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RESUMEN

Se deduce una formula cerrada apta para programacicn de computadora
electrinica para los elementos de matriz de un bamiltoniano arbitrario de uno
mas dos cuerpos que actia entre estados traslacionalmente invariantes del osci-
lador arménico, La formula resulta ser una suma de productos de: dos parente-
sis de transformacicn, dos coeficientes de precedencia fraccional de s pin-isos pin,
un coeficiente de 12-j y los elementos de matriz de dos cuerpos, Se hace hinca-
pie sobre el hecho que serd itil esta forma de calcular el problema de tres nu-
cleones en la medida que los elementos de matriz de dos cuerpos re presenten una

interaccion efectiva verdadera.

Work partially supported by Comisién Nacional de Energia Nuclear, México.
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ABSTRACT

A closed formula, suitable for computer programming, is obtained for three-
nucleon matrix elements of an arbitrary one-plus-two body hamiltonian operator
acting between translation-invariant three-body oscillator states. The formula is
a sum of products of: hvo trans formation brackets, two s pin-is opin fractional-
parentage coefficients, one 12-j symbol and the two-body matrix elements in rela-
tive coordinate. [t is emphasized that the usefulness of the scheme will de pend

on the extent to which the two-body matrix elements represent a true effective

interaction,

I. INTRODUCTION

We consider the translational-invariant A-particle hamiltonian

A A \2 a A
H=2 t.=.1 4 5 5.1 % 2 > Hi la
i=12m 2Am z'flp’ z';jv” i<j M (Ta)
_ 1 _ 2
H,; fﬂm_( y p]) f oy (1b)

where v;; is an arbitrary nuclesn-nucleon interaction and the second term on the
rehes. of (1a) is the center of mass kinetic energy substracted. The A-particle

Schrodinger equation

HY - B W (3.a)

will be satisfied for state energies E_ and associated trans lational-invariant
eigenfunctions ¥, . These may be expanded in some complete set of states as

e X a.

T e

v > (3.b)
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where |+ are functions of appropriately chosen A - 1 intrinsic spatial variables,
as well as of A spin and isospin variables. To satisfy the exclusion principle
these states | 1> must in addition be totally antisymmetric under exchange of
spatial, spin and isospin variables of any pair of particles. Now, the spatial part
of a possible complete set will of course be the eigenfunctions of A particles

interacting by pairs with an oscillator potential of frequency /v A, vize,

po - | < (p.=p:)* + mw” C (= e (4a)
24m i<j * 1 TA et 1
H® |v> = E) | v> (4b)

which is a manifestly translational-invariant problem. Defining the dimensionless

Jacobi coordinates’

(1€i<Aa=1)
b .
PgE B (.S“lpj_’pi+l)
Vi(i t 1) ]
A
X _] L ); r .F.’ —b ] :‘ p
AT Y g =il AT F L e
b= Vl/mu (5)

it is easily verified that the A cartesian coordinate (momentum) vectors are
connected with the A4 Jacobi coordinate (momentum) vectors by an orthogonal

Ax A matrix. |t is then seen that the hamiltonian (4a) can be expressed as
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A-1
H0= %ﬁ&) Z

g1

{(B)* +(%)"} (6)

that is, in terms only of the first A=1 (intrinsic) Jacobi coordinate and momentum

vectors,

. o o . : :
It is convenient to express H in terms of the dimensionless boson
creation 7, and annihilation £, operators

; 1 . s ] aw oo
M= — (X =ip;); f,'E N = — (X, *ip;) )
V2

which obey the usual commutation relations (superindices refer to components,
indices to different vectors)

. k - * k ot § .k ol kI
[T“"nft]=|:§="§f]=oi [ff"’?j]‘s % (8)

(1] = 192y weay A=) (k! = x,y,2)

so that one has the oscillator hamiltonian (6) becoming

(9)
As shown explicitly by Moshinsky?, a normalized eigenstate of this hamiltonian

is just

s e . 2 .
i l,n212m2,...,nA_llA_1mA_[>
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A-1 *
= ” ;'45;:. I'g.(‘;}i ) 7.71) ' uii';ti (T.]z) ‘0> : (10)

1

A= (=)"Van/@n+ 204 1) 112n) 11

~

5 4 A
(;?)[Yim(’r'?); ;0>E(527T) 34/4 exp(—i s % )

I‘%;m({?) ‘
2pe Bl

and has associated the eigenvalue

Al
3 s &7 3 - Fege
I:'_li(?",- Bigdt 5 (4 1)] b (1)

One way of constructing the states | 2> in expansion (3b), which obey
the exclusion principle in all fermion variables? and are eigenstates of total

angular momentum J, is by the sum over products of spatial with spin-isospin
functions

e, g""”/\-IIA'l’A’ f;STMT,f;]MJ >

. J; (=) | Dl s Xpueeer myey) [l i s g 8 7
vy molan bgciin, (LA STMp,f r
M
£y
(12)

Here, ® is the spatial function of appropriate (not necessarily Jacobi) intrinsic
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variables {x; 'i=1,2,...,A=1}and which must have a definite symmetry under
permutation of the spatial cartesian particle variables {r!. | P 1,3 6 vy BT, Gtid
also definite total intrinsic orbital angular momentum A . The spatial symmetry
can be designated by the Young partition f of A particles and the Yamanouchi
symbol r, according to the usual rules associated with the permutation group!® .
Also, I" is the spin-isospin function (of the 24 variables indicated) and must
corres pond to spin-isospin permutation symmetry (?’Mr\‘) conjugate to the spatial
symmetry (fr) in order to yield total antisymmetry. The sum in Eq. (12) is over
possible Yamanouchi symbols associated with a given (f), df is the dimension-
ality of the irreducible representation (f)of the permutation group S(A) and (=)’
the so~called “signature” of a given r-symbol, to be described below.

For the case of A = 3 and 4 particles, Moshinsky has shown? that the
spatial function ® with the aforementioned properties can be constructed as linear
combinations of the Jacobi variable eigenstates (10) if one defines intrinsic
boson creation operators 7); related to the Jacobi 7.;!. by a specific unitary transfor-

mation

A=-1

M= ;EIM:';‘ m; i TR T (13)

The elements M;; of the (A=~1)x(4=1) matrix M for A = 3 and 4 are given in
ref. 2, where explicit rules relevant to the construction of 3=and 4 = nucleon
states @ are also found. Under the condition (13) the oscillator hamiltonian (9)

if form-invariant, i.e.,

0 = = .
B <3@sl)= X f~de= 3 mpik (14)

so that H” will also be an eigenoperator in states (10) but with all “dots” removed,

and with eigenvalue giver. by (11), also with all “dots” removed.
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Using expansion (3b), the energy E, associated with a given normalized

eigenfunction ¥ of the A-particle Schrodinger Eq. (3a) will be given by the infi-

nite sum

(15a)

) M2
a
¥
a
o
A
=
N
%
I
m
=
.

Since A-particle states (12) are totally antisymmetric, matrix elements of the

symmetric two-body hamiltonian (1) will be’

("‘) T (15b)
2] 2

*

A 2 o | .
a®> a®<v|H_|7>=E (15¢)
2 = v P 12 a

' 12

In practice, of course, the sum must be truncated. However, the convergence of
the left-hand member of (15¢) to the desired eigenvalues E_ may be very slow but,
if the “bare” hamiltonian H  were adequately replaced by an appropriately defined
“effective” hamiltonian 1{12 which included short and long-range two-body corre-
lations, the series with the operator }Ilz would certainly have a better chance of
convergence than that with the “bare” H . An example of ‘Hu is that which in -
volves the Brueckner two-body reaction matrix. In what follows, however, we
shall continue to speak in terms of H,, leaving questions of convergence aside.
The spatial part of H , from (1b) and (5), depends enly on the first
Jacobi vectors ;1 and ;51 . If then, the states | 1> are expressible as linear

combinations of states whose spatial part is the eigenstate (10), one can visuval-
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ize that matrix elements in (15) will be given in terms of the relatively simple
two-body matrix elements

<nls'jm., T' My |H | RIS T, T'M.> =

= Op=i 5}—] Bfl e <nl.§"}’iH12 |;1-TS')‘ > (16)

where all primed quantities s’ T'M;n refer to total two body spin and isos pin

quantum numbers, and the states used are defined by

18" j, T My > = R, (r) Yigr; (0| 1" >

m.

Ui (D= [, (Mg 1, (17)

with R ;(r) being normalized oscillator radial functions in the relative coordinate

l_(r1 - 'z) . The last step in (16) follows on assuming a charge-inde pendent,

7 .

Vv

parity-conserving and scalar two-body hamiltonian acting in two-body states which,

to obey the exclusion principle, must satisfy /+8"+ T = odd. In Appendix I a

closed formula is derived for the intrinsic kinetic energy contribution to Eq. (16).
We proceed now to deduce explicit formulae for the coefficients required

to calculate the matrix elements in (15) for the three-nucleon problem from matrix

elements (16); these “geometrical” coefficients can then be evaluated via

standard computor codes.

II. THREE-NUCLEON MATRIX ELEMENTS

To conform more closely with standard notation, we shall relabel the oscil-

lator quantum numbers in eigenstates (10) for 4 = 3 particles by
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(i 1 s 1'2) + (nINL) (18)

so that (n/) refer to oscillator states in the first Jacobi vector );l and (NL) to
those in the second vector i2 . We first focus on the spatial states @ in Eq. (12)
for A = 3 which have a definite spatial symmetry (fr) and instrinsic orbital anguiar
momentum AM. The normalized explicit form of ® which can be deduced from

that given by Moshinsky and coworkers "is

Cb(xlx,) =

B
"111”2 LdAM, fr

s = S n+gh+i(leq) l+q
= [20+3, , &, )] X (=) [H(') ]

1.2 12 niNL

c<aINLA|n I n I A><x x_|nINL,AM> , (19)
11 22 L .2

where \is such that2n ¢/ =2n -1 = A (mod 3), g is an index defined in the

table below:

A . fr (=)
0 [31 I +1
0
1 [111] 321) +1
0 [21] (@211 +1
1,2
1 (211 (@21) -1
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and where <n/NLA| mln LA>isa standard Moshinsky bracket® and the states

<X % [mINL,AM> are just

. . . A
<x1§2|nlNL,AM> g [<x1\n.z><x2 INLD']M , (20)
<k[nlm> =R, ($)Y), (%) , (21)

with normalized radial functions R, (%) as defined in Ref. 2.

Next we consider the three-nucleon normalized spin=isospin functions I”
of definite spin-isospin symmetry (7'7) appearing in Eq. (12). These can be
decomposed in terms of a function |y /" ?"S'Mg\ T'M%> in nucleons 1 and 2,
and a function | Yo7 > in the third nucleon, via spin-isospin fractional parentage

coefficients as defined and evaluated, e.g., by Jahn®:

= <PV Ty Y s [y P s T > |y > )
’

Fs'r gy Ty
(22)
where the symbol v stands for (1/2,1/2).
Combining (19) and (22) into Eq. (12), and writing
| nim>|y2 7 TS M{T Mp> =
= ]-E,(”'mMs"jmf >|nlS'jm7., 7' ¥, T'M7> (23)

1
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one obtains the explicit orthonormalized state

”‘.11”.? i; Ai [ STMy o '“tf > =

’ - & . . r n*q)-*';fj'.}q)
- 2045, , 5 ) 2 : @) (=) () :

9. ~ ) ~
114 (=) niNI \'ul !1 ::212.\5':'Y2f'§"1"; y I},'!fST“’ :

(24)

T'1/2 MyT| Ty > E : SASMMg [ M, > <ILmmy [AM> -

'
M .\15 m ‘“S

MI. T mJi

© LIS mMg !fm]. ><8' 12 M{o | SMg >

. }m’S'}‘mj,T'M,}.‘ iNLML > |y.r7 -

where the “signature” (-)r is plus for Yamanouchi symbols r = (111),(321), (211)
and minus-for r — (121), (cf. Ref. 1). The sums over r and ?' are redundant as
there is already a sum over §' and 7' .

Writing

‘ m’S"jmJ., T'M !I > } NLM,; > | yor> 2
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- 2L <L Mo | QM ><iQm M " M7> |nist i, 1Ml v, G My
0
. (24a)

M

it is easy to see, from the fact that ]*M} = My, and from Ref. 3, page 122, that

the state (24) can also be expressed as (putting [a]=2a+1)

-k o n+qr+s(l+q)
\y>=[2(l+5,”5”)] EZ (d!) (=) (=) g
172 172 nIS'T'M]'"
NLT

! ~
[1+(=) +q]<nlNL.’\l nlon 12;’\><'y2?1$'7"'; v}y FsT> .

o NS A
*<T'12Mp 7| TM >V AL [S] SV { L 1/2 § . (24b)
6 As

"ls'ffT'M!I- iNL, YT, g(i]Mj >

The convenience of this expansion is apparent on realizing that the nuclear
charge form factor operator for the three-nucleon system can be expressed” solely
in terms of the 2" Jacobi vector )'c2 and the isospin projection operator ;13 associ-
ated with the 37 varticle: the operator thus acts only on that portion of (24b)
which is characterized by (NL,7), the evaluation of the corresponding matrix
elements being trivial, as shown in Ref. 2.

A list of positive parity states corresponding to 2rzl + il t2. +1,=N=10
and 2 quanta is given in Table I. The integer ) in the second column is such
that?:7 2n, *1 =2n =1 = A(mod.3). For details regarding the construction of
such tables, for any number 11 of quanta, the reader is referred to Refs. 2 and 7.

The asterisk on the last column merely indicated states with J 77 — 1/2%1,2
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(ground state of He®). As for a general interaction only J17T would be “good”
quantum numbers one observes, e.g., that a 0=-quanta calculation of the ground
state of He® would thus involve a 1x1 matrix; a 2-quanta calculationa 9x9 matrix,
etc. A calculation in this “/l=quanta scheme” is equivalent to doing, in shell-
model language, a non=spurious, particle-hole calculation of arbitrary complexity.
In Fig. 1 are illustrated the possible particle-hole configurations included in a
4-quanta calculation.

To calculate the matrix elements in Eq. (15) we take note of (16), as well
as independence of (15) with respect to projection .HJ , so that using Eqs. (24)
and (24a) one has

&

[J] = <v|n

M]

PP =

1(A-1) : 3 B B =] ¢
4 kiR "1"2.111])(]*&\;1 2”[1l2)dfd
T = - T
n+n+qr+qr+i(l+l +q4+3) l4q_ !
e O+ 0+ "1
nial
iNL

"Crif.Vl.e’\|rrlll ", lza\“:rrlNl,:ﬂﬁl llﬂE 12R> ~

. o ~ Ay —
« X <20 T M A sy st Ty | v FsT > -
S'.].f
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! A s $’ S phLad
, wsi S+S+JArL+i+ %
L J 1/2 i (71v [A] [A] [s][§] (=) 51 g1"
T A 5 5!
“<nls'ilm, |Fls' >, (25)

where [a] = (2a+ 1) and, as discussed in Appendix 2, the 12-j symbol used here

is

AJS I LA s'1/2 s I 48

]
* 4
—
®
.
it
-
=
-1
i
T
(%9
"
wl
“)
~

)S+-S.+]+L+j+'<_>

" N Z <A5MMS\]MJ:><;Kls’fv7fgljiu > .
[J1LIVIAITAL (STT8) (ol m's) J

*<ILmM; |AM ><ILmM; |AM><S" 12 M 0| SMg><5" 1/2 M -T_\sms >
< IS"mM;. ‘ jm}. >2is" rﬁﬁ". jm]. >

ab
in which {d r} are the standard 6-j symbols as defined, e.g., in Ref. 10.
ey

The 12-j symbol defined here differs from the apparently more common one which

involves a phase factor multiplying each summand in (24), the coupling sequence

of the 12 parameters also being slightly different. A computor code to evaluate
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12-j symbols using expression (26) turns out to be relatively easy to write!?,

In deducing Eq. (25) one notes that since H , conserves parity then

(-)! ” (-)" which implies that ?’ _ 7" and ultimately that / and f must have the

same symmetry with respect to particles 1 and 2. Eq. (25) was also deduced
starting directly from Eq. (24b).
For the case fl = 0 we may use: a) the identity (Ref. 3, page 132)
jot L+ 4
Hhl 0 5:‘;"5;';';(')1 2 3

171

2
4, j; i ‘/[j1][j:]

in (26) to evaluate the 12-j symbol, b) the spin-isospin cfp tables of Ref. 9,
reproduced in Table II here, and c) the results of Appendix I,to reduce Eq. (25)

to the simple result

i . 3 3 1 | 1.
<H >, :g [ +<n=0,75 |o,|n=0,"s >+<n=0, 5 |v,[n=0,5,>] .

(28)

This coincides with the result obtained by calculating the expectation of H be-
tween 3-nucleon Slater determinants corresponding to the configuration (os)?,
and substracting the center-of-mass kinetic energy evaluated by the virial theorem

for the harmeonic oscillator.

III. CONCLUSION

A closed formula for the matrix elements of an arbitrary one-plus-two-body
hamiltonian between three-nucleon harmonic oscillator states, both hamiltonian
and states being translational invariant, has been given as a sum of products of
the following recoupling coefficients: two transformation brackets, two spin-

isospin fractional parentage coefficients and one 12-j symbol. Once e WUy
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matrix elements are given, the formula can be computor-coded with relative ease

for evaluation. The hope, of course, is that one may be able to represent the

three-nucleon problem by a finite number of terms in the expansion (3b), i.e., by

those corresponding to the lowest eigenvalues of Eq. (11). This will be feasible

if short-ranged correlations as well as the effect of other particles (e.g.,

“healing” at large separations) can be adequately built into the two-body matrix

elements as seems to be the case, e.g., with those deduced by EIliott and co-

workers © based on a method requiring only know ledge of the nucleon-nucleon

phase shifts as functions of scattering energy.
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APPENDIX 1.

To evaluate the kinetic energy contribution to the two-body matrix element

(16), we have from Eq. (1b) that

2
H =1 (p=-p)te - 7

Amb?

(p) il

12

with 'F.'l the first Jacobi momentum vector as defined in (5). Now, it is evident

that

<n1m‘%('&1)2‘nlm‘ - (2n+f+%)5—5

1T °mm

]
A
=
!-n.

—

R
L]
2
i |
[
A%

2"

But the last matrix element can be evaluated by standard radial-integral tech-

niques*. The final result is just

»?
Amb?

<nls'j| (p] | RIS > =

= 317% [5'7”(271*1‘*%)%— Va1 172)

S, an VAt G 14 372) ] .
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APPENDIX II.

Qur purpose here is to sketch how the identity of expressions (26) and
(27) can be established. We begin with the sum

Z <.-\SMMSUM]><;\E.";L\}S|].’${J><!Lm.\1L‘,\.\t-‘*fl_lﬁ?.itL R

(all m"s)
“ 2§ 1/2MG 0| SMg > <F 12 MYy 0| SHg > < 18" mMg | jm ;> <TS"mMg | jm; >

which appears in writing down the left-hand member of (25). Next, use the
identity (Ref. 3, page 109)

f=f, +m T
2 ; e Wy
joiymom)|jm > = (=) V[,

m m =m
1 2

and also use the 3-j symbol symmetry properties to express the above sum as a

sum (with respect toall m's) over preducts

A s g 5 A J I A L AT 1
=M= Mg M, Mg M= M, m=-M M, M=m =M,
¢ 5 WNfF I 2 1§ T T
] b —y - Il Tl =
’HS -MS o MS -MS - -m 'H,; ml M.S‘ m m].

Now carry out the sum over the third projection quantum number of each pair of

3-j's (starting with the first two, etc.) and in each of these four cases apply the
relation.
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m 1 2 3 1 2 3
3
; o . g
i3+j3+ml+m1' h [*z ls 1 ) ta I, 1, 14 @21 +1)
= Z(-) m m' om' m' m -m' P B 1 3
T 1 2 a3 2 1 2 3
3%

given in Ref. 3, page 131, where the factor (24, #1) has been omitted! One may

then employ the orthogonality relation (Ref. 3, page 110)

for appropriate pairs of 3-j's and, after removing all remaining Kronecker deltas

by the corresponding sums, there results a sum over one index only of products
of four 4-j symbols. Q.E.D.
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TABLE 1

THREE-NUCLEON STATES FOR « - 0 AND 2 QUANTA, WHERE w = 2”1 + l‘] +2n_+ .'2

mln A [/] A s i  Gi niNI P 2t
0000 0 o 2 12 N 1,2 " e
1000 2 0 12 2,372 12 1000 o101 0010 *
. % q " 32 12 32 . - .
0010 » - " 172 172,32 12 . i *
. - . " 32 12 32 . C .
o101 0 [3] 0 12 12 172 1000 0010 " .
oo 0 [ 0 172 172 122 0101 v
L " n " 32 3.2 32 0101
- . [ 1 12 12 1/2, 372 o101
. . . " 32 32 172,372, 572 i
2 172 1/2 342, 5/2 0101
- . . . 32 32 142,37, 572,172 0101
. . [3] ? 2 12 32, 52 0200 0002
0200 2 [21] ) 12 1/2, 372 32, 52 0200 o101 0002
" " “ ” 32 12 12,372, 52, /2 " § ks :
0002 " " " 12 12, 32 32, 2 " . .
! " “ " 32 12 /2,372, 52, /2 . " " .
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Fig. I. Correspondence of “{|-quanta=scheme” with she!l mode |
“paiticle~hole™ configurations (without spurious effects)
for N - 0,2 and 4 quanta (i.e., positive parity states only).
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