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RESUMEN

Recientemente ha habido gran interés en los grupos de no-invariancia para
sistemas dindmicos, fundamentalmente con la intencidn de generalizar estas ideas
al campo de las particulas elementales, En éste trabajo vamos a analizar la cons-
truccion de grupos de no-invariancia en forma directa baciendo uso de las variables
dindmicas bdsicas de varios sistemas fisicos como el rotor rigido y el oscilador
armaonico.

lLa téecnica general consisie en construir operadores que dependan solo de
las variables dinamicas del problema y que satisfagan el dlgebra de I.ie de algiin
grupo. Este grupo asi construido debe tener las siguientes caracteristicas:
contener como subgrupo del grupo de simetrias del sistema y sus operadores de
Casimir ser tales que todas las eigenfunciones del hamiltoniano fisico pertenez-
can a una misma re presentacion del grupo mayor, Esto nos permitird consitrusr
todos los posibles estados del sistema con solo conocer los estados de mdximo

peso mediante una técnica general,
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ABSTRACT

There has been recently a great deal of interest in non-invariance groups
of dynamical systems mainly with the purpose of generalizing the ideas to the field
of elementary particles. We want to discuss here the direct construction of non-
invariance groups, using the dynamical variables of several physical systems like
the rigid rotator and the harmonic oscillator.

The general technique consists in building up operators that de pend only on
the dynamical variables of the problem and that satisfy some group's lLie algebra.
Such a group must have the following characteristics: it must contain as a sub-
group, the symmetry group of the system and its Casimir operators be such that all
the Hamiltonian’s eigenfunctions belong to a single re presentation of the larger
group. This will allow us to construct all possible states of the system by the

mere knowledge of the maximum weight states by the use of a general technique.

INTRODUCTION

In the present work we will try to show the most relevant aspects of non-
invariance dynamical groups® that may provide us with a new technique in the
treatment of dynamical systems. To illustrate this let us start with some very
simple examples.

First let us take the one-dimensional harmonic oscillator, whose Hamiltonian

H= %. (p? +x2) = %(a*a taa®)
with solutions
wh
AL g m

vnl
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As is well known? the invariance group of this Hamiltonian is the unitary
group in one-dimension SU(1). But let us take the following view point; we shall

use the dynamical variables of the problem either coordinate and momentum (x, p)

~1T (x=ip) ;

V

or alternatively the creation and annihilation operators (a* =

g (x + ip)) to build new operators that generate the Lie algebra of a group
V2
that contains SU(1) as a subgroup. Such operators are’

These form a Lie algebra, in fact they are the generctors of a group 0(2,1)
as Lipkin® has shown. We shall call this a dynamical group on account of the
fact that we build it from the dynamical variables and a non-invariance group
because not all of its generators commute with H. In spite of this we can derive
useful information of the system from this group. We construct the Casimir oper-

ator of 0(2,1) and we see from (2) that it is equal to a constant:
=1, +1,0,+1) ==3/16 (3)

This implies that all the eigenfunctions of the problem are eigenfunctions
of 1? with same eigenvalue, that is, all the Hamiltonian’s solutions belong to the
same irreducible representation of 0(2,1) . We can then build ali the possible
states the problem from the maximum weight state by applying to it the weight

lowering operator I_ . In our example the two states |0 > and a*| 0 > are highest

weight states because:

1,/0>-0; 1,a*[0>=0 (do)

' -

67



0. NOVARO voL. 18

Their respective weights are
1,10>=-1/4]0> 1.a*|0>=~3/4a%[0"> (4b)

Yet they belong to the same eigenvalue of the Casimir operator of 0(2,1).

This is similar to what happens when we go from 0(2) O O+(2), the
Casimir operator of 0 (2) is Li but L_ itself is invariant before 0*(2) and not so
in the larger group so by using Li as the Casimir operator of 0" (2) we get two
highest weight states with the same eigenvalue m? of L2.

But the relevant point is that all the even eigenfunctions can be obtained
by applying powers of I_ to the state |0 > and all the odd states are obtained by
applying If to a+|0> é

We can also construct the matrix elements of the dynamical group generators

once we know the representation eigenfunctions, in fact we have

<1, |n> = - ;_ NN 80t e
<n’|I_|n> = - %J(n;l')(;'zi Bat s (5)

. 1
<n®|1 |n> = =g @t

This serves to illustrate our main interest in non-invariance dynamical
groups as an extension of the symmetry group of a physical system. The eigen-
solutions belong to many irreducible representations of the symmetry group (usually
an infinite number of them). We construct the larger (non-invariance) group in
such a way as to have all the solutions as eigenfunctions of a single |.R. of this

group.
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We note that this implies that the dynamical group is not compact and that
all its Casimir operators must be constants.

Let us analyse another simple example, the point rotator in a plane, that
is a particle constrained to move in a circle. Now the symmetry group is 0*(@2)
and we want to extend it to a larger non-invariance group. As we have only two
dynamical variables, the rotation angle ¢ and its conjugate momentum we want our
generators to depend only on them.

We proceed as follows: one natural way of extending 0" (2) would be to
take the x and y components of the angular momentum vector in three dimensions:
(L, and L},); eliminate their dependence on the second angle & and see if they,

together with the generator of 0 (2) L, will form a Lie algebra. These operators:

(6)

do form a Lie algebra, However the first two do not have a defined hermiticity.
That is, while their commutation rules correspond to the complex extension of an
O+(3) Lie algebra, they are not the generators of an 0*3) group. In fact if we
want to get an extension of the symmetry group we must build with these another

three operators that are hermitian, by symmetrization. These turn out to be

And they are the generators of an Euclidean group in two dimensions £(2):

2

ho0,)=0; (Lpl=ip,; f[Lopl=-ip (8
The Casimir operator of F(2) is:

p+ p)’, = 8/4, (9)
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and again all the problem’s solutions belong to the same |.R. of the larger group
so that starting from any state we can obtain all the rest by just applying the
E(2) generators. In this case we also have the matrix elements of the weight
raising (L, = p, t ipy) weight lowering (L_= p, =i pv) and weight operators
(L = L)

v |

<m |L

<m'|l,+1m>:—m8

Il
3
=2

<m'|L_|m>

The process we followed above is not unique. We could have tried to

extend the invariance group in the following manner, let us try to build operators

O iy B md, f 1,2 an

that is the usual generators of a unimodular unitary group SU(2) but eliminating

their dependence on 7 = vx2 + y2 which is not a dynamical variable. We get the

operators :
n ’ 2 o 2 0
L ==singecos g — ; L_=cos”g
11 T CP ‘3’.{) ' 12 “P 5"
R J ; R S
czz = sin @ cos (9773—@ ; Ly = —sin” @ ¥ (12)

They form a Lie algebra but again they are not hermitian, so we construct

three hermitian operators from them (note thatonly 3 C‘;‘;‘ are independent) and they
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form a Lie algebra of a non-invariance group
’px= -cos 29 ; ’!av: -sin29 ; b= 5

In the simple two-dimensional case this group is again E(2) but in general
this second procedure gives a different dynamicol group that is known as a double-
jump in contrast with the single-jump group obtained in the direct fashion mentioned
earlier.

These examples illustrate what we expect from this technique of building
from the dynamical variables the generators of a non-invariance dynamical group,
that while not leaving the Hamiltonian invariant nevertheless permits us to solve
the problem just from the know ledge of the particular representation of the larger
group we are working with, and from the determination of one of the eigenstates we
can construct all the other states directly as we have explicitly shown in the above

examples.

We will summarize here our results of the corresponding three-dimensional
cases of these problems.

The three-dimensional point rotator has as its symmetry group ()+(3), the
motion is described using two rotation angles ¢ and ¢ their conjugate momenta
giving four dynamical variables. We use them to build the generators of a non-

invariance group. These are:

1@ 3 1 ¢, 9 9 19
L =—'\y—_ =% 2 L= o g 2 aie,
G b T y) : y ‘_(z r Pl az)' bz i Jdo
= % = Y = =
px-r_: p}f"‘?l pz—? (“"

The first three are the generators of 0" (3) and together with p_, 2, and p,

they generate Lie algebra of an F(3) group. We can also check that the Casimir
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generators of dynamical groups are constants, for example we have in this case

the Casimir operator

e t=1 (2)

This dynamical group will be referred as the single-jump group.

Let us now obtain the double-jump group. We build the operators

_— 3
Gy 5, @)

That depend only on &, ; by and 2 and form a Lie algebra, we use them
to build hermitian operators and get the generators of an eight parameter non-com-
pact group. This group is not isomorphic to the single-jump group, but is can be
identified. Let us suppose a five dimensional space and take the F (5) group that
has 15 generators, ten of them asseciated to rotations 07 (5) and five to trans-

lations T(5). But let us take an 0" (3) subgroup, the one that acts on the space

)
of the representation IQ(Z (O+(3)) this is a five-dimensional space but character-

ized by only three-parameters. So we can identify our double-jump group as a

subgroup of E(5).
Now let us analize the three-dimensional harmonic oscillator whose symme-

try group is the unitary group U(3) and has the following dynamical variables:

+
3, = L (x,=ip); 9= L (x,+ip) i=1,23 (4)
V2 ' -

Using them we can construct the 21 operators



1969 REV. MEX. FISICA

which form a Lie algebra of a dynamical group of the problem. The first set of
nine operators are actually the generators of U(3) and the other two sets of six
operators are irreducible tensors with respect to U(3). Of these 21 operators of
the larger group nine are weight raising operators , three give the weight and the
other nine are lowering operators. The irreducible representations of the non-
invariance group are characterized by three numbers (A, Ar Kg) and we see

from the form of the three weight operators:

;_(20: a; t1)

That these representations must be the (1/2,1/2, 1/2) |.R. and the
(3/2,1/2,1/2) |.R. and that all states with an even number of quanta belong to
the first one and the odd states to the other one.

The dynamical group is probably a non-compact version of O(7) or Sp(6),
but again we are able to construct all the problem’s eigenstates from the
know ledge of the representation of the dynamical group and the determination of

just one of the eigenstates.
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