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RESUMEN

Se estudian las diferencias entre interacciones nuclecn-nuclecn *libres”
y "efectivizadas” a través de sus resultados sobre las energias de amarre de
3H, *He, %0 asi como el espectro energético del ®Li, suponiendo siempre el es-
pacio de configuraciones mds simple de acuerdo al modelo de capas de oscilador
armonico; (0s)3, (0s)*, (0s)* (0p)2 y (Os)* (0p)?, respectivamente. Se emplea-
ron potenciales N =N realistas con carozorepulsivo blando asi como elementos

de matriz asociados a diversos tipos de interacciones efectivas. Resulta clara-
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‘mente patente la necesidad de *renormalizar” una interaccion N=N libre cuando

se trabaje en un problema secular corres pondiente a un espacio de configuraciones

restringido.

ABSTRACT

The differences between “free” and “effectivized” nucleon-nucleon inter-
actions are studied through their effects on the binding energies of . ‘e, 0,
as well as the energy spectrum of °Li, by assuming the simplest oscillator shell
model configuration for each: (0s)?, (0s)*, (0s)* (0p)*? and (0s)* (0p)?, re-
spectively. Soft-cored, realistic N=N potentials are used, as well as effective
interaction matrix elements of various kinds. The need to "renormaliz " a [ree
N=N interaction whenever one does a restricted configuration space secular problem

is clearly manifested.

I. INTRODUCTION

Since the pionnering work of Brueckner and others dating from 1954 or so,
much attention has been given to the problem of deducing, from a given interaction
between two isolated nucleons, an (effective) interaction appropriate for treatment
in a limited-configuration-space secular problem (e.g., a shell model calculation).
The advent of soft-cored “realistic” N=N interactions, fitting the empirical data
associated with two-nucleon systems, has permitted obtaining finite values for the
relevant shell-model matrix elements and, consequently, enabling one to carry
trough shell mode! calculations with these potentials. Thus, it becomes possible
to compare the results, on nuclear structure properties, produced by the “free”
versus that of an “effective” interaction which has been deduced from the former
by one method or another; hence, one may evaluate the relative necessity of de-

riving such effective interactions.
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II. FREE AND EFFECTIVE N-=N INTERACTIONS

The most general form of the nucleon-nucleon interaction potential con-
sistent with the usual invariance symmetries associated with non-relativistic
strong-interactions can be written! as the well-known sum of central, tensor, spin-
orbit and quadratic spin-orbit parts. In the last decade’ a great deal of effort has
been put into obtaining “realistic” potentials; that is: an interaction.potenfial
function of the above mentioned form with radial functions parameterized to fit
both N=N scattering experiments for 0 < E| , < 350 MeV and the ground state
properties of the bound n-p (deuteron) system. Among the best-known “realistic”
potentials are the Hamada-Johnston and Yale forms whose radial forms were as-
sumed, “a priori”, to be independent of »? and /2, an effect supposedly simulated
by the introduction of an infinitely repulsive (hard) core for r < 0.5 F. The
former potential has 28, the latter 52, non-zero adjustable parameters. (Recently,
one-bos on-exchange meson-theoretic N=N potentials with as few as ~ 5 adjusta-
ble parameters and which fit scattering data remarkably well have been derived®).
Qur interest here will focus only on two “realistic” potentials whose radial forms
are a superposition of attractive and repulsive gaussian functions, with finite
“soft” cores, which turn out to be extremely  (venient to handle when dealing
with harmonic oscillator orbitals.

The Tamagaki* (G3RS - 1) potential has 56 parameters and has radial

functions of gaussian form (see Figs. 1 to 4):

"("/T; _)2
Vy; e M s et dvaws s (1)

I pAw

1"'}\(1‘):

1 1

with Vft. » 7,, the strengths and ranges adjusted to fit the N=N phase shift data
of Arndt & MacGregor (1966). No mention is made of any attempt to fit the bound-
state deuteron properties (a calculation Which is in progress'®). On the whole,

it appears that the fit to the scattering data is at least as good as that ac-
complished by the Hamada-Johnston potential.

The Eikemeier & Hackenbroich® (or Tubingen) potential consists also of
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gaussians and includes a soft core but is even simpler in that it is purely central
and to date has been reported only for the even-/ states (cf. Fig. 5). [t has a
total of 12 parameters which were adjusted to the Yale (1962) phase shifts, the
low-energy effective-range theory data compiled in 1957 by Hulthén & Sugawara,
and also the deuteron binding energy.

Regarding the so-called “effective” interactions we adopt also only two.
The one given by Volkov® (number 5 in his notation) (cf. Fig. 6), with 5 parame-
ters adjusted to fit binding energies and rms radii of both *He and 190, assuming
a spherical Slater determinant as a model state.

Elliott and co-workers’ have recently deduced nuclear matrix elements
directly from N=N phase shift data of the Yale group (1968). The matrix elements
turned out to be strikingly similar numerically to those obtained by Grillot &
McManus  who actually solved the Bethe-Goldstone equation in relati: coordinate.
It has been argued ? that the Elliott method for constructing nuclear matrix elements
from phase shift data contains the essential ingredients of a Brueckner-Bethe-
Goldstone (reaction matrix) effective interaction, namely: short-ranged correlations
treated exactly (non-perturbatively) and “healing” of the perturbed to unperturbed
function at long ranges. The Elliott matrix elements shall thus be taken in what
follows as those of an effective interaction. ‘For comparison, matrix elements
which do not ? involve “healing” have also been used in the '°0 binding energy
caleulation; these were deduced'® directly from phase shift data employing a tech-

nique due to Koltun'’,

[lI. THE SHELL MODEL PROBLEM

Using both the free and effective interactions described above we wish to
calculate energies within a shell model framework, that is: restricting the many-
body function to the most natural model subset of single-particle configurations.

a) Doubly-Closed Shell. |t is assumed that the ground state (model) wave
function of a doubly-ci. :d shell nucleus (like *He, '°0, *°Ca, ...) to be the

single Slater determinant ®_ composed of the lowest-lying single-particle harmonic
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1969
oscillator arbitals. The hamiltonian of the A-particle system is taken as
$h_ $ 5 't 3 )
H = E iy M N +* v
i=12m 2Am ::1p’ <y M
A
= Tmt * i?‘jvt;

which is both galilean and trans lationti| invariant, and in which v, will be either
a free or an effective N=N interaction. The expectation value of (2) is then'?

1 <f 3 3
<@, |H ilb0> = .§(2n£+ 1ot T)ﬁw- 4_1)2.)
3)

1 3 (<oplo, |ag>- <ablv, | Ba>},

M|

in which the sums are only over occupied states.
The expectation value of the potential energy for a doubly-magic nucleus

described by a single Slater determinant becomes

A
<@ 3 v l®,>= g'(2T+1)(2j+1)<nlSj|vu[nlSj> .
ntoyg

. E, QL*Y) | <N, Ll Lnt 1> ]
m i w2 LNL @) L
(4)

Evaluation of the two-body elements <nls; | % |n*1'sj > for a general

N=N potential v  of the Tamagaki kind is quite direct.
For A = 4(*He), eqs. (3) and (4) give
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9 3 3 1 1
<H>=Iﬁw+3 (<0, 5l|yu|0, s>+ <0, S,1v,10, 5,>1  (5)

and it is readily see . that for A = 3 (*H) one has
3 3 3 1 1
P = 5 [#w + <0, S, [vm|0, 5,> + <0, Sul"ulo' 51 (6)
Also, for A = 16(160) there results [v (n, 25“!}.) - <rzlsj|vulnlsj>] .

<>=8 prnlo, 's)+0(0,’5)]+
o3 o, 's) + 001, ’s )1+ 6 [0 (0, 'B) + 0(0, B+
+180(0,’R) +300(0, B) + 220 0, ) +300,°,)

+ % v (0, 302) e u(O,sD_‘) . (7)

el

b) The Open-Shell Nucleus SLi. It will be assumed that the ground and
excited positive-parity states of SLi are linear combinations of configurations
consisting of an inert *He core plus two valence nucleons restricted in the Op

harmonic oscillator shell. The secular problem is then
det|ﬂ<"111]1' NPy ]Tlvu‘”slsfa' n i JT % ™

+ {AE(1+8 )1 +8 ) =E .} 3 ; ) . c s )
I 'h JT7 " bidge nylyiy mylydar melds
(8)
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where AE = E is the single-particle spin-orbit energy splitting taken

ey, " Epsy '
from experiment as AE ~ 4 MeV, and Erp will be the energy levels with the lowest
value corresponding to the contribution to the total binding of °Li coming from the
n-p valence pair. This binding energy is deducible also from experiment'* through

the relation

B (np) = B (°Li) - B(*He) - [B(°Li) = B (*He)]
- [B(°He) = B (*He) ]

= 6.585 MeV.

IV. RESULTS

The calculated and experimental binding energies of *H and *He (Coulomb
repulsion subtracted) are shown in Figs. 7and 8. Experimental energies were
taken from ref. 12; “experimental” #u values are deduced from the empirical rms

radii found in ref. 18, through the readily-obtained relation

o :\/(2n+z+%)jf_ , (9)

m

where (n, [) refer to the harmonic oscillator orbit of the “most exterior” nucleon.
The Tubingen potential is seen to give the most binding in both cases (at
roughly the “right” hw) but it is certain that addition of the missing odd-1 parts
to this potential will reduce this binding. The Tamagaki-1 potential grossly
underbinds in both cases, as might be expected because of the very repulsive
soft core (> 3 times that of the Tubingen*soft cores which are probably too small
judging from the bad phase-shift fits at higher energies). Both the Elliot ” matrix
elements, deduced from the Yale (1968) phase shifts, and the Grillot-McManus!®

matrix elements obtained by solving® the: Bethe-Goldstone equation with the
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Hamada-Johnson potential, give very similar results. All results, using free
“realistic” and effective interactions, underestimate the binding.

The corresponding results for °0 (Fig. 9) are very analogous to those for
A = 3and 4. The almost exact agreement of the Tubingen potential is again mis-
leading for the reasons given above. We have also calculated the binding energy
using the t-matrix elements associated with the Schrodinger equation, in relative
coordinate, of two nucleons in a common oscillator well interacting with each other
through a Yale interaction. These have been deduced directly from the Yale (19%68)
phase shifts. Comparisons'® with those obtained by integrating the Schrodinger
with the explicit pciential function show thar, insofar as the diagonal elements
go, the two methods are essentially equivalent. These matrix elements will differ
from the Bethe-Goldstone ones in the absence of the Pauli exclusion principle,
found in the latter, which prevents virtually scattered particles from g=ing to states
already occupied by other particles. Absence of the Pauli effect thus gives too
much binding (as is to be expected as one is then overcounting contributions to
the matrix elements) and inclusion of the Pauli effect results in too little binding
The difference between the two “extremes” is very striking indeed (cf. Ref. 9 for
a more detailed discussion).

In Fig. 10 is shown the experimental®® spectrum of °Li (extreme right)
compared to the results of various calculations, all in the (Os)* (Op)? configu-
ration model space, using either a free “realistic” or an “effective” interaction
acting between the two Op valence particles. Again, the Tubingen poiential
(E-H) gives the best overall agreement as regards level sequence and spacings.
The Volkov-5 force does not reproduce the ground state! The Elliott matrix ele-
ments correctly predict the sequence of the first few levels but the spectrum is
too compressed. The spectrum marked “modelistic” is shown only for comparison;
it was obtained®® by adjusting four parameters in a model interaction consisting
of pairing, quadrupole, long-ranged tensor and single-body spin-orbit forces.
Finally, the Tamagaki (G3RS=1) potential gives the most unrealistic results: the
actual ground state ]wT = 1%0, together with the whole spectrum, is pushed too
high. It thus appears that the more realistic an interaction (in the sense of

fitting reasonably well isolated two-body scattering) the clearer the need either
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of considerably enlarging the mode! space beyond the simple (Os)* (Op)? configu-
ration space or, “effectivizing” the interaction in some consistent way. Either of
these refinements will build into the two-body relative matrix elements short-
ranged corre lations by “pushing out” the two-body wave function away from the
core region of the potential. This would obviously weigh the repulsive parts of
the free N=N potential less drastically.

In Fig. 11 are shown the oscillator radial functions (squared and multiplied
by r?) used in evaluating the (diagonal) matrix elements (n!lvy(r) 1 nl).
A comparison of this figure with, say, Figs. 1 through 4 which show the radial
parts of the Tamagaki potential, indicates that lower 1=values (predominantly the
§=-waves) are producing too much repulsion in both binding and excited spectra

calculations.

V. CONCLUSIONS

Our main conclusion is that it is meaningless to do a nuclear structure
caleulation with a free “realistic” N=N interaction within a limited shell-model
configuration space. The need to "renormalize” such an interaction seems quite
dramatically evident from both binding and excited spectra results.

A basic ingredient in this “renormalization” is the Pauli exclusion princi-
ple kernel of the Bethe-Goldstone integral equation for the correlated (or *per-
turbed”) two-body wave function. This kernel essentially prevents the (virtual)
scattering of two particles to states otherwise occupied by other particles and is
responsible for the well-known “healing” of the perturbed to unperturbed wave
function8¢2! | The absence of these properties have the drastic result of over-

T 5 3
binding a nucleus like '°0 to as much as twice the experimental valuve.
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