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RESUMEN

Se discuten algunas propiedades generales de los eigenvalores del Hamil-
toniano efectivo, definido en un espacio finito, En particular, se demuestra que
ignorar la autoconsistencia en el cdlculo del Hamiltoniano efectivo puede llevar
a conclusiones erraneas. lLas propiedades arriba mencionadas se muestran en un

ejemplo numerico.

ABSTRACT

Some general properties of the eigenvalues of the effective Hamiltonian,

defined in a finite space, are discussed. In particular, it is shown that neg-

"Work supported by the Comision Nacional de Energia Nuclear, México.
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lecting self-consistency in the calculation of the effective Hamiltonian may lead
to wrong conclusions. These properties are shown explicitly in a numerical ex-

ample,

I. INTRODUCTION

In @ many-body system, due to the complexity of the problem, one is usu-
ally forced to introduce a model. This provides a complete set of model wave
functions, defined in a Hilbert space S, in terms of which the wave functions of
the system are to be expanded. Due to the practical difficulties in dealing with
the complete expansion, one usually truncates the model basis, defining in this
way a subspace & of S; the goal is then to describe the system within &. |In
other words, the problem consists in finding operators, defined in &, such that
their eigenvalues coincide with the true eigenvalues of the problem. These are
the so-called effective operators?,

For the case of the effective Hamiltonian it turns out that the effective
operator is a function of the true eigenvalues of the problem, as is shown in
section 2. As these eigenvalues are unknown a self-consistency problem arises.

Much attention has been given in the last few years to the analysis of ef-
fective operators in many branches of physics. In solid state theory very well
known examples are provided by the dynamics of electrons in solids*. Another
well known example is provided by the nuclear shell model. In this case the ef-
fective interaction has been calculated by at least two different approachess+©,

It is a common feature of all these calculations to assume that the self-
consistency problem mentioned above can be ignored. |t is the purpose of this
work to study the dependence of the effective hamiltonian on the true energy
eigenvalues and therefore to analize the consequences of ignoring self-consistency.

In section 2 we define the effective hamiltonian and in section 3 we ana-
lize some general properties of its energy dependence. What is discussed in
these two sections is completely general, ir the sense that the concept of an ef-

fective hamiltonian arises whenever one truncates the space. |n other words the
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discussion of the effective hamiltonian of sections 2 or 3 does not depend on
the specific form of the hamiltonian, the number of particles, etc.

In order to show in specific examples the general properties of the effective
hamiltonian discussed in sections 2 and 3 and to investigate how well can the ef-
fective hamiltonian reproduce the true results, we analize in section 4 the simplest

possible case: a one-body problem described in a finite space.

I1. DEFINITION OF THE EFFECTIVE HAMILTONIAN.

We consider a finite vector space S of dimension p + 4, and make an or-
thogonal separation of it into a model space &, of dimension p, and its comple-
ment of dimension g. This means that vectors in the mode | space are orthogonal
to vectors in its complement. We now introduce the projection operators P and Q
which project, respectively, onto the model space (P-space) and onto its comple-

ment (Q-space). The operators P and Q have, therefore, the following properties

PG = I
PP-.p, 0%=0 (2.1)
pQ - 0P = 0.

Let us now consider a Hamiltonian H, defined in the complete vector

space, with eigenvectors W'. > and eigenvalues €, i.e.

H|E> - & ¥ . (2.2)

For a given eigenvector ‘llfl. > we construct its projection P |‘P‘- > in the
p-space and look for an effective Hamiltonian ¥, defined in the model space only,
with the property that P |‘]’i > is an eigenvector of } corresponding to the eigen-

value €, . In other words,

175



FLORES ET AL. voL. 18

NP |¥,>=¢pP|¥> . (2.3)

We shall now obtain an expression for }.

Using egs. (2.1) it is simple to derive from eq. (2.2) the pair of coupled

equations®

(€;,~ Hpp) P|¥;> = Hpgo Q v, > (2.4a)

(€= Hyp) Q |¥,> = Hyp P|¥; >, (2.4b)
where

Hpp = PHP, Hyo = QHQ, Hpy = PHQ, Hyp = QHP (2.5)
and

HPQ = Hép (2.6)

the last eq. being valid since H is Hermitian. Solving (2.4b) for Q “['i > and

substituting in (2.4a) one obtains, finally,

E cim HQQ

(HPP t Hpg __J__HQP) PIW,>=¢,P|¥,>, (2.7)
which defines the Hermitian effective Hamiltonian X, as

H(E,') = HPP-+ "PQ ——-—]---- ”QP . (2'8)

€= Hyg

In this equation we have explicitly indicated that X depends on the
specific eigenvalue €, we want to reproduce. In other words, we need a different
effective operator for each eigenvalue we want to adjust.

If we can separate H as H°+ v, where H” commutes with p and 0, the ef-
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fective Hamiltonian X can be written as

0 ' 1
N Hop™* ¥ppt VPQ “ 0 VQP
€, - -
i~ H VQQ

= Hppt Upp (2.9)

Since UPP can also be put in the form
1
Upp = Vpp t Yy ——— Yr
€ H

it coincides with the usual definition of the effective interaction?. We also see
that the effective operator corresponding to H' is identical to B° itself and,
therefore, it is not energy dependent.

In order to proceed with the analysis, we choose for the complete tinite

vector space a basis which diagonalizes Hp, p and Hyo r separately:

Hop |A> = E4|A> N i s B

PP
(2.10)
HQQ!,.J.'zf:‘ |..‘:" L= | gpwsiaged

This is convenient and does not imply any lack of generality, since we are inter-
ested in diagonalizing X and any basis can be used for this purpose. Using the

basis defined in eq. (2.10) the matrix elements of the operator H take the form,

[ Al o o H- H !
N HN> = Hyge = BySyqr + 3 e wh (2.11)
L El'-Eﬂ
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where

" N (2.12)

Hiu>= <x

1}

Hy, = <\ PHQ |1 >
Since to construct },,r we need to know €, , the unknown eigenvalues of the
total Hamiltonian H, we face a self-consistency problem. In general, this is very
difficult to solve and what is usually done is toreplace the eigenvalue €, in (2.11)
by a parameter £, hoping that the eigenvalues and eigenvectors of X do not de-
pend severeiy on the value of this parameter. The effective Hamiltonian matrix

elements then become

(2.13)

and it is the purpose of this paper to analyze the dependence of the eigenvalues
8,-(5) of H on the parameter £, Before doing this it is interesting to discuss
the following result.

We have seen that if we consider £ = €, in eq. (2.13) we obtain an oper-
ator *H(E;‘)' one of whose eigenvalues coincides with €;+. We shall now show

that those values of the parameter £ such that

gl 2 ,; e 1w B o (2.14)

(in other words, F is equal to what could be called a self-consistency energy)
coincide with the eigenvalues € of the Hamiltonian #, diagonalized in the com-
plete rector space,

In order to prove this, let [(D > be the model eigenvector corresponding to

one of the eigenvalues (2.14), i.e.
HE) o> F|o> . (2.15)
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Let us now construct the vector [y >

lys=lo>+ 1 g
ry op
B= B

|d > (2.16)

that clearly has components in both P and Q-spaces. Acting with H on > we

obtain

wlw>-NEylo>+e 1 g lo>
= op '
F=Hyo

where we have used the fact that HQQ and Q commute, as well as eqs. (2.1). If

we now use (2.15) we get

Hl¥>-ely>,
proving our statement.

IIl. BEHAVIOR OF THE EIGENVALUES OF X AS FUNCTIONS OF THE
PARAMETER E .

The genera! behavior of the eigenvalues of X as functions of E is rather
difficult to analyze for arbitrary values of pand g. Therefore, we shall start the

analysis with the simplest possible case p = 1 and g arbitrary. We have in this

case

2
€ (B)= By * S—M (3.
o E-Eﬂ

where 81 (E) and E, designate the only eigenvalue of ¥ (E) and Hp, respective-
ly. The graph for 81 (E) is given in fig. 1. The energy origin is indicated in the

abscissa with the point 0 and E, is taken to be negative, for definiteness. We
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see that for E = t o, 81 ~ B4 and as E approaches each one of the E'l:s, E'k
shows a pole. The intersections of the dotted iine, drawn through the energy
origin at 45 degrees, with the curve 8] (E) give, according to the result mentioned
at the end of section 2, the g + 1 eigenvalues of H in the complete vector space.
We can adjust the parameter E to fit, for example, the lowest eigenvalue; the carre-
sponding self-consistent value is given as € in fig. 1. One can see that the

energy variation of 81 (E) is smooth for values of E << E, but is very strong
1

when E—~E . |If the value of € is in the vicinity of E  (as in fig. 1), the lack
1 1

of self-consistency may lead us to an eigenvalue 81 (E) which differs considera-
bly from the correct eigenvalue of H. Such difficulties arise in the general case
(p arbitrary) as will be discussed later on.

A specific example of the danger of the lack of self-consistency is pro-
vided by a recent calculation by Arima et al.®> They analyze, among other nuclei,

s2 0 25,)
and parametrizing the effective nucleon-nucleon interaction in terms of its two-

F18, restricting the nuclear shell-model space to the configuration (14,

body matrix elements, which are varied until a best fit to the spectra is obtained.
Once a set of matrix elements of the effective interaction is obtained, the same
set is used to fit all energy levels. This would correspond in our language to
using the same value of the parameter E to fit all eigenvalues €, , therefore
breaking self-consistency. They find that it is impossible to get a good fit to all
existing data if the 1.7MeV, 1* state of F!¥ is included in the least-square pro-
cedure, This state seems to have a different character from the other low-lying
states. Indeed, rough energy estimates indicate that a 1 state with two 1p
nucleons excited from the '°0 core, and therefore outside the mode | space, should
occur at about 1 =3 MeV excitation energy in F!®, |n our language, this corre-
sponds to having one of the E;is in the energy range of the €;s we want to adjust
and as can be seen from a figure similar to fig. 1, the variation of the eigenvalues
of X with respect to E may be very strong. Similar difficulties have been found by
Brown and Green” and by Federman and Talmi®.

We shall now analyze some properties of the general case pand g arbitrary,

We first study the behavior of the eigenvalue curves, when the parameter E ap-
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proaches one of the non-degenerate eigenvaluves of Hyo Sy E, - We shall prove
0

that in this case only one of the eigenvalues EE(E) shows a singularity and the

other p=1 eigenvalues of ¥ tend to finite values in the limit E - E“ .
)

First of all, since the trace of X is equal to

2

H
Trll = B 5;\+z‘ ul , (3:2)
A p E-E

which clearly tends to + ~ when E = E,
)

at least one of the eigenvalues of N diverges in this limit.

-~ 0%, (provided o, # 0) we see that
o

As we shall give in the appendix the proof that only one eigenvalue di-
verges, we shall only present at this point an argument that makes the result
plausible. Let us single out from expression (2.13) the term corresponding to Bt

since this is the only one that goes to infinity when E — E, . and write H as
0

H=H0+V (3.3)
where . o
A At
}{0 L 9 Y .
! S (3+4)
Ho
and

H

H
Uprm Bydpe + 8 heud (3.5)

witn) E-E,

It will be shown in the appendix that the matrix H° has p=1 eigenvalues
equal to zero and one eigenvalue different from zero, which goes to infinity in the

limit. Since all the matrix elements U”‘r remain finite for E — EM , U represents
0

a finite perturbation to H° and although ¥ will have, in general, all its eigenvalues
different from zero, it seems plausible that it has still only one diverging eigen-

value.
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Another qeneral property of the curves 8,-(:‘:’) can be readily obtained: the
derivative dgz-(E) /dE < 0. In order to prove this, we analyze the behavior of
8:'(5) when we replace ¥(E) by ¥(k + AE), where AE is taken small enough so

that in the truncated Taylor expansion

H(E+AE)~ H(E)+ N'(E)AE (3.6)

the second term can be made as small as we want compared to the first one. This
allows us to consider the effect of N'(E)AE by means of first order perturbation
theory. This is consistent with eq. (3.6), since only terms linear in AF are
necessary to calculate the first derivative. Therefore, the change AE,. in the i-th

eigenvalue of X is

AE; » <31 |Wie) 40> AE ,

: (1)
where | #(!)> is the i-th eigenvector of ¥ (£ ) with components C-; . Using eq.

(2.13) we can now write

v hELER
d€E) i) 0 ' |:2 ”h'-)]
8 o E.(B)= ; rC; Hs Cgi) w= ZLA T Jdeg (3.7)
dE AN 4o (B=E )2
i

which proves the theorem. This result is consistent with the fact that the trace
of H(E) has a negative derivative with respect to E, as can be seen directly from

eq. (2.13), i.e.

d 1/ 51 . ”:‘ ;
s LB BY]a«Z | 8 7 &0 . (3.8)
dE U \E-E,
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It is interesting to notice that E‘;(E) is negative both for attractive and
repulsive interactions. We can now use t:e result ;1: £ 0 to see that there exists
a value of E (in the region of physicai interest, i.e. E < E, for an attractive
Hamiltonian) such that H(F) gives a closer result to the lowest p correct eigen-
values of H, than those obtained by diagonalizing H within the model space.
From Ritz variational principle we know that the true eigenvalues € lie lower

than the corresponding £5 . On the other hand, in the limit E— = =, H — Hpp

i
(see eq. (2.8)) and 9'- tends asymptotically to E5 . When E becomes finite, the
9’- decreases becoming a better approximation toxei .

More detailed properties of the eigenvalue curves can only be obtained
through the explicit knowledge of the numerical values of the matrix elements of
H. |In the next section, we present some numerical results for simple cases, in

which the effective Hamiltonian is calculated exactly.

IV. AN EFFECTIVE ONE-BODY HAMILTONIAN

As mentioned in the introduciion, for any quantum mechanical system
described by Schrodinger’s equation in a@ given Hilbert space §, the concept of
an effective Hamiltonian arises whenever we want to describe the system within
a subspace & of §. The general characteristics of the effective Hamiltonian we
have discussed in the previous sections, are valid for any system of an arbitrary
number of particles, independently of the specific properties of the Hamiltonian
H.

In order to show in specific examples the general features of H discussed
in sections 2 and 3 and to investigate how well can the effective Hamiltonian
reproduce the exact results for a given value of the parameter F (see eq. (2.13)),
we shall analyze the simplest possible case: a one-body problem described in a

finite space. We consider the one-body Hamiltonian

2
H=2 +vy(r) , (4.1)
2m
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where V(r) is a central potential. We now take a finite set of d = p + g harmonic-
oscillator states and construct the matrix of (4.1) with respect to this basis. The
d eigenvalues of this matrix can be made to approach the true eigenvalues of (4.1)

as closely as we want, by taking @ large enough. For a given 4, on the other hand,
we shall consider the corresponding d eigenvalues as the “exact” results and call

them €, . We analyze the same problem using an effective Hamiltonian defined in

a smaller vector space, spanned by p harmonic-oscillator states.

In the numerical example we now discuss, the value d = 10 is used and p
is varied from 1 to 5; V(r) is taken as a I-body Coulomb potential V(r) = c/r .

We show in fig. 2 the energy variation of the eigenvalues 8:.(11') of the effective
Coulomb Hamiltonian X for the case p = 5. First of all, we observe that for
E~—* o the €. approach the eigenvalues E; of Hy, . On the other hand, as F
approaches the eigenvalues E, of Hyo only one eigenvaluz of H goes to infinity,
while the other four remain finite and are continuous functions of E .

It is also apparent from the grapn rnat the slope of the curves is always
negative. We see in this specific example, therefore, that the curves -?!-(E) have
all the properties we have discussed in general before.

We now analyze how well can the effective Hamiltonian describe the exaci”
solution of this problem. The ten “exact” eigenvalues €, are shown on the left-
hand side of fig. 2. They are seen to coincide with the self-consistent values
given by the intersection of the curves 81.(}%‘) with the straight line drawn at 45
degrees. This is consistent with the discussion given at the end of section 2.
Since by diagonalizing X (F) within the model| space we obtain five eigenvalues
only, we restrict our attention to the first five self-consistent eigenvalues, indi-
cated in fig. 2 by the full circles. We see that they are spread in an energy range
of 3 units and that there is no single value of E for which all five €, can be reason-
ably fit. In this case E”l lies between € and €,,0s can be seen from the graph
and one must be rather careful in neglecting self-consistency in the present example.

On the other hand, if we only take into account the three iowest eigenvalues,
u']

is no longer within the energy range of the €. s one wants to adjust, and a good fit

can be obtained in the vicinity of K = 0
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Finally in fig. 3 we shuw the energy variation of E‘i(E) when p= 3. We
see that the graph is qualitatively similar to the one corres ponding to p = 5 ond

the same discussion applies to it.

CONCLUSIONS

We have shown that the following properties of the eigenvalues of the ef-
fective Hamiltonian X do not depend neither on the specitic torm of the

Hamiltonian H nor on the number of particles of the system:

1. When the parameter E is in the vicinity of one of the eigenvalues of
H,, . one of the effective eigenvalues varies strongly with this parameter, while

all others do not. This implies that if one of the eigenvalues of the Hamiltonian

Hyp is contained in the energy range of the true eigenvalues to be adjusted, the

lack of self-consistency may lead to wrong conciusions.

2. The slope of the effective eigenvalue curves is less than or equal to
zero. This implies, by Ritz variational principle, that one can always find valves
of the parameter F for which these eigenvalues represent a better approximation
to the p lowest true eigenvalues €, than the i:‘f)s obtained by diagonaiizing the
original Hamiltonian H within the model space.

These general properties are explicitly shown in @ numerical example,
which also serves the purpose of indicating how well the effective Hamiltonian

technigue reproduces the true results.
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APPENDIX

In this appendix we shall give the proof that in the limit F — E, (E#

o Ho
being a non-degenerate eigenvaluve of HQQ) only one eigenvalue of H(E) diverges,
all others remaining finite.

As was done in section 2, we single out from expression (2.13) the term

corres ponding to My and write X as

H=H+1 (A1)
where
i Hy H
p = 0 "0 (A2)
A2 E-E
Mo
and
B Bt (3)

U.qr = Bl oF b
A o S T =
m(# 1) E-E,

(o) : P
We shall now find the eigenvalues 8:‘ and the eigenvectors ¢; > of K, i.e.

H . » = F |-;f‘-r‘ > & (A.d)

(i)
Calling 7, the Asth component of | 7, > and using (A.2), the eigenvalue eq. can be

written explicitly as
.}'H,L.‘ X Yy = }‘;‘i 4)’?\ " (A.5)

From (A.5) we see that if
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(7)
z?u Huuk' Y o= 0, (A-6)

1)
y; is an eigenvector of H° corresponding to the eigenvalue

(o)
8‘ = 0 -

i)

(
As we deal with a p-dimensional vector space, there exist p-1 eigenvectors ¥ ,

i=2,..., p which fulfill eq. (A.6), showing that

(0)
AT L (o P I (A7)

The remaining eigenvalue Efn) corresponds to the case
s (1) A8
7\' Hﬂ'o)\. ‘yx' * 0 ( . )
] ) .
From (A.5), the normalized eigenvector ¥ is given as

(1) H#D by

Y T A
]

and E{iO) is obtained by multiplying both sides of (A.5) by H,
0

(A.9)

N summing over A

and dividing through by expression (A.8), giving

slu, |
r Hl“o

1 B=8;
0

. (A.10)

In other words X has only one eigenvalue different from zero.
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This is true, in general, for a matrix 4, whose matrix elements are of the separa-
ble form Aji=AA; . Note that for a degenerate eigenvalue of Hy( the matrix
H° is not separable, and this result does not hold. We note that for the non-de-
generate case only one of the 85.0) can be made as large as we want, by choosing

E close enough to E, . all others remaining equal to zero. Since in the limit
0

B~ E”‘n . Unf of eq. (A.3) remains finite, it seems plausible that only one
eigenvalue of N diverges and that the remaining p-1 eigenvalues tend to finite
values. We shall now prove that this is the case.

In order to do this, we make an orthogonal separation of the P-space into
a onedimensional R-space, containing the eigenvector rcﬁ > (eq. (A-9)) and an
§-space, spanned by \qbz- >,i=2,...,p. This corresponds to the splitting of

the projection operator P into two pieces,

P=R*g (A1)

where

-]
]

|¢1 ><g | &

If we now consider the “effective” Hamiltonian ¥ in the R-space, defined by

e i 1
H(E) = Hyp+ Hpg e Hep o (A12)
- = Hgg
it is clear that the values of & that satisfy the equation
<¢ |H(E)|# > = € (A13)

coincide with the eigenvalues Dl of H, for a given value of E. (See the end of

section 2). Now
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2
A |<‘f‘l’HRS‘\'ﬂ.>‘
<t @) > = g + 3 e (A14)
&z "~ E

where
Heslx, > =B, |x, >0 022,000 (A.15)

and

(0)
o o= | | 3 -
hl = ;l ;H '#1 S — 81 i f

(AL16)

- (0) w
where ©, s given in eq. (A.10) and the matrix element < _J‘l | i:'f,l > remains

finite in the limit E £ . Since, on the other hand,
iy

}{SS = H;S T U = 1)

ARy $iS

is a bounded matrix in the limit, E_(7=2,..., p) remain finite. Eq. (A.13) now

reads

v 7 | - F-E (A17)

which can be solved graphically. The solutions of (A.17) are indicated by the

circles in fig. 4, for a given value of 1. As !:'-l:‘;. 0B =2 e B)
0 &
will remain finite while B, tends | ~ (see eq. (A.10)). Therefore, only one of

the eigenvalues ;'Ii of H shows a singularity, as stated before,
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E)

Fig. 1. Behaviour of the eigenvalue curve .Ql (E) for the case p=1and ¢
arbitrary.
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Fig. 2. Effective eigenvalue curves for the one-electron Coulomb problem for
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the case p= 5and g = 5. The energy is given in units of the first
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Fig. 3. Effective eigenvulue curves for the one-electron Coulomb problem for

the case p - 3and g = 7.
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Fig. 4. Graphical solution of Eq. (A.17) .
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