTRODUCTION

One of the has ic problems in solid-state physics has been to give en ede ..

q uate description of the trens port 'properties of monove lent meto 15. It has been. a

subject of investigation by mony workers for the post four decades when Blochl

f irs t propounded e the ory to exp la in qua 1itet ive Iy the res is tiv ity of meto ts at very

low ond at high temperetures. The transport phenomeno in metols depend in o

complicoted woy both upon the electronic bond structure and the enisotropy in the

lottice spectrum ond this situetion complicates the evaluation of the scottering

probability of the conduction electrons. Since alkoli metels hove the most simple

electronic structure, most of the theoreticol work has been done on these metals.

In a fomous paper work Bordeen2 first eolculoted the electricol conductivity of

monovclent metols,ossuming the electronic behcviour to be free-electron like ond

using simple Debye model for the phonon spectrurn. These approximations were

forced to be cdopted, beceuse deteiled informetion concerning them wos not ovailc •.

ble at thct time. Still Bcrdeen's results showed gooo quontitctive agreement in the

high-temperature region.

During the lest few yecrs, there has been o good deal of awekening of inter"
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est ta improve upon these approximetions. Bailyn3 first introduced the use of the

Born-von Kérmán model for the phonon spectrum in the study of the transport coef.

ficients of alkali metals. Recently Darby and March4 hove directly used the ex-

perimentally determined phonon-dispersion curves of sodium ta ealculate its

electricel resistance. They hove olso token into account the exchange and corre-

lation effects and in On approximate way the temperature dependence of the elastie

constants. Their results show 9000 agreement with the experimental data through-

out the temperature range studied. (cllins and Zimans hove used twelve-eone

approximation for the Fermi surface ta ealculate the tronsport coefficients of alka-

li metols. They hove, hONever, adopted o simple Debye model for the phonon

spectrum. On the other hand, Hosegowo6 ond Bross ond Holz7 hove computedthe

electricol reistivity of olkoli metols by toking into occount both the phonon

spectrum and e lectronic bond structure. Recently Greene ond Kohn 8 hove theo-

retically studied the electricol resistivity of salid and liquid sodium utilizing the

observed inelastic neutron scattering doto for the dynamics of ions. Although the

calculotion incorporotes accurotely the mony-body effects, Umklapp processes, the

time-dependent effects etc., yet the ogreement with experiment is not sotisfoctory.

One 01 the authors (P.K.S.) and Joshi9•1O have prapounded an elastk:

force model for the lottice dynomics of monovolent metols toking into occo4nt ex-

plicitly the presence of electron gas. It wos ossumed.that the force s on do ion

arise from o central interaction limited to first and second neorest neighbololf's ond

from certain energies due to the compressibility of electron gas and its interoction

with ions. The model has been shown to give o plausible explanation of thermal

properties 01 alkali and noble metals".

In the present poper, we report the colculation of the tem~rature dependence

of the electricol and thermol resistivities of alkoli metals lithium, sodium, potossi-

um and rubidum within the free«electron approximotion using our model for the

phonen spectrum. The choice of these metols for this study wos dictated by the

foct thot they very nearly correspond te free-electron metols. This considerably

simplifies the electronic band-structure aspect of the Pl"oblem and oflows us to

use more effectively the phonon spectrum.

43



SHARMA ANO GUPTA

n. THEORY

VOL. 18

The general method for evoluating expressions for the transport coefficients

is to use the variational principie. The method has been developed by Kohler12

and Sondheimer13 and is clearly described by Zimon1". The Boltzmann equotion

determining the d~stribution function is a linear inhomogeneous integral equation

with a pos itive definite self~dioint kernel. It is known thot such on equotion can

be deduct::d from the variation of a certain integral ond the solution can be con-

structed formolly by applying the variational principie to a ge.neral trial function.

The variational principie states that the solution of the Boltzmann integral

equation gives to

<<p.P<p>
2[ < <P, X> ]

(1)

a minimum va lue, where cP is defined as a tria I function, P is the scattering oper-

ator and X = PeP. The variational function (1) is calculated and the paremeters

ere varied until it is an extremum which is the nearest a pproximation to the true

solutions.

(a) Electrice I Res istivity

The variational express ion for the electrical resistivity is1"

(l/kB T) JJJ [<pk- <Pk' ] p(kq, k') ¿k de dq

?JIO 2

IJ<'k<Pk _k dkl
?JEk

(2 )

Here k and k' are the wave vectors of the initial and final electron states, vk is

the velocity end Ek the energy of that stete, p(kq, k') is the scattering probahilit)

thatonelectron in state k is scattered toa state le' with the obsorption of o

phonon of wove vector q, ond eP
k
is a triol function defining a perturbed distrihutior

01 ¡he Io<m
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(3 )

The probobility of occuponcy ot equi librium is given by the Fermi function

• 1

{kO= {exp [(Ek - EF)/kB T] + l) (4)

In the cose of o lottice of cubic symmetry use of 4J,., = k. u, where u

is o unit vector in the direction of the opplied electric field, os o first arder

opproximation to trial function leads to the ideal resistivity P
L

os the four.

dimensionol integral

D -L-
317ñ

2('2\f\'k "Tk2S2
.. B F

, , ,
1) K (K'eq p) C (K) ,

~ ' dsds
p .Bw fY.v p ,

(1-- q,p)(_ q, -1)""

(4)

where (~Jq, pis the angular frequency of phonon of wave vector q and polarl.

zation vector eq,p' the suffix p distinguishes the three modes of lottice

vibrations, t' denotes the velocit) of on electron on the Fermi surface

SF I kF is the Fermi radius, K := k'- k is the scattering vector, S is the

number of ions per unit volume, .\1 is the mass of an ion, C(K) is the motrix

e le me nt corre s pon d ing to the trOn s ¡t i on fro m k to k' o nd ¡3 is 15/ kn T, ka

being the Boltzmonn constant. The two surface integrals \Jre over the

Fermi surface. For o spherical Fermi surface, the matrix element C(K) is

given by the re lotion2

C(K)
W(K) q: (K) + {\' (r, ) - E o} K 2

K'+q:(K)
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2Ep
W(K) = -

3
(6a)

g(x) = 3(sin x - x cos x)/x3,

,
q'(K)= 417"
s W(K)

(6b)

(6c )

where [E - V(r ) ] is the kinetic energy of on electron in the lowest state at the
o s

boundary of the otomic polyhedra of radius Ts' Ep is the Fermi energy and n is the

electron number density.

(b) Thermal Resislivily

The variationa! co1culation of the thermal resistivity gives
14

(7)

Here the trjal function for tne e!ostic scattering con be token as

where u is now o unit vector paralle! to the heat current. This finally leads to

the ex pres s ion
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,
,_,, IK' K' ~" '+ kp (/L )' }

JI
(K' eq p) L (K) \3.- -,' (fJUJq, p) -= fJUJq, p

x L ' t 617 11 dsds'
p ~ ~(1-, q,p)(, q'P_l)

(8)

where L is the Lorentz number and the other symbols hove their usual signjfi~
o

canee.

1lI. EVALUATION OF THE DOUBLE AVERAGE

Even for a spherical geometry, the evaluation of the double average in

Eqs. (4) and (8) is quite difficult. We use Bailyn's averaging procedure
3

to

compute the double average and write express ions (4) and (8) in the form

«p(K)>>- = l-JJF(K)dsds'.
F. S. S2

(9)

The phonon frequencies wq,p and the polarization factor (K. eq, p)2 vary

with the direction of the scattering vector K, and this situation makes these inte~

grals very complicated. To effect the average (9), we first choose vectors

k and k' that hove the same difference vector K = k' - k and average over 011 such

vectors. in the case of a spherical Fermi surface 011 these vectors can be ob.

tained by visualizing a rigid red of length K oriented in the direction of K to roll

on the inside of a spherical shell of radius kp• The ends of the rigid roll will
x

each describe a circle of circumference s(K) = n(4k~ - K2
) 2. The advantage in

performing a prelim¡ nary average over all such combinations with a given K is that

the phonon parameters will not change during it. We denote this average of the

integrond os {{F(K)}}. Next one averoges over 011 K for a given magnitude of K.
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This average equals the integral ayer 011 directions of K with with weighting

factor equal to the ratio of the length s(K) to the integral of s(K) over the whole

salid angle for o given K magnitude. This average can be expressed by the re-

lation

[{{F(K)}}] J dí) ({F(K)}} s(K)
(K) Jdlls(K)

(10)

Here J dO. indicates the integration over the salid angle of K on a constant
(K)

K.magnitude surface. Finally we average over 011 K magnitudes. This is equal

to the integral over all K with weighting factor

J dí) s(K)

JdKJdí)s(K)

This fina lIy gives the required average over the Fermi surface as

«F(K)>> =
F. S.

J dKJ dí) [ ({ F(K) } }] s (K)

JdKJdí)s(K)
(11 )

For a spherical Fermi surface, the denominator of (11) equa Is 4TT'k;.

Hence

«P(K»> =
F. S. (12 )

where u = K/2kF• Using this result, the expressions (4) and (8) for the electri-

cal and thermal resist¡vities can be written as
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ond

where

ond

3~ JdnJA(K)dK,
, k 'k'411t" ,\IN RT tlF F

9fj JdnJ8(K)dK,
411t" 2 1.

0
'\1, •.••' k13 T 2 tI; k;

"2 22 22
" K (1 - u) (K' eq p) e (K)

A(K) = L. '
p • fJw fJw

(1 - - -- q, p) (- q, P_l)

REV. MEX. FISICA

(130 )

(13b)

(140)

8(K) =

~ 2L {(l- u') (K' eq,p)

p • fJw (Y.,
(1-- q,p)(_ q,P-1)

IV. NUMER ICAL COMPUTA TIONS

(14b)

We have calculated the electricol and thermol resistivities from Eqs. (13)

by us ing a modification of Houston's method. The integration over K wos per.

formed numerica lIy and the infegration over n was carried out us ing the modified
15

Houston's spherical six-term integration procedure as eloborated by Betts et al.

Houston's method gives proper weight to each reciprocol lattice point and is

inherently preferable to the sompling technique which relies merely on taking a

very large number of points in the reciprocal space. For the evaluation of the

integra I
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(15 )

where the integrond is invoriont under the operotions of the complete symmetry

group, the vo loo of / (8, </» in ,he [1 00). [110). [111). [21 O). [211] ond [221]

directions is required. The exponsion of the integrand in cubic hormonics re-

toining only six terms leads to the following express ion for J:

411 [J = 1081080 117603 lA • 76544//J + 17496/c

+ 381250/[J + 3l1040/B' l77147lp]' (16)

where the subscripts A, n, e, D, E ond F denote the values of the integrand

1(8,</» olonglhedirections [lOO). [110). [111], [210], [211] ond [221).

respective/y. The direction cosines of the polorizotion vector eq, pare obtoined

from the solutions of the secular equotion for o body-eentred cubic lottice.

In colcu/oting the integróls (13) we hove distinguished normal (N) process.

es from the Umklopp (U) processes in the conservation low of the wave vector.

Early workers have completely ignored the Umklopp process, but in recent yeors its

impcrronce has been realised. Bailyn3, /1osegawa6and others aSSume that the normal

processes operate in the range of the variable of integrotion u from Oto 0.63 in the

Brillouin zone, wnile the range 0.63 to 1 corresponds to the Umklapp processes.

This type of seporation of the range of the normal and the Umklapp processes is

rather artificial when one goes beyond the spherical approximotion. In the present

work a more reolistic opprooch has been adopted.

(o) Norma I processes

The norma I processes are governed by the conservotion law

K= k'-k= q,

50
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where q is restricted to be in the first Britlouin zone. Using Ziman's formulation,

we have taken account of the elastic anisotropy by integrating over K numerically,

restricting the phonon wave vector to points within the first Brillouin zone. The

limiting va lues of K vectors were obtoined by finding the points of intersection of

a line having the direction of K with the planes of the first Brillouin zone boundory.

These limiting va lues for a body-centred cubic structure are given in Toble l.

(b) Umklapp processes

n an Umklapp process the scattering vector is given by the selection rule

K = k' - k = q + G , (18)

where G is a reciprocol lattice vector. In this case vector K goes beyond the

boundory of the Brillouin zone, but q is constroined to be within the Brillouin

zone. From the knowledge of the reciprocol lottice vectors of a body.centred

cubic structure, the volues of K along any direction at which the Umklapp p-ocesses

crop up can be determined. The phonon wave vectors which are needed for the

average are then obtained from the conservation law (18).

v. RESUL TS AND DISCUSSION

The volues of the elastic constOnts and the other dota used in the present

calculation of the electricol and thermol resistivities of the olkali metals are listed

in Toble Il. The electricol and thermal resistivities of lithium, sodium, potassium

and rubidium are calculoted as o function of temperature. For the phonon spectrum

we have used our electron~gos model. In the cose of sodium and potassium, the

computations hove been performed with two sets of elastic constants. lt was founc'

that the Umklapp processes contribute oppreciobly to the total resistivity,being

most importont ot higher temperatures. In some cases the ::ontribution from

U.processes exceeded thot from N.processes over a wide ronge of temperoture.

The calculoted values of the electricel resistivities of the four metals olong

with the experimental values are plotted in Figs. 1-4. The experimental volues of
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the e lectrica I res istivities for lithium are token from Dugdo le and Gugan
l6

and

MocDonald et 01.17 ond for sodium and potossium from Dugdale and Gugon
l6
,while

those far rubidium are due to Dugdale and Phillips 18. It is seen from Figs• 2 and

3 that the calculations using elastic-constent data at 900K far sodium and 83°K

for potassium ore in better agreement with the experimental values ot IO'N'tempera~

tures, while those from the elastic constOnts at room temperature give a better ex.

perimentel fit at higher temperatures.

For Iithium ond rubidium the calculated volues of the electricol resistivity

ore lower than the experimental ones throughout the tempera-ture range studied and

the discrepancy increases with the rise of temperature. The disagreement is more

pronounced in the case of lithium. For example at lOO('1K, the experimental value

of the electrica! resistivity is larger than tne theoretical one by a factor of 3.77.

This large variation in the values can be ottributed to the distorted Fermi surface

in lithium.

The calculated volues of the thermal resistivities are compared with the

ex perimento I observa tions in F igs. 5-8. The exper imenta I data p!otted in these

figures are due to MocDonold et 01.17 for Iithium, potassium ond rubidium, while

those fa sodium are from Berman ond MacOona Id 19. It i s seen thot the theoretico I

ond experimentel resistivity curves are somewhat inconsistent. Though the two

curves ore of similar nature, the agreement is poor at low ond high temperatures.

At IO"V'temperatures the calculated resistivity is substantially lower than the ex-

perim;;:-nta1 volues, while at higher temperotures the theoretical curve lies below

the experimental meaSurements. However, the experimental doto ot higher tempera-

tures ore not relioble.

The disagreement between the theory ond experiment can be attributed to

the follO"V'ing reasons; (l) We hove used he re Bordeen's express ion for the electrco~

phonon matrix element which overlooks the exchange and correlation effects.

(2) The ex¡:ressioos (4) and (8) are based on a first.order variotionol solution of

the Boltzmcon equction. This somewhot over-estimotes the resistaoceB• (3) lo

the calculatian we hove not iocorporoted the temperature dependence of the elastic

constonts. It is known that the elostic constants vary with temperature.
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(4) lithitim20 and sodium21 undergo o mortensitic type of phase transfamotion into

a mixture of body-centred cubic and hexagonal close~packed structures at low

temperotures below abaut 7SoK and 37°K, respectively. Becouse of the occLI'"rence

of this transformotion, the significance cf the theoreticol values below these

temperotures is somewhat doubtful. Thus a rigorous comparison with the experi.

mental values below these temperatLKes is not feosible.
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TABLE 1

Limiting vo lues of K for normO I processes in body-<:entred cubic structure.

Direction Limiting value

[100J 7T

a

[110] 1 7T

¡/2" a

[111 J ¡/) 7T

2"" a

[210J 15 7T

:3 a

[21l) 16 7T
-3- a

[221 ) 3 7T

4 a
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Conston!' 101' olkol¡ metol,

-
Elostic constonh Temoerolure Dens ¡'v

/,lelol Notes (l01l dyn/crn1) ('K) (g;'cmJ)

c" c" C ..
Lilhium ,) 1.481 1.248 1.077 78 O.s34

Sodium b) 0.741 0.1)24 0..419 300 0.9660

<1 0.808 0.664 0.586 90 1.0014

Polou;um d) 0..:3715 0.3153 0.188 295 0.851

.) 0.457 0.374 0.263 B3 0.870

Rubidium f) 0.296 0.244 0.160 80 1.532

Tempera'ure 01 which ,h" "Iostie constonls ore mt!'Qsur"d.

o) H.C. Nosr. ond CS. Smith, J.Phys.Chem.Solíds 9, 113 (1959\.

b) W.B. Daniel" Phys.Re ••.• 119, 1246 (1960).

el P. K. 5hormO ond S. K. Joshi, J.Chem. Phys. 39, 2633 /19631.

d) W.R. Marquordt ond J. Trívisonno, J. Phys.Chem.Solids 26,273 (1965).

el O. B"nder. AM. Physik 34,359 (1939).

t) C.A. Robe,,, ood R. Meis!",r, J. Phys,O",m.Solids 21, 1401 (1966).

9) H. Brook!., Phys.Rev. 91, 1027 (1953): F.S. Hom, Salid Stole Physics ',185 (1955).

Lottice

poromeler ["'(', ) - fu l 9) 1,,..
(Al (eV) (eV)

3.491 -0.8 4.n

4.291 0.08 3.16

4.240 0.08 3.16

5.344 -0.02 2.(\,>

5.344 -0.02 2.(\6

5.699 0.03 1.86
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Fig. l. The electrica1 resistivity of lithium as a function of temperature.
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A £lo,lic dala al 300 "/(

B Elaslie dal" al 90 "K.
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;00

Fig. 2. The electrical resistivity of sodium as o function of temperoture.
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Figo 3. The electricol resistivity of potossium os o function of temperoture.
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Fig.5. The thermal resistivity of lithiurn as a function of temperoture.
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Fig.6. The thermal resistivity of sodium as o function of temperoture.
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Fig. 7. The thermal resistivity of potossium os o tunction of temperature.
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Fig.8. The thermal resistivity of rubidiurn as a function of tempercture.
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