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l~c/i1Jg s~/I-C(msi.o;/t'1JC} iu /¡,~calcula/ioll 01 /h,. ~/1t'c/it't' lIamill(mian mal I~ad

lo tl'r(mg ("(J1/clusiOfJs. "'/11'<;" ,frrfJpntit's arl' sbOfnl ~xplici/I)' iu a 1IfJwl'rical ~'l.'.

ampll'.

l. INTRODUCTION

In o mony.body system, due to the complex ity of the problem, one is usu.

olly forced to introduce o model. This provides o complete set of model wave

functions, defined in a Hilbert spoce S, in terms of which the wove functions of

the system ore to be exponded. Due to the procticol difficulties in deoling with

the complete exponsion, one usually truncotes the model bosis, defining in this

waya subspoce ~ of S; the goal is then to describe the system within~. In

other words, the problem consists in finding operators, defined in ~, sueh thot

their eigenvolues coincide with the true eigenvalues of the problem. These ore

the s 0,,<;0 lIed effective operotas 2.

For the case of the effective Homi Itonion it turns out thot the effective

operotor is o functian of the true eigenvolues of the problem, os is shO'Nn in

section 2. As these eigenvolues ore unknown o se1f-consistency problem orises.

Much ottention has been given in the last few yeors to the onalysis of ef-

fective operators in mony branehes of physics. In salid stote theory very well

known examples ore provided by the dynamics of electrons in solids4• Another

well known exomple is provided by the nuclear shell model. In this case the ef.

fective interaction has been colculated by at least two different approachesS•6•

It is a common feature of 011 these colculotions to Ossume that the self.

eons istency problem mentioned obove con be ignored. lt is the purpose of this

work to study the dependence of the effective hami Itonian on the true energy

eigenvalues ond therefore to ano lize the consequences of igncring self-consistency.

In section 2 we define ,he effective hamiltonion and in sedion 3 we ano-

lize sonlC general properties of its energy dependence. What is discussed in

these !"No sections is complete Iy genera 1, ir, the sense thot the concept of On ef-

fec'ive homiltonion arises whenever one truncates the space. In other words the
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discussion of the effective homiltonian of sections 2 or 3 does not depend on

the s pec ific form of the hami [tonian, the number of portic les, etc.

In arder to show in specific exomples the general properties of the effective

homiltonian discussed in sections 2 and 3 ond to investigote how well con the ef-

fective hamiltonion rep'oduce the true results, we onalize in section 4 the simplest

poss ible cose: o one~body problem described in o finite spaceo

11. DEFINITION OF THE EFFECTIVE HAMILTONIAN.

We cons ider a finite vector s pace S of dimens ion p + q, and moke on 01'-

thogonol separotion of it intoo model space JJ, of dimension p, ond its comple-

ment of dimensíon qo This means that vectors in the model spoce are arthogonol

to vectors in its complemento We now introduce the projection operotars P ond Q

which project, respectively, onto the model space (P-spoce) and onto its comple-

ment (Q-space). The operators [> ond Q hove, therefore, the following properties

[>2 = P,

I'Q = Ql' = O.

(2.1)

Let us now consider o Homiltonion JI, defined in the complete vector

spoce, with eigenvectors I'¡/¡> and elgenvolues f¡, i.e.

11111'. > = f.I'¡/.> o, " (2.2)

For o given eigenvectpr III'¡ > we construct its projection P ¡'¡J¡ > in the

P-space and [ook for On effective Homiltonian .u, defined in the model spOce only,

with the property thot p j'l'i > is on eigenvector of .u corresponding to the eigen-

volue E.i• In other words,
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(2.3)

We sholl now obtoin on expression for:M.

Using eqs. (2.1) ¡t is simple to derive from eq. (2.2) the poir of coupled

equotions I

(Ei- IIpp) l' l'I'i> I1I'Q Q IlPi > (2.40)

(E¡-I/QQ)Q 1'1',> IIQ l' p111'i > (2.4b)

where

IIpp = PIIP, IIQQ QI/Q,I/I'Q PIIQ,IIQp QI/I' (2.5)

ond

III'Q = IIV l' (2.6)

the lost eq. being volid since 11 is Hermition. Solving (2.4b) for Q l'l'i .....ond
substituting in (2.40) one obtains, finolly,

E. P 1'11 • >, " (2.7)

which defines the Hermition effective Homiltonian:M, as

Ji (E .), I/pp -t I/PQ ----IIQ1,
E i - I/{!{!

(2.8)

In this equotion we hove explicitly indicoted thot Ji depends on the

specific eigenvolue Ei we wOnt to reproduce. In other words, we need a different

effective operotor for eoch eigenvalue we wOnt to odjust.

If we can separote 1/ os l/0 + v, where 11° commutes with l' ond 'J, the ef-
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fective Hami !tonian J{ can be written os

}/= /I~ p i" \' + V vQ J>flP PQ o<. - 11 - IQQ,

o UppIIpp +

Since tJpp cOn olso be puf in the form

1969

(2.9)

it coincides with the usual definitían of the effective interaction2• We olso see

thot the effective operatar corresponding to 110;5 identical to 110 itself ond,

therefore, it is not energy dependent.

In crder to p-oceed with the anolysis, we choose for the complete tinite

vector spoce a oosis which diagonolizes IIpp ond II
QQ

, separotely:

{1If'f' 1,\> 1:)1,\> ,\ = 1, ...• P
(2.10)

'0Q Ifl > 1: 11'> j.1 = 1, " ., q
"

This is convenient ond does "ot imply coy lack of generolity, since we are inter-

ested in diogonali2ing Ji ond cny basis COn be used fCf this purpose. Using the

basis defined in eq. (2.10) the matrix elements of the operatar i:t toke the form,

" 11)" 11,,)'1:").3).), + .:.. __ ~__ ~_
¡.J. tE,. - Rj.1.
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(2.12)

Since to construct Ji))' we need to know E¡, the unknown eigenvolues of the

total Homiltonion 11, we foce a self.consistency ~oblem. In general, th¡s is very

difficult to solve ond whot is usually done is to reploce the eigenvolue E¡ in (2.11)

by a poro meter E, hoping thot the eigenvolues ond eigenvectors of Ji do not de-

pend severeiy on the volue of this porometer. The effective Homilton;on motrix

elements then become

~ 1I)p.II¡.l.)'

Jl E-E
l'

(2.13)

and it is the purpose of this poper to onolyze the dependence of the eigenvolues

E¡un of Ji on the parameter E. Before doing this it is intere~ting to discuss

the following result.

We hove seen thot if we consider E = E¡ in eq. (2.13) we obtoin on opet.

otor Ji(E¡), one ofwhosE" eigenvolues coincides with f¡. We sholl now show

that those va lues of the poro meter 1:' s uch that

Ei(E) = I! • i = 1, ... , p , (2.14)

•

(in other words, E is equal to whot could be colled a self-consistency energy)

coincide with the eigenvalll~s t¡ of the Hamiltonion 11, diogonolized in the com-

plete lector space.

In arder to prove this, let 1(11 • be the model eigenvector carresponding to

one of the eigenvolues (2.14), i.e •

(2.15)
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Let us now construct the vector I IjI >

R~V. MEX. FlS.CA

(2.16)

that clearly has components in both P ond Q-spaces. Acting with JI on 1\11> we

o~to in

111 '1' >

where we hove used the fact that I/QQ ond Q commute, as well as eqs. (2.1). lf

we now use (2.1 S) we get

111'1' > = f! 1'1' >

proving our statement.

11I. BEHAVIOR OF THE EIGENVALUES OF il AS FUNCTIONS OF THE

PARAME TE R f! •

The genera I behov;or of the eigenvo lues of U os funct;ons of R is rother

difficult to onolyze for arbitrary volues of p ond q. Therefore, we sholl start the

onolys;s with the simplest possible case p = 1 "nd q orbitrory. We hove in this

case

(3.1)

where El (E) and E) designate the only eigenvalue of U U;") ond l/pI" respective-

Iy. The graph for 2
1
(1:) is given in fig. 1. The energy origin is indicated in the

obscissa with the point O ond E) is token to be negative, for definiteness. We

179



FLORES ET AL.
VOL. 18

see that for E .....•i ClO , El .....•E), I and as E app-ooches each one of the E~S, 21
shows a pole. The intersections of the dotted ¡¡ne, drawn through the energy

origin ot 45 degrees, with the curve E (E) give, according to the result mentioned
1

at the end of section 2, the q + 1 eigenvalues of JI in the complete vector space.

We can odjust the parometer E to fit, for example, the lO'Nest eigenvolue; the ccrre-

sponding self"'Consistent volue is given as El in Hg. 1. One can see that the

energy variotion of E (E) is smooth for volues of r:« E but is very strong
1 • ~Ll

when E -.• E • If the value of E is in the vicinity of E (os in fig. 1), the lock
J.L

1
1 l.L1

of self-consistency moy leod us to an eigenvalue E (E) which differs considera-
1

bly from the correct eigenva lue of 11. Such difficu1ties orise in the general cose

(p orbitrary) as will be discussed ¡oter on.

A specific exomple of the donger of the lack of self-eonsistency is pro-

vided by o recent calculation by Arima et 01.3 They onolyze, omong other nuclei,

F18, restricting the nuclear shell-model space to the configurotion (ld
S
/2 ,251/2)

ond parametrizing the effective nucleon-nucleon interoction in terms of its two-

body rnatrix elements, which are varied until o best fit to the spectro is obtained.

Once a set of motrix elements of the effective interoction is obtoined. the SOrne

set is used to fit 011 energy levels. Th¡s would correspond in our languoge to

using the some volue of the parometer E to fit 011 eigenvolues Ei, therefore

breoking self-consistency. They find thot it is impossible to get a goOO fit to 011

existingdata ifthe 1.7MeV, l+stote of F18 is included in the leost-squore pro~

cedure. This state seerns to hove a different character from the other 10w~lying

states. lndeed, rough energy estimates indicote that a 1+ state with two lp

nucleons excited from the 160 core, and therefore outside the model spoce, should

occur at about 1-3MeV excitation energy in FU. In our language, this corre-

sponds to having one of the E's in the energy range of the E~S we want to odjust
M 1

and as can be seen from a figure s ¡mi lar to Hg. 1, the variation of the eigenva lues

of Ji with respect to E may be very strong. Similar difficulties hove been found by

Brown and Green 7 and by Federman ano Ta Imi 8 •

We sholl now analyze sorne properties of the: general cose p and q orbitrary.

We f¡rst study the behav;or of the eigenvalue curves, when the paro meter E op-
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proa ches one of the non"¿egenerate eigenvolues of I~Q' soy E¡..¿o. We 50011~ove

that in this case only one of the eigenvalues 2i{E) shows a singularity and the

other p-l eigenvalues of U tend tofinite values in the I¡mit E- E.".
First ofoll, since the trace of}l is equal to

(3.2)

wh ieh e learly tends ta Jo ~ when E - E - O t • (pravided 11, i O) we see that
f.Lo J1.o

ot least one of the eigenvalues of J::ldiverges in this limit.

As we shall give in the appendix the proof that only one eigenvalue di-

verges, we sholl only present at this poiot On orgument that makes the result

plausible. Let us single out from expression (2.13) the term corresponding to ¡.Lo'

since this is the only one that goes to infinity when E ....•E , and write Ji as".

where

and

JI = JI. + U (3.3)

(3.4)

(3.5)

It will be shown in the appendix that the matrix Jt has p-l eigenvalues

equal to zero and one eigenvalue different from zero, which goes to infinity in the

limit. Since all the matrix alements DA'" remain finite for E -o E ,1) represents".
a finite perturbation to UD and although U will hove, in general, all its eigenvolues

differenf from zero, it seems plausible that it has still enly ene diverging eigen6

value.
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Another oeneral property of the curves 2iun con be reodily obtoined: the

derivative d2i(E)/dE ~ O. In order to prove this, we onolyze the behovior of

C;(E) when we replace litE) by U(E' 6E), where 6E is token smoll enough so

thot in the truncoted Toylor exponsion

(3.6)

the second term can be mode os smoll os we wont compored to the first one. This

ollows us to consider the effect of U'(E)Ó,E by meons of first order perturbotion

theory. This is consistent with eq. (3.6), since only terms linear in t1E ore

necessory to colculote the first derivative. Therefore, the change 62i in the ¡.th

eigenvolue of ji is

where l<t(£» is the ¡-th eigenvector of Ji un with components

(2.13) we con now write

¡;)
C) . US ing eq.

dc;(I:) o'
__ ~~e (1:') =
dE '

(i), (i)
~ C. U))' c),).)/ ,. .

[ ¡;¡J'
~'II),C)

- ~ ._)--' __ " O
~ (E - E )'~

(3.7)

which proves the theorem. This result is consistent with the fact thot the troce

of U(E) has a negot;ve derivotive with respect to E, os can be seen directly from

eq. (2.13), i.e.

(3.8)
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lt is interesting to natice that E:(l~)is negative both for ottractive cnd

repulsive interactions. We can now use t:-:e result E;.( O to see that there exists

a volue of E (in the region of physicai ¡nterest, j.c. E < E¡.1 for On ottractive

Hamiltonion) such that }t(Jn gives a closer result to the lowest p correet eigen"

volues of 11, than those obtoined by diagonalizing 11 within the model spoce.

From Ritz voriationol principie we know that the true eigenvalues €¡ líe lower

than the corresponding E). .• On the other hand, in the I¡mit E ....•- N, ji -lIpp,
(see eq. (2.8)) and Ej tends asymptotically to EA.' When E becomes f¡n¡te, the,
E. decreoses becoming o better approximotion to € .•, ,

More detoiled properties of the eigenvalue curves con only be obtoined

through the explicit knowledge of the numericol volues of the motrix elements of

1/. In the next section, we present sorne numericol results for simple coses, in

which the effective Homiltonion is colculoted exoctly.

IV. AN EFFECTIVE ONE-BODY HAMIL TONIAN

As mentioned in the introducHon, for ony quantum mechonicol system

described by Schrodinger's equotion in o given Hilbert s~ce S, the concept of

On effective Homi Itonion orises whenever we wOnt to describe the system within

o subspoce JJ of s. The general chorocteristics of tile effective Homiltonion we

hove discussed in the previous sections, ore va lid for any system of on orbitrory

number of particles, independently of the specific properties OT the Hamiltonion

11.

In crder to show in specific exomples tne general reotures of JI discussed

in sections 2 ond 3 ond to investigote how well con the effective Homiltonion

reproduce tile exoct results for o given volue of the poro meter E (see eq. (2.13)),

we sholl onalyze the simplest possible cose: a one-body J:'"oblem described in o

f¡n¡te s pace. We cons ider the one-body Hami Itonian

(4.1)
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where V(r) is a central potential. We now toke o finite set of d = p+q harmonic.

oscillotor stotes ond construct the matrix of (4.1) with respect to this basis. The

d eigenvalues of this matrix con be made to opprooch the true eigenvalues of (4.1)

as closely 05 we wont, by taking d lorge enough. For o given d, on the otherhand,

we sholl consider the corresponding deigenvolues 05 the -exoct"' results ond cad

them E .• We onalyze the some problem using an effective Hamiltonion defined in,
o smoller vector spoce, spanned by p hormonic-oscillotor stotes.

In the numerico 1exomple we now d iscuss, the vOlue d = 10 is used ond p
is voried from 1 to 5; V(r) is token as a l-booy Coulomb potentiol V(r) = e/r.

We show in fig. 2 the energy voriotion of the eigcnvalues E'iU!) of the effective

Coulomb Homiltonian }i for the case p = 5. First of 011, we observe thot for

E ....•:t <xl the E'j opproach the eigenvolues E, of 111'1'. On the other hand, as ¡:

opproaches the eigenvalues EJ.l of J~Q only one eigenvalu~ of Ji goes to infinity,

while the other four remain finite ond are COnTlnUOUS functions of J?

lt is olso opparent from the gropn rnot the slope of the curves ;s olways

negotive. We see in this spec¡fic exomple, therefare, thot rIle curves ':j(E) hove

al! the properties we hove discusse9 in genera I befare.

We now onalyze how well con the effective Homiltonion describe the exocl"

solution of this problem. The ten "'exoct" eigenvalues Ej ore shown on the left-

hond side of fig. 2. They are seen to coincide with the self-consistent volues

given by the intersection of the curves Ei(E) with the stroight line drawn ot 45

degrees. This is consistent with the discuss ion given ot the end of section 2.

S ince by d iogono 1iz ing U (r:) w ithin the mode 1 s pace we obto in f¡ve elgenvo lues

only, we restrict our ottention to the first five self-eonsistent eigenvolues, indi-

coted in fig. 2 by the full circles. We see tf)ot they are spreod in on energy range

of 3 units ond that there is no single volue of E for wnich 011 five E. can be rcosen-,
obly fit. In this case E lies between E and E os can be seen from the groph

¡:.tI 3 4 '

and ene must be rather coreful in neglecting self-conslstency in me poesent example.

On the other hond, if we only toke into occount the three iowest eigenvalues, n
"\

is no longer within the energy rooge of the €;. s one wants to ad¡ust, ond o geOO fir

can be obtained in the vicinity of E = O

184



REV. MEX. FIS1CA
1969

see

Finally in ligo 3 we ShUN the energy variatían of 2,,(1:) when p:::: 3. We

that the groph is qualitotively similar to the one corresponding to P = 50nd

the SOrne discussion opplies to ¡t.

CONCLUSIONS
We hove snown that the following properties of the eigenvolues of the ef.

fective Homiltonion ;):i do nol depend neither on the specitic lorm 01 the

Hamiltonion 11 nor on the number of porticles of the system:

1. When the porcmeter f: is in the vicinity of one of t¡-'e eigenvalues of

II
VV

' one of the effective eigenvolues verles strongly with this parometer, while

011 others do noto This implies that if one of the eigenvolues of the Homiltonion

IIfJtJ ;s contained in the energy rooge of the true eigenvalues lo be od¡usted, the

lack of selfooeonsistency may lead towrong conclusions.

2. The slope of the effective eigenvolue curves is less than or equal te

zero. This implies, by Ritz voriatienol principie, that ene can always find values

of the parameter E for which these eigenvalues represent o better oppróximation

ro the p lowest true eigenvalues ti thon the t:;s ebtoined by diagonaiizing the

original Homiltenion 11 within the model spoce.

These general properties ore explicitly shown in a numericol exomple,

which olso serves the purpose of indicating how well the effective Hamiltonian

rechnique reproduces the true results.
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In this oppendix we shall give the proof thot in the limit E .....•E (H
¡.lo ¡.lo

being a non-degenerote eigenvalue of I/QQ) only one eigenvalue of U(H) diverges,

011 others retllJ ining finite.

As was done in section 2, we single out from express ion (2.13) the term

corresponding to Po and write Ji as

where

Ji = Jio + lJ (Aol)

and

\) í' -

1I - l'
~o

I/)¡.¡..//;.t)'

/i-E
1'

(A02)

(' 03)

(o)
We shall now find the eigenvalues 2; and the eigenvectors I <Pi > of ¡t, i.e.

(A04)

( i)
Calling j, the,\oofhcomponentofl'T-'i" ond using (A.2), theeigenvolue eq.can be

wriHen explicitly as

11.
I~o (;) p (o) (i)

':; 11 í' Y , ::: ~- i y)
>-<-0" )"

(A.5)

From (A.5) we see thot if
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¡;)
l 11 ,'Y~ = O ,
),' IJ.o"

(i) o
'Y). is on eigenvector of ji :orresponding to the elgenvalue

(o)
E¡ = O •

REV. MEX. FISICA

(A.6)

As we deol with a p~imensionol vector space, thora "xist p-l eigenvectors y(i),

j = 2"." P which fulfill.o. (A.6), shC10Ylng ,ha,

••• = (A.7)

The remaining eigenvalue e:O) corresponds to the case

From (A.S), the norma lized e igenvector "1(1) is given os

(A.e)

(,)
YA = (A.9)

(o)
and E is ab'ain.d by multiplying ba,h sid.s al (A.S) by 11 ,summing avor ¡"

1 ¡..tOA

and dividing through by expression (A.S), giving

(A.l0)

In other words j( has only ane eigenvolue d¡fferent from loro.
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This is true, in general, for a matrix A, whose motrix elements ore of the separe-

ble form A .. = A.A .• Note thot for o degenerote eigenvelue of ''''Q the motrixIJ 1 J 1.!

Jio is not separable. and this result does not held. We note tnat for the nen-de-
(o)

generote case only one of the E¡ can be made as lorge as we want, by choosing

E c10se enough to E ,011 others remaining equol to zero. Since in the limit
~o

E -. E ,1)).1 of eq. (A.3) remains finite, it seems plausible thot only ene
~o

eigenvalue of Ji diverges ond that the remoining p-l eigenvolues tend to finite

va lues. We sho 11now prove that this is the case.

In order to do this, we moke on orthogonol seporotion of tne P-space into

o one-dimensionoI R-spoce, contoining the eigenvector I~:> (eq. (A.9)) ond On

S-spoce, sp::lnned by I~¡>, j = 2, ... , p. -¡his corresponds to the splitting of

the projection operator Pinto two pieces,

where

(A.]])

R 11> ><1> I1 1

Ifwe now consider the "effective" Homiltonion Ji in the R-spoce, defined by

it is cleor that the volues of 2 thot satisfy the equofion

(A.12)

2 (A.]3)

coincide with fhe eigenvolues E'i ef Jt. fer a given volue of!:'. (See the end of

sectien 2). New
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where

I (.1'. 1JlR S 1 \~ > l'

C-E ~
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(A.14)

and

JI 1\" ,S S '(' El\' '>, (~= 2, ... , p~ "~
(A.15)

l'", e(O) + 11 1e < 1 ¡ 1, '>, , (A.16)

....,(O) 1 \J 1
where -1 is given in eq. (A.~O) ond the motrix element </1 rj,¡ >

finife in the I¡mit F . F Since, on the other hond,
~o

remoins

l'~s

is a bounded motrix in the limit, 1;'..• (,' = 2, ... , p) remoin finite. Eq. (A.13) now

reads

j I j, I \", "'
f.' _ /'

:" - ,..", (A.I?)

circles in fig. 4, for o given volue

which can be solved grophicolly.

will remoin finite while 1:' tends
I

the e igenvo lues'" of h' s hows a

The solutions of (A.l?) ore ind¡cated by the

al /'. As /' - /," . O! • /' (, = 2 •.. '. p)Iln ("T

I ~ (see eq. (A.lO)). TherefOfe. anly ane 01

singulority, as stoted before.
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Fig.2. Effective eigenvalue curves for the one-eleetron Coulomb problem for
the cose p = 5 and q = 5. The energy is given in units of the f¡rst

Bohr orbit.
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