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RESUMEN

[os propisitos fundamentales de este trabajo son los siguientes:

a) Demostrar que, a partir de un principio de D'Alembert generalizado, es
posible expresar en forma lagrangiana las ecuaciones fundamentales de una teo-
ria estocdstica presentada recientemente por uno de los autores.

b) A partir de estas ecuaciones de Lagrange generalizadas, obtener una
expresion para la fuerza electromagnética que actia sobre una particula estocds-

tica en presencia de un campo electromagnético externo: sumados a la [uerza de
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Lorentz, aparecen nuevos terminos que se reducen a cero en el limite cldsico,
c) Bajo la aproximaciin usual de la mecdnica cudntica, con esta fuerza subs-
tituida en las ecuaciones estocdsticas, deducir la ecuacicn de Schrodinger con

acoplamiento electromagnético minimal,

ABSTRACT

The purpose of this note is threefold:

a) Toshow that, starting from a generalized D' Alembert principle, it is
possible to express in Lagrangian form the basic equations of a stochastic theary
recently proposed by one of us,

b) To obtain, using these generalized .agrange equations, an expression
for the electromagnetic force acting on a stochastic particle in an external electro-
magnetic field, in the non-relativistic approximation: besides the [orentz force,
additional terms arise, which go to zero in the Newtonian limit

c) Toshow that, under the usual quantum-me chanical approximation, the
substitution of this electromagnetic force in the fundamental stochastic equations

leads to Schrodinger's equation with minimal e lectromagne tic coupling.

I. INTRODUCTION

In a previous paper' devoted to some developments of the stochastic
theory recently proposed by one of us®, the possibility was shown of integrating
the fundamental equations for a particle under the action of an external electro-
magnetic field, thus obtaining Schradinger’s equation with minimal electromag-
netic coupling. However, this derivation was carried out for the special case in
which Vx H = 0", Clearly, to obtain a complete agreement with the usual quantum

theory, it is necessary to eliminate this restriction. A more thorough analysis of

"
We regret that this restriction was not explicitly stated in ref. 1, but it immediately

appears when carrying out the algebra.
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this problem allowed us to trace the difficulty in the postulated form of the ex-

ternal force. In fact, in our earlier work!, the expression
F_elE+! (v+u)xH] (1)
€

was proposed for the Lorentz force, the total velocity € = v + v being the sum of
a systematic and a stochastic term respectively.

If we introduce eq. (1) into the system of fundamental stochastic 2quations
used in refs. (1) and (2) and demand that these equations be explicitly integrable,
then the condition VxH = 0 follows immediately. However, equation (1) is taken
directly from classical electrodynamics, where the motion of the particle is as-
sumed to be purely systematic, i.e., no diffusion processes occur. Now, if the
particle’s motion has a stochastic component, then, at least in principle, addition-
al terms may be required in the expression for the acting force. The purpose of
this paper is to show that in foct this is the case, eq. (1) being consistent with
the fundamental stochastic equations only when VxH = 0.

In order to obtain the correct form for the force acting on the stochastic
particle subject to the action of an external electromagnetic field, we proceed
- in analogy to classical mechanics - to derive the Lagrangian equations for our
stochastic problem, using D'Alembert’s principle as a starting point™. If in these
equations we introduce the Lagrangian of a particle in an electromagnetic field,
then we are able to derive the explicit form for the external force acting on the
particle. This result approximated to second order (which is the order of approxi-
mation corresponding to usual quantum mechanics!*?) shows that we must add to
eq. (1) a term proportional to the diffusion coefficient and which consequently is
zero in classical mechanics. The integration of the basic equations can now be

performed readily and thus Schrodinger's equation is obtained without any further

restriction.

We are very grateful to O. Novaro for his valuable suggestions concerning this point.
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II. THE LAGRANGE EQUATIONS OF THE STCCHASTIC THEQRY

For consistency, we shall use the notation appearing in previous papers.
In particular, the external force per unit mass, as derived in ref. ( 2), may be

written in the form:

fo= De=(1+XNag, (2)
where

J . gTJ'c'V*DV # 3)

c=Ox=v+tu; ?:fc:bx:-vfu; (4)

1 s 1 D

19C=§(10-19), 1,OS=7(L}+9) (5)
and

ﬂszlgsu. (6)

T is the time-inversion operator, the action of which is expressed by a tilde over
the function, and A is a parameter which assumes the value + 1 in the quantum-

mechanical case?,

Let us consider a virtual displacement dx;; eq. (2) can be written as
L, =B+ (1 + Nag, 18, = 0 7)

(@ summation is understood over repeated indices) . We now transform to gener-

alized coordinates q;, such that
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and since there is no variation of time involved,

ax,
b=t 8 (9)
9q;
Therefore,
Ax.
(De.) 8x, = (D%} = &g, (10)
i 1 i aqi 7

dx . o R . Bxi
[ (0x,) % | = (8%5,) +<:»x,-)("T) ' (1)
( ( f(]?.

further terms of this expression being all equal to zero. Since from (3) and (4) it

also follows that

n A '-‘15,‘ 1 .'i('_)
(»:Ci) S.rz. =10 (Cf - - = = 51;]. . (13)
aq . (]]»
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Upon substitution of eqs. ( 9) and (13) into eq. ( 7), there results

Bx. R” 'a.. .:ix.
fo  EafPl «8F sulsNag |8y =0,
0 qu. aq.) g, Si dq., !

(14)
i i

where T = % c?. Since the only way for ( 14) to hold in general is for the sepa-

rate coefficients of Sqf to vanish, we obtain the following set of dynamical
equations:

N Ox; dx;
peT -_;:._‘," =g ot (R » (15)
dq, 4 7 o4

. L % 16)
i 3. oy (16)

Defining the Lagrangian as is customary,

E: T- V, “7}
equations (15) become
: dx.
[ 3l . 13:[‘ = (1+Na, . ,A_' =1+ N QS. g (18)
dq “42, g, o
(]] 7 ]

These are the Lagrange equations of our stochastic theory. Upon comparison

with the classical Lagrange equations, in which d/dt appears instead of the total
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derivative operator [), one sees that the generalized force for the stochastic

problem is given by

Q=(1+P\)a?j . (19)

It can be readily shown that application of the time-inversion operator to

eq. (2) yields after a procedure analogous to the foregoing,

535 3L _qenaf , (20)
3, o,

To return to the original coordinate system, we make

q; = 5:‘;’";‘ .

equations (18) and (20) then become

§3L 38 _ ey ay (21a)
( dx .

§oL . 3L _ 4y ey, 21b)
%, ox

since ag, is invariant under time inversion” . For a conservative force, therefore,
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which means
e = B, (22)

Expansion of this equation into systematic and stochastic components

leads to

Deu+dv=0, (23)

*

which is one of the two basic equations of our theory, for a conservative problem”,

the other one being equation (2). Thus the set of fundamental equations can be
considered as consisting of eq. (2) and either its T-transformed or eq. (23).
Hence, eqs. (18) and (20) represent the complete set of equations of motion in

Lagrangian form.

II. THE ELECTROMAGNETIC CASE

Let us now introduce an arbitrary external electromagnetic field, described
by the potentials A and . Substitution of the classical Lagrangian for this
problem

s RN TR (24)
m

in eq. (21a) yields, after some basic operations,

* - -
In the general case, we must write fﬂ instead of zero in eq. (23), fO being that part of

the external force which changes sign under 2. See ref (1)

.

In order to avoid confusion between the total velocity ¢ and the velocity of light,a nought
has been added to the latter.
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fe.+ 2 PA,=Z_(c*V) Ai-_"_(cxH)_=-'_aI.q'> +(1+ N ag; (25)
me_ £ m

0 0

Recalling eq. (2), we obtain for the external force (per unit mass)

— Av
S

me
0 mq

fo=- (0 +0)A+ — i —[u+v) VAt L (utv)xH=2Vo.  (26)
m

O

This force can be written as a sum of a T-invariant and a T-reversible ferm, which are

respectively:

fr==C DA+ (veV)AY € vxH=-%V¢,
m

mc, E me me,
(27)
fo=-OeAt € (u*VYA+ E uxH .
mc, me,| me,
To second order in the moments these expressions reduce to
e [ee D],
0 m CO
(28)
I el DR,
o mc me
0 0
and the total force is simply:
) ¢ 1 D 2
e e+l (utvixH]| -2 VA . (29)
P m €y me,
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Thus we see that an additional term --(el')/"mc.'o)\/72 A=
- (en/mc)(VV * A =Vx H) must be added to the external force given by eq. ( 1),
in order to obtain consistency with the general equations of motion. Since we can
work in the Coulomb gauge VV * A = 0 (or Lorentz gauge if 3¢/ 3¢ = 0), this term
may be simply written as (eD/me )Vx H, with D= #/2m for the quantum-mechani-
cal case®. It is also possible to obtain directly this last form for the extra term,
by adding to the Lagrangian (eq. 24) the physically irrelevant term (eD/mc )V -+ A,
in order to eliminate the unwanted term \V * A belonging to V?A ineq. (29). Since
both procedures are equivalent in physical content, we can write the external force

in the following final form:

fA_ gra L ym) e [E 1 cxH] +eD Uyl . 31)
C

m
o mc o

o gk .
Those terms in fo which reverse their sign under time inversion, i.e.,

=(2)
0
leading to the well-known Lorentz force.

f , of course disappear in the Newtonian limit (i.e., when u= O and D = 0),

When eq. (31) is substituted in the basic set of equations and these are
integrated following a procedure analogous to that of the aforementioned papersis?,
we obtain the Schrodinger equation for a particle in an external electromagnetic

field, namely,

ot
0

5 O _ 1 (- - A)EL/J ted, (32)
2m ¢
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without any restriction on the field. Clearly, we can follow the same procedure
to integrate the fundamental equations to all orders, using eq. (30) for the ex-

ternal force and @ method entirely similar to that presented in ref. (1). With the

definitions used there, namely,

0 0 10
Wn = j;-’s * 1|.‘C ’

w=Rt+IiS, (33)

we obtain to all orders in the derivatives contained in JQQ :

QD‘;'D'Qw- 2p% (Vw)? = b 4 de AR (34)

]
c mc
m m 0 0

where we have restricted ourselves to the usual quantum-mechanical case, by
moking D = D =D, , D.= 0 and A=1. Eq. (34) represents the first integral
of the fundamental stochastic equations and may be given the usual Schrodinger

form by means of the change of variable Vi = Vin ) :

5 2 ) i
2iD _;it[; = 2D2(- iV-_¢ A) !T/; t i’t l,[)" 2!)% LQ «Vin \JJ . (35)

2D mc m
0

The last term of the right-hand side includes the derivatives in ‘:Q of order > 2.

Comparing with the previous results', we see that the extra terms of f lead toa

simplification of the final results.

IV. CONCLUSIONS

In summary, the main results of this note are:

a) It is possible to reformulate the basic stochastic equations of our theory
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in “Lagrangian” form, with the operator ) playing the role of 3/3¢ in classical
theory;

b) The Lorentz force does not account for all the electromagnetic force
acting on the stochastic particle under the action of the external field, as can be
seen from eqs. (30) and (31);

c) Substitution of this force in the stochastic equation leads, in the usual
approximation, to Schrodinger’s equation with minimal electromagnetic coupling
without any restriction. In other words, the new terms added to the Lorentz force,

to second approximation, are being taken into account automatically when writing

down Schrodinger’s equation.
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