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RESUMEN

La de pendencia en temperatura de las resistividades eléctricas y térmicas
de los melales alcalinos litio, sodio, potasio y rubidio se determina a partir del
elemento de matrix de Bardeen para la interaccicn electron-fondn, utilizando el
mode lo de Sharma y Joshi para su dindmica reticular, Un procedimiento mds rea-
lista permite separar las contribuciones a la resistividad debido a procesos norma-
les y umklapp, Los valores calculados para las resistividades se comparancon
la informacicn experimental disponible; resulta que las curvas de resistividad tec-
ricas concuerdan satisfactoriamente con el experimento para sodio y potasio, pero
no para litio y rubidio. Aunque el aspecto de las curvas experimental y tedrica

resulta ser similar, el acuerdo es pobre para temperaturas bajas y altas,
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ABSTRACT

The temperature de pendence of the electrical and thermal resistivities of
alkali metals lithium, sodium, potassium and rubidium is determined from Bardeen’s
eleciron-phonon matrix element and using Sharma and Joshi's model for their lattice
dynamics. The separation of normal and Umklapp contributions to the resistivity
is effected by adopting a more realistic procedure. The calculated values of the
resistivities are compared with available experimenial information. It is found
that the theoretical resistivity curves show satisfactory agreement with experiments
for sodium and potassium, but not for lithium and rubidium, Though the nature of
the theoretical and experimental thermal resistivity curves is found to be similar, the

agreement is poor at low and high temperatures.

I. INTRODUCTION

One of the basic problems in solid-state physics has been to give an ade-
quate description of the transport 'properties of monovalent metals. |t has been a
subject of investigation by many workers for the past four decades when Bloch!
first propounded a theory to explain qualitatively the resistivity of metals at very
low and at high temperatures. The transport phenomena in metals depend in a
complicated way both upon the electronic band structure and the anisotropy in the
lattice spectrum and this situation complicates the evaluation of the scattering
probability of the conduction electrons. Since alkali metals have the most simple
electronic structure, most of the theoretical work has been done on these metals.
In a famous paper work Bardeen® first calculated the electrical conductivity of
monovalent metals,ass uming the electronic behaviour to be free-electron like and
using simple Debye model for the phonon spectrum. These approximations were
forced to be adopted, because detailed information concerning them was not availa-
ble at that time. Still Bardeen’s results showed good quantitative agreement in the
high-temperature region.

During the last few years, there has been a good deal of awakening of inter-
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est to improve upon these approximations. Bclih,m3 first introduced the use of the
Born-von Kérmén model for the phonon spectrum in the study of the transport coef-
ficients of alkali metals. Recently Darby and March* have directly used the ex-
perimentally determined phonon-dispersion curves of sodium to calculate its
electrical resistance. They have also taken into account the exchange and corre-
lation effects and in an approximate way the temperature dependence of the elastic
constants. Their results show good agreement with the experimental data through-
out the temperature range studied. Collins and Ziman® have used twelve-cone
approximation for the Fermi surface to calculate the transport coefficients of alka-
li metals. They have, however, adopted a simple Debye model for the phonon
spectrum. On the other hand, Hasegawo ® and Bross and Holz ’ have computed the
electrical reistivity of alkali metals by taking into account both the phonon
spectrum and electronic band structure. Recently Greene and Kohn® have theo-
retically studied the electrical resistivity of solid and liquid sodium utilizing the
observed inelastic neutron scattering data for the dynamics of jons. Although the
calculation incorporates accurately the many-body effects, Umklapp processes, the
time-dependent effects etc., yet the agreement with experiment is not satisfactory.

One of the authors (P.K.S.) and Joshi®'® have propounded an elastic
force model for the lattice dynamics of monovalent metals taking into account ex;
plicitly the presence of electron gas. It was assumed ‘that the forces on dn ion
arise from a central interaction limited to first and second nearest neighbours and
from certain energies due to the compressibility of electron gas and its interaction
with ions. The model has been shown to give a plausible explanation of thermal
properties of alkali and noble metals!!,

In the present paper, we report the calculation of the temperature dependence
of the electrical and thermal resistivities of alkali metals lithium, sodium, potassi-
um and rubidum within the free-electron approximation using our model for the
phonon spectrum. The choice of these metals for this study was dictated by the
fact that they very nearly correspond to free-electron metals. This considerably

simplifies the electronic band-structure aspect of the problem and allows us to

use more effectively the phonon spectrum.
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II. THEORY

The general method for evaluating expressions for the transport coefficients
is to use the variational principle. The method has been developed by Kohler'?
and Sondheimer'® and is clearly described by Ziman'*. The Boltzmann equation
determining the distribution function is a linear inhomogeneous integral equation
with a positive definite self-adjoint kernel. It is known that such an equation can
be deduced from the variation of a certain integral and the solution can be con-
structed formally by applying the variational principle to a general trial function.
The variational principle states that the solution of the Boltzmann integral

equation gives to

<@, P>

(<, x>]° M

a minimum value, where ¢ is defined as a trial function, P is the scattering oper-
ator and X = P¢. The variational function (1) is calculated and the parameters
are varied until it is an extremum which is the nearest approximation to the true

solutions.
(a) Electrical Resistivity
The variational expression for the electrical resistivity is'*

(1/kgT) [JJ [y = &, 1 Plka, k') 4k dk’ dg
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Here k and k' are the wave vectors of the initial and final electron states, v, is
the velocity and E, the energy of that state, P(kq, k') is the scattering probability
that an electron in state k is scattered to a state k' with the absorption of a

phonon of wave vector q, and <;5k is a trial function defining a perturbed distributior

of the form
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fo= 1 = &, (313 /3Ey) « (3)

The probability of occupancy at equilibrium is given by the Fermi function
r \-1
fk(’: {exp L(Ek-EF)/'kBT]-PM . (4)

In the case of a lattice of cubic symmetry use of ¢, = kv, where v
is @ unit vector in the direction of the applied electric field, as a first order

approximation to trial function leads to the ideal resistivity [JL as the four-

dimensional integral

3 et )
o = ke Eff K (K -aq,p) C" (K) dsds',
2% uNkg ThES® BT (10 . P00y (P00 L 1y

(4)

where Wa, p 1S the angular frequency of phonon of wave vector g and polari-
I

zation vector g, 0" the suffix p distinguishes the three modes of lattice
vibrations, v denotes the velocity of an electron on the Fermi surface

Sp s kg is the Fermi radius, K = k'- k is the scattering vector, N is the
number of ions per unit volume, M is the mass of an ion, C(K) is the matrix
element corresponding to the transition from k to k' and [ is ﬁ/kBT, kg
being the Boltzmann constant. The two surface integrals are over the
Fermi surface. For a spherical Fermi surface, the matrix element C(K) is

given by the relation’

&l - W(K) g, (K)*+ {V(rg)=E_ }K°

e gKr, ) , (5)
K* + q.(K)

5
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3 |2 8Kk, Zkg = K
glx) = 3(sinx = x cos x) /x>, (6b)

2

2(K) = 4mne , (6c)
q, (K) =P

where [E = V(7 )] is the kinetic energy of an electron in the lowest state af the

boundary of the atomic polyhedra of radius r_, E, is the Fermi energy and » is the

electron number density.
(b) Thermal Resistivity

The variationa! calculation of the thermal resistivity gives'

kp

W, (L) J[J (=1 Plka, k') dkdk' dg -

‘a 0 2
|_J’(Ek-Ep)vk¢k é_}}};dk\

Here the trial function for the elastic scattering can be taken as
d}k: (Ek-EF) k*u :

where v is now a unit vector parallel to the heat current.

This finally leads to
the expression
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9mh
2 2T B
29 LOAHVkB’T kF'SF

W, =

2 2 k
Koo, Vi) dK - K (B, 3+ F (Bo )2}
% Eff q,p 3 6772 qrp ? qp dsds'
e M-e “arye™aray)
(8)

where [ is the Lorentz number and the other symbols have their usual signifi-

cance.

III. EVALUATION OF THE DOUBLE AVERAGE

Even for a spherical geometry, the evaluation of the double average in
Eqs. (4) and (8) is quite difficult. We use Bailyn's averaging procedure® to

compute the double average and write expressions (4) and (8) in the form
5 o 1 2 '
<F(K)>>e— = Fjjp(.l() dsds' . 9)

The phonon frequencies wg and the polarization factor (K * eq, p}"’ vary
with the direction of the scattering vector K, and this situation makes these inte-
grals very complicated, To effect the average (9), we first choose vectors
k and k' that have the same difference vector K = k'= k and average over all such
vectors. In the case of a spherical Fermi surface all these vectors can be ob-
tained by visualizing a rigid rod of length K oriented in the direction of K to roll
on the inside of a spherical shell of radius k.. The ends of the rigid roll will
each describe a circle of circumference s(K) = ‘n{dk; - Kz)‘/?. The advantage in
performing a preliminary average over all such combinations with a given K is that
the phonon parameters will not change during it. We denote this average of the

integrand as {{ F(K) }} . Next one averages over all K for a given magnitude of K.
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This average equals the integral over all directions of K with with weighting
factor equal to the ratio of the length s(K) to the integral of s(K) over the whole
solid angle for a given K magnitude. This average can be expressed by the re-

lation

[{{EK) I = [ da{{FkK)})} _SK)_ (10)
(K) {d0s(K)

Here | )dQ indicates the integration over the solid angle of K on a constant
(K

K-magnitude surface, Finally we average over all K magnitudes. This is equal

to the integral over all K with weighting factor

[dQ s(K) .
Jdk [dQs(K)

This finally gives the required average over the Fermi surface as

[dK [dQ [{
<<F(K)>> _ Y K dQ[{{F(K) }}]s(K) .

Pk [dK [0 s (K)

For a spherical Fermi surface, the denominator of (11) equals 4713&;; "

Hence
<S<FKY>> = 1 (@[ [H{FK) D] (1-4Y), 12)

FeiSa™ szkr 2

where u = K/'Qkp « Using this result, the expressions (4) and (8) for the electri-

cal and thermal resistivities can be written as
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f = = JdQ [A(K) dK, (130)
2 253
417e MNkBTvF kF

and
B = i [dQ[B(K) dK , (13b)
4me’ L MNkg T vfkp
where
\/.
e 2.2
Z K:(1=-4%) (K eq, p) C7(K) (14a)
(1_.,,5“’(!; )(CB“’Q;P-])
and

(14b)

IV. NUMERICAL COMPUTATIONS

We have calculated the electrical and thermal resistivities from Eqs.(13)
by using @ modification of Houston’s method. The integration over K was per-
formed numerically and the integration over ) was carried out using the modlhed
Houston’s spherical six-term integration procedure as elaborated by Betts et al”
Houston’s method gives proper weight to each reciprocal lattice point and is
inherently preferable to the sampling technique which relies merely on taking @
very large number of points in the reciprocal space. For the evaluation of the

integral
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j = ,Jrl(gl (45) d(} ] (15}

where the integrand is invariant under the operations of the complete symmetry
group, the valve of 1(6, ¢) in the [100], [110], [111], [210], [211] and [221]
directions is required. The expansion of the integrand in cubic harmonics re-

taining only six terms leads to the following expression for J:

4
= AT (1176031, + 765441, + 174961
T= TogT080 - a T 763441 c

+3812501, + 3110401, + 1771471, ], (16)

where the subscripts A, B, C, D, E and F denote the values of the integrand

1(6, ¢) along the directions [100], [110], [111], [210], [211] and [221],
respectively. The direction cosines of the polarization vector eq, p Ore obtained
from the solutions of the secular equation for a body-centred cubic lattice.

In calculating the integrals (13) we have distinguished normal (N) process-
es from the Umklapp (U) processes in the conservation law of the wave vector.
Early workers have completely ignored the Umklapp process, but in recent years its
importance has been realised. Bailyn?, Hasegawa® and others assume that the normal
processes operate in the range of the variable of integration « from 0 to 0.43 in the
Brillouin zone, while the range 0.63 to 1 corresponds to the Umklapp processes.
This type of separation of the range of the normal and the Umklapp processes is
rather artificial when one goes beyond the spherical approximation. In the present

work a more realistic approach has been adopted.
(a) Normal processes

The normal processes are governed by the conservation law

Kin ks o g, (17)
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where g is restricted to be in the first Brillouin zone. Using Ziman’s formulation,
we have taken account of the elastic anisotropy by integrating over K numerically,
restricting the phonon wave vector to points within the first Brillouin zone. The
limiting values of K vectors were obtained by finding the points of intersection of

a line having the direction of K with the planes of the first Brillouin zone boundary.

These limiting values for a body-centred cubic structure are given in Table I.
(b) Umklapp processes

n an Umklapp process the scattering vector is given by the selection rule

K=k-k=q+tG, (18)

where G is a reciprocal lattice vector. In this case vector K goes beyond the
boundary of the Brillouin zone, but q is constrained to be within the Brillouin
zone. From the knowledge of the reciprocal lattice vectors of a body-centred
cubic structure, the values of K along any direction at which the Umklapp processes
crop up can be determined. The phonon wave vectors which are needed for the

average are then obtained from the conservation law (18).

V. RESULTS AND DISCUSSION

The values of the elastic constants and the other data used in the present
calculation of the electrical and thermal resistivities of the alkali metals are listed
in Table II. The electrical and thermal resistivities of lithium, sodium, potassium
and rubidium are calculated as a function of temperature. For the phonon spectrum
we have used our electron-gas model, In the case of sedium and potassium, the
computations have been performed with two sets of elastic constants. |t was founc'
that the Umklapp processes contribute appreciably to the total resistivity, being
most important at higher temperatures. In some cases the contribution from
U-processes exceeded that from N-processes over a wide range of temperature.

The calculated values of the electrical resistivities of the four metals along

with the experimental values are plotted in Figs. 1-4. The experimental values of
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the electrical resistivities for lithium are taken from Dugdale and Gugan'® and
MacDonald et al.'” and for sodium and potassium from Dugdale and Gugan'®, while
those for rubidium are due to Dugdale and Phillips'®. It is seen from Figs. 2 and
3 that the calculations using elastic-constant data at 90°K for sodium and 83°K
for potassium are in better agreement with the experimental valves at low tempera-
tures, while those from the elastic constants at room temperature give a better ex-
perimental fit at higher temperatures.

For lithium and rubidium the calculated values of the electrical resistivity
are lower than the experimental ones throughout the temperature range studied and
the discrepancy increases with the rise of temperature. The disagreement is more
pronounced in the case of lithium. For example at 100°K, the experimental value
of the electrical resistivity is larger than the theoretical one by a factor of 3.77.
This large variation in the values can be attributed to the distorted Fermi surface
in lithium.

The calculated values of the thermal resistivities are compared with the
experimental observations in Figs. 5-8. The experimental data plotted in these
figures are due to MacDonald et al.'” for lithium, potassium and rubidium, while
those for sodium are from Berman and MacDonald'®. [t is seen that the theoretical
and experimental resistivity curves are somewhat inconsistent. Though the two
curves are of similar nature, the agreement is poor at low and high temperatures.
At low temperatures the calculated resistivity is substantially lower than the ex-
perimental values, while at higher temperatures the theoretical curve lies be low
the experimental measurements. However, the experimental data at higher tempera-
tures are not reliable,

The disagreement between the theory and experiment can be attributed to
the following reasons: (1) We have used here Bardeen’s expression for the electron-
phonon matrix element which overlooks the exchange and correlation effects.

(2) The expressions (4) and (8) are based on a first-order variational solution of
« (3) In

the calculation we have not incorporated the temperature dependence of the elastic

the Boltzmann equation. This somewhat over-estimates the resistance '’

constants. |t is known that the elastic constants vary with temperature.
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(4) Lithium?® and sodium?' undergo a martensitic type of phase fransformation into
a mixture of body-centred cubic and hexagonal close-packed structures at low
temperatures below about 78°K and 37°K, respectively. Because of the occurrence
of this transformation, the significance of the theoretical values below these
temperatures is somewhat doubtful. Thus a rigorous comparison with the experi-

mental values below these temperatures is not feasible.
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TABLE 1

Limiting values of K for normal processes in body-centred cubic structure.

Direction Limiting value
[100] n
a
[110] MR ;
W2 @
(1] 3 o7
7 a
[210] 5 om
] a
e} B n
3 a
[ 1 3 7
4 a
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TABLE 1l

Constants for alkali metals

v1idN9 ANV YWHYHS

Elastic constants Temperature” Density Letlice Tl )
Metal Notes (10" dyn/em?) *K) (a/em®) WN:“"' s)-E, E,
C, C. C. (A) (eV) (eV)
Lithium a) 1.481 1.248 1.077 78 0.534 3.491 -0.8 4.72
Sodium b) 0.741 0.624 0.419 300 0.9660 4.291 0.08 3.14
c) 0.808 0.664 0.586 20 1.0014 4.240 0.08 3.16
Potassium  d) 0.3715 0.3153 0.188 295 0.851 5.344 =0.02 2.06
e) 0.457 0.374 0.243 83 0.870 5.344 -0.02 2.06
Rubidium f) 0.294 0.244 0.160 80 1.532 5.699 0.03 1.86

*  Temperature at which the elastic constants are measured.

a) H.C. Nash and C.S. Smith, J. Phys.Chem.Solids 9, 113 (1959).

b} W.B.Daniels, Phys.Rev. 119, 1246 (1960).

¢)  P.K.Sharma and S.K. Joshi, J.Chem.Phys. 39, 2633 (1963).

d)  W.R. Marquardt and J. Trivisonno, J. Phys.Chem.Solids 26, 273 (1965).

e) 0. Bender, Ann. Phys ik 34, 359 (1939).

t) C.A.Roberts and R. Meister, J. Phys.Chem. Solids 27, 1401 (1946).

g)  H. Brooks, Phys.Rev. 91, 1027 (1953): F.S. Ham, Solid State Physics 1, 185 (1955).
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Fig. 1. The electrical resistivity of lithium as a function of temperature.
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Fig. 2. The electrical resistivity of sodium as a function of temperature.
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Fig. 3. The electrical resistivity of potassium as a function of temperature.
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Fig. 4. The electrical resistivity of rubidium as a function of temperature.
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