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ca; t"1 t'sla forma, st' rt'cupt'ran l'arios rt'sullados cr)7locidos y st' obli,nt'n airas

inlt'rt'sanlt's rt'spt'CIo a la inlt'racción t'nlrt' las parlículas.

AIlSTRACT

Tbt' purpost' of Ihis papn is lo show Ihal Iht' quanlum slochaslic IhHX)'

eOl't'rs Iht' lu'o-body (and in gt'nnal. Iht' .v-body) prohlt'm. Tht' mdhod shows

Ihallht' lUJOparticlt's ;'llnacl u'ilh t'och olhn, t't't'n U'hOl Ih, t!xlt'rnal classical

inlt'raelio71 is assumt'd lo bt' z,ro. Tht' Iwo.ind,pt'ndt'nl porlieit' mod,1 is dis-

cusst'd from Ibt' slochaslic POi'll ofl,it'uJ; in Ihis formo wt' art' ahl, lo rt'Cot/N s~

Wt'/I-kTlOU'Tlrt'sulls a'ld obloin (Jlht'r ;'llt'Tt'sling ()f1,S ahoul Iht' ;'ll,raclion ht'lu~,n

porliclt'S.

l. INTRODUCTION

The purpose of this peper is to show how the stochastic theory of ql)::mtum

mechanics which we have discussed in previous papers l. 2 may be directly ex-

tended to cover the two~particle cose. The procedure is straightforward and may

be eas i Iy extended to cover the N-body problem. The method used in our deri~

vation (Sec. 11) is os follows: starting from the system of dynamical equotions

obeyed by the two porticles, we obtain the equations of motion in terms of center-

of-mass and relative coordinates (which will be referred to os the C.M. system).

The result is what one may expect in advance: if we speak in terms of two-quasi-

JXIrticles, one associated with the C.M. coordinate with mess JI = m + m and
1 2

the other with the relative coordinate with reduced mass J-1 = m m /M, then the
1 2

motion of each of these "porticles" is described by the sarne dynamical equotions,

written for the corres pond ing externa I forces.

At this point we introduce the only odditional postulate, which establish-

es thot the C.M. velocities depend only on the C.M. coordinates, while the relo~

tive velocities depend only on the relotive coordinates. This postulate is fa-

miliar from classical mechonics ond represents the most economic ane in con~
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nection with our problem. Introducing this restriction and following the method of

integration discussed in previous papers1•2, we arrive at a couple of Schrodinger

equations far the C.M. ond the relative coordinates, which yield directly the single

SchrOdinger equation for two particles in its usual form, with an externa I potential

separable in the C. M. system. In this form, our theory justifies the ossumptions

usuolly made in quontum mechonics when deoling with the two.body problem.

Two comments are worth moking obout the method employed he re to es.

tablish SchrOdinger's equotion far two porticles. In the first place, our storting

point is o IXIrticulor cose of the fundamental stochostic equotions, which meOns

that the resulting two.body SchrOdinger eql.o.Jtian represents a mathematicolly

simple, but physicolly non.immediate way of describing the very complex motion

of two - in general, interocting'" stochastic particles. Secondly, from the very

beginning, the equations show thot the two porticles are interacting •..ith each

other, even when the externol clossicol interaction force is ossumed to be zero.

In other words, our dynamical equotions are such thot when opplied to a system of

particles they automoticolly exhibit the dependence of the motion of one particle

on the others motions.

In Seco III we demonstrote that, under the above.mentioned postulate abaut

the velocities, our original system of dynomicol equotions is 0150 a direct conse-

quence af SchrOdinger's equotion. This demonstrotion is included only for como

pleteness, but should not be considered as a proof of the val idity of the dynomical

equotions, since in the form they ore written down they correspond only to a par-

ticular cose ond their physicol sense is lost, or ot least not immediote.

In Sec. IV we apply the previous results to a usual cose, the so-colled

independent-particle model (or opproximation, according to the specific situation);

in this simple model we explicitly show how the very construction of the probobili-

ty omplitude implies that the particles ore not independent, but strongly influence

one another (which, incidentally, shO'NS that the current name is not oppropriote to

the situation). We clase this section with o discussion of the possibility of in-

terpreting the uSt.(J/ results from o stochostic point of view; well-known results

emerge os direct consequences of this interpretation. Fa example, the "two-in-

dependent-particle" omplitude is consistent with a stochastic interpretotion only
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when it is symmetric or antisymmetric, and the one.particle amplitudes must be-

long to an orthonormal family of functions. This description is interesting in thot

it allows to state cleorly the effects of one particle on the other; for example,the

probobility of one partic le to be in some given stote depends on the stote which is

simultaneoulsy occupied by the other particle. Al! these results are almost trivial,

but this part of the poper is written within the spirit of the well.known stotement

by Feynman3, thot .there is a pleosure in recognizing old things from a new point

of view". In foct, the whole series towhich this paper belongs is written in this

spirit.

11. THE TWO-PARTICLE SYSTEM

As shown in reference (1), a stochostic partic!e of moss m, sub¡ect to the

oction of the externa! force Fo = mio' has a motion characterized by the system-

atic ond stochastic velocities v ond u, respectiveiy, which satisfy the system of

equotions

(1 )

f)e ond !J
s
are the systematic (or current) and stochastic derivative operotors

Ipreviously defined • System (1) is written for the particular case in which the

constant defined eor!ier A = 1 ond the externa I force fo is invariont under time-

inversion2; furthermore, we shall restrict ourselves to the second-order opproxi-

mation, when exp!icitly writing down the operators Oc ond [)s. As has been

demanstroted 1,1, 011 these ossumptions ore cons istent with the quantum-mechani-

cal descriptian of the particle's motian. Presently we shall deol with twa porti-

cles; hence we must write down the corresponding set of equotions. Since Eqs.

(l) correspond to the stochostic generalizotion of Newton's second low, we sholl

write the some system for eoch particle, ¡.e., instead of Eqs. (l) we hove
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(2 )

where i may take the values 1 and 2, correspanding ta the twe particles acted on

by the externa I forces F .• Our purpose is te shaw that the first integral of Eqs.

'"(2) leads ta SchrOdinger's equation. To achieve this in the simplest possible

way, let us transform to center.ef-mass and relative coordinates:

(3)

r=r-r
2 1

where
m m

a =
, J:1: a = t J1:....

1 .11 m
,

.11 m
1 ,

m t m,
.11= m + m l' =1 , .11

The aboye definitions imply the relat¡'ens

(4 )

a + a
t ,

a a1 ,
!!.
.\1

(5)

which will be frequently used in the fellawing. Fer further convenience, let us

introduce the definitiens:

D " 1) + D, 21" = 1 2

(6)

{j IJIJ
DR

1 ,
-2-:11 1),
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[)r is the diffusion coefficient associated with the motion of the quasi-¡:::orticle of

mass fJ. equol to the reduced moss of particles 1 ond 2; likewise, D
R

is the dif.

fusion coefficient ossocioted with the motion of the quosi-¡:::orticle of mass

m
2

• The inverse of (3) is

(7)

Let us apply to (7) the operators 10 = lQe + lOS and ~ = -£le + f)s in succession.

From the usual definitions I and Eq. (7), obove, we hove

íJ, v + u = V+ U - al (v + u)l l l

fJ, = v + u = V + Uta (v + u)
2 2 2 2

(8)~íJ, - v + u = - V t U - al (- v t u)l l l

~íJ, - v + u = -V+U+~ (-v+u)
2 2 2 2 •

where V ond U ore the systematic and stochastic velocities of the e.M. and vand

u refer, in the SOme order, to the relotive motian. Hence we obtoin

v V-a v
l l

v
2

V+av
2

(9)

u=U-au
1 l
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(1 O)

Under the transformation deHned by Eqs. (S:, the system (1) OSsumes the follow.

ing form:

(11 )

(12)

where we hove introduced the abbreviotions:

'0 F
02

Fo,
f1- m m

2 ,

F = F t Fo 01 02

(13 )

Cleorly,' is the relotive force hP.tween oarticles ond F represents the totalo o
force octing on the C.M. It should be emphosized that'o ond Fn refers only to

the e los s ico 1 forces wh ich come d irectly from Fo; ond do not include ony oddition::J 1
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foree whíeh may orise from effeetive interoetions between the pcrtieles or between

ony given pcrticle ond the voeuum. In foet, sinee the operotors "e ond ..'s depend

on the ve loe ities vi ond vi' we See from Eqs. (2) thot the mot ions of the tw o IXIrt ¡-

eles influence eoeh other in o generolly complex way. In other words f ond F
o 0

orp. the classica/relativeand C.M. forces. respeetively.

Eqs. (11) and (12) represenf o first result of interest: they indieate thot

the lows of motíon ('lf fhe "portie/es" of mosses .\1ond u ore equal to the low of

motion of o single DOrticle. The separotion into relotive and C.M. motions corre-

sponds elosely to that usual in classical mechanics. However, this separation is

still net complete, because in general the operators .()C and JOs involve both eo.

ordinates through the four veloeities v. and u .• In foct, upon substitution of (7), ,
in their definition1

, we obtoin

and

+ v
1

.\ltv'v=
I 2 2

(140)

In u' V + v . V t IJ \]2 + f) ,,/
"5 1 1 , 2 1 1 2 2

(14b)

Intraductian al (14) inta Eqs. (11) and (12) explicitly shaws the presence

of crassed termS. But both from the physicol ond the mathemotieal point of view,

we may Ossume that the C.M. velocities V ond U do nat depend on r, while the

relotive velocities vand udonotdepend on R. This postulotewill be referred

toas (1') in what follows. With it, Eqs. (11) and (12) separate completely ta

give:
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(15)

ou.jo v.\7ut u'Vvtf)V2v::: O'2i/ ' r',

(Ió)

These sets of equations refer to two independent stochastic particlesa As

known from previous treotments1•2, each one of these sets give rís" upon ínte-

grotíon and simple mathemotical transformotions, to o corresponding SchrOdinger

equotion, nomely,

2 ifL f),

(17)

where ,pr • </;, (r). Vf¡ : ,pR (R) • 'o : - 'V, V, cnd Fo: - 'VR IR' From Eqs.
(17) it immediotely follows that the function

satisfíes the equatíon:

2 2
- 6/J \1 '1' - bD \l </; + VV' •1 1 :2 :2

331
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i.e., Schrooinger's equotion for o potentiol V, which moy be expressed os the sum

of on external, C.Mo potential vI-? and an interaction potential v, o (Clearly, in Eq.

(19) these two potentio Is are to be conS idered functions of r and r ). Thus we
1 ,

have achieved our first purpose, namely, to show that the usual Schrodinaer

equation for two particles is o direct consequence of the system of dynamicol

equations (2).

11I. RECOVERY OF THE FUNDAMENTAL EQUATIONS

In this section we proceed to recover the system of equotions (2), starting

from SchrOdinger's equotion (19) ond using (p) os the only additionol postulateo

Although the resultwill not give onything fundomentolly new, thisdemonstratíon

is profitoble in that it yields useful relations as byproducts (which, incidentolly,

could hove been obtaíned from the expressions appeoring in Seco 11). Furthermore,

it ollows uS to see clearly that the treatment can be generolized to.\' particles

without any further complicotion.

As suggested by the procedure used earlier1•2 we write the omplitude 1./; in

the usual form

<jJ = exp(R + iS).

Clearly, the most general fcrm for the functions R ond S is

s = S (1,2) + S (l) + S (2)o 1 ,

(20)

(21)

(The tíme-dependence ís omítted for brevity). Noand So ore the terms responsi.

ble for the interference between portícles, while Ri (i) = Ni (ri) and Si (i) = S¡ (ri)

correspond to índependent-particle motions. As usual, the velocities of the

port ic les ore:
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(22)

ond must therefore sotisfy the relotion

\7 • (m v ) = \7 • (m v )
:z 1 1 1 2 2

ond o similar relotion for ui• To see the Oleoning of these restrictions, we

transform to the C. M. system, thus obtoining

\7R • (/'v) = \7, • (MV) •

(23)

\7R • (flu) = \7, • (MU) •

N"", il is evidenl Ihal under (p), Eqs. (23), and hence (22), are valid'. We

p<aceed ¡urlher by inlraducing Eqs. (20) and (22) in (19), and separaling real and

imaginary ports;

a .} .}2 _ (R + R + R ) + \7 • v + \7 . v + IJ u. v + IJ u' v O.di ° 1 2 1 1 2 2 1 1 I 2 2 2

(24)

2 a (5 +5 +5) -\7.u -\7 • u + (21J )'I(v'_ u') + (21J )'I(v'_ u')= _ 2vól012 1122} 1} 222 h

II is a simple Ihaugh samewha! lenglhy lask lo show Iho! the two equations (24)

represent the first integral of the four equotions (2). Tooccomplish this, we

opply the operotors VI ond V2 to both equotions in (24). Let us briefly sketch

(1') ¡s 5oomewhot stronger ,hon ,he condi,ion5o expres50ed in Eqs. (23); later on we 50hall
make full use of i' to recover s y50fem (2).
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the procedure on an example, by applying V to the first of Eqs. (24). From the
1

previous definitions, we hove that

'1
D
1

dU
1al

d 'v' val 1 1
n(,-v.v,, , ,

, ,
u .17 tDv : íJ -u'v -DV

1111 S 2222

ond hence the result m:Jy be written in the fefm:

;0,(.U t¡Osv tO'I{O(v 'v)u-O(v 'v)u} t
~I 1212122221

• 1
tD {O (u '\I)v-D(u .17)v }+{Dv(v 'v)-DV(V .v)}: O.

21212222111222221

It is eosy to show thot upon use of (P), eoch one of the expressions enclosed by

curly brockets vonishes ¡denticolly, thus yieidíng os o final result

íJ,.u i Drv :0,
• 1 .• 1

which conesponds to one of the equotions in (2). Let us tronsfefm, for exomple,

the first brocket:

O (v • V ) u - O (v • v) U
1 2 I .lo 2 2 2 1

1) ¡(V 'a v). (-V +a v,,)](U '(1 u)-D [(V 'a v). (v ta VI,)J (U- a u):
l' 1 ' 2" 2 2 2 ' 1" 1

- (1) a - O ,< ) [V • V u - V . VI' U + t v. \¡ U - a v . \' U): O;
1221 ' " 2 ' 2 R

'3'14
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Following on analogous procedure with the remaining equations, we finally obtain:

o .

\7.v,

which is just the origino I system (2).

Now that the equivalence between SchrOdinger's equotion for two particles

ond the corresponding system of stochastic equations has been established, we

moy go further and introduce the dynomical operators, in arder to assign a physi-

cal meaning to the first-integral system (24). The procedure is similar to that

followed for the case of one particle1• In the present cose, it can be readily

shONn that the first equotion in (24) assumes the form of a Fokker.Planck eqVJtion

lar the probability p = c/J*c/J:

d 2 2.....£ + \7 • (e p) + \7 • (e p) - [) \7 p - [) \7 PdI 1 I 2 1 I 1 2 2 o (250)

where, os usual, cj = vi + uj• In terms of C.M. and relative coordinates, we

hove:

(25b)

From the discussion included in ref. (1), it is evident that the second equJtion

in (24) is the energy law of the problem; from this we infer that the kinetic energy
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due to the stochastic motion is simply the Sum of the contributions af each ¡:xJrti-

cle, i.e., 011 the interference effects are due to the dependence of each velacity

on the coord inates of both portic les.

N. THE TWO-INDEPENDENT-PARTICLE SYSTEM

From Eqs. (20) and (21) we hove:

(26)

where Pi (i) = Pi (ri), i = 1,2, may be cons idered ane-portie le dens itíes, wh i le

Po(1,2) "" exp [2Ro(1,2) ] is a two-partic!e factor, which measures the effect of

interference between portícles upon the p"obability density_ Clearly, if we put

Po = 1 the two ¡:xJrticles become independent and at the same time, the Fokker-

Planck equation separates into two independent equations *. When the potential

can be written as V = Vl(l~ + V
2
(2), this separatian is in general permissible and

causes any interference between ¡:xJrticles to vanish, since the probability ampli-

tude becames .¡; =.¡; (1) Y' (2). and hence S = R = O.
1 2 o o

From a stochastic point of view, this situation is physically acceptoble

anly far very distant particles, i.e., when in tact we are dealing with twa

stochostically independent systems. Since we are considering that each particle

interacts with the vocuum, we ore obliged to accept the existence of a cor'relatian

between the mations of the particles, induced by their motion in a Camman medium.

In otherwords, the two porticles and the vacuum must be treated as a single

s ys temo

This lack af independence between the motions of classicolly independent

identicol particles is usuolly token into Occaunt in quantum mechanics by intra-

ducing o very simple but extremely for~reaching idea: Pauli's exclusion principIe.

In the text-baok languoge of quontum mechonics we soy thot being there two

This is equi .••.alent to writing for tw" e .••.ents a and b, P(ab) = P{al P(b), i.e •• the e .••.ents
are STotisticolly independent.
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stotes a and b* , the identical particles 1 ond 2 may be in either stote,due to their

indistinguishability, and we therefore write;

'1' (27)

where e and e guarantee the normalization of ll' and the required symmetry proper-

ties acc10rding ~o Pauli's principie ** At first sight, it appears t~at Eq. (27)

refers to independent particles but, os is well known, this is not the case; the

simplest and most frequent way to show this consists in constructing the proba-

bility density ossocioted to 11':

P = c: Pa (l ) Pb (2) + C; Pa (2) Pb (1) + 2C, C, ¡Pa (l) P¡, (1) Pa (2) Pb (2) cos n

(28)

where

(29)

ond the C¡ ore assumed to be real. Eq. (28) explicitly shows the existence of

interference, which meanS thot the amplitude (27) corresponds to two particles

with correloted motions. But now the orgument breaks down: we constructed 11'

thinking in terms of two indistinguishable independent particles and yet we onive

ot the conclus ion thot the IXlrticles ore not stochostico lIy independent. However,

we 0150 know thot in spite of our orguments, Eqs. (27) ond (28) ore

For simplicity we sholl con!óider only different, non-degenerote eigenstoles, hence
Ea t ~h •

**The text-hook orguments ore n<:lt enlirely eonsistent, ot lens' from the stondpoint of o
corpuscular theory like ours. This Joek of consisteney comes ohou. in the following
torm: First. the portie les ore lobelled ond then some eorre .•pondenee is eSloblished
between lohels ond stotes, thus implying SOrne distinguishohility between particles.
Next, it is orgued that oetuolly the partieles ore indistinguishobJe ond hence the lobel,,>
moyos welJ be interehonged, obtoining o second wove function. Sinee from very gener-
al Orguments it moy be shown thot the WOve funetion for two elassieolly non-interoeting
portie les must be symme.ric or ontisymmetrie (ref. 4), Ihe total wove fune'ion is eon-
strueted from the Iwo previous ones, in arder lo aehieve the tequired Symme'ry prope,.
tieso Similar eriticisms hOve been roised by other outhors (s~e for exomple reL 5).
Arguments coneerning the distinguishobility of porticles introduce into the physicol
theoryo subieetive ingredient teloted to our copobilities of observOlion. As long os we
do not explicitly introduce into the theory on externol perturbo-tion due to Our obser_
votio.,s, the system must be considered unperturbed ond unob:¡.erved ond evolving oc-
cording 10 its own lows. which hove nothing lo do with our copobility to ottoch lobel,,>
fa the porticles.
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physically correcto Our purpose in this section i5 to assign to the aboye ex-

pressions o consistent meaning besed on our stochastic point of view. At po-esent

we content ourselves with the display of Sorne basic ideas, hoping to extend them

in o forthcoming JXl~r.

Let us begin with,..,...o remarks, concerning the interference term in Eq.(28)

and the general structure af lJI. First, we knOW"that the interference terms appear

when dealing with amplitudes instead af probabilities, and actua Ily their ex-

istence is essential for the foundation af quantum mechanics. In stochastic

theory, on the other hond, such terms are non~xistent. This apparent contra-

diction might seem ta indicate that our stochostic interpo-etotion of quantum me-

chonics is incorrecto However, a more careful onolysis shOW"s that althoUQh sLCh

interf"'rence terms ore uncommon in stochostic theory, they ore entirely con-

sistent with its fundamental equations. We moy construct o theory with or without

them; which one to use is to be decided by considerations not properly within the

s..::ape of the theory itself. In particular, Eq. (28) is consistent with our bosic

stochostic equotians, ond these, os has been previous Iy shewn, centoin the

Fokker-Planck equotion. To clarify this point, let us cansider the fallowinn

simple exomple: if p ond pare twa different salutions of the cantinuity equotion
1 2

(which, with v = c- u, gives the Fokker-Planck equotion1), both for the sorne

systernotic velocity v, then Pi'" = 1,2, is a solutian af

ap t \J • (vp) = O •a, (30)

Since this equation is linear, P = ap + f3p is also o solution, but not the rnast
I 2

general one thot con be constructed with p ond p • To show this, let us intro-
1 2

duce the function

(31 )

with p ond q real numbers. Substitution in the cantinuity equotion gives
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Hence the function (31) is o solution of Eq. (30) if p 000 q ore such thot

p+q=l, (32)

which meons thot from ony pair of solutions i-\, .02 we moy construct on infinity

of new solutions os linear comhinotions of terms of the form o¡(,n/p¡)q, with

arbitrory (real) q. Three out of these ore oorticularly importont to us, nomely,

those cerresponding to q = O, 1 and 1/2, which give:

(33)

Generally, in stochastic theory one se Jects a priori y= O, to eliminate any inter-

ference between different Pi; quontum mechanics, however, is o particular

stochastic prohlem in which such interoctians ploy o significant role. Since ¡J

itself is also to be inteq:reted os o probahility, the constonts 0.,/3 and y are not

independent of eoch other. The dens ity p has the sorne form as thot given by Eq.

(28), except fer the foctor cos 11. As can he easily shown, this foctor arises

when PI and P2 ore not ossumed to correspond to the same velocity v anymore; in

this cose, the prohobility density assumes the more general form give 1 by Eq.(28)

ond sotisfies the continuity equation for o new veJocity whose volue is ohtained

from the corresponding ampJitude, i.e., Eq. (27). Hence we see thot to deol with

amplitudes insteod of P""obobilities provjdes o simple meOns of introducing inter.

ference terms of the particular form illustroted by Eq. (33), which amounts to

constructing o stochostic theory more general than clossical stochostic theory.

However trivial this result may seem, it merits the obove discussion, because it

points out the fundamental difference between clossical and quantum stochostic

processes. This difference js so importont that it moy be used os o storting

point for the formulotion of the stochostic theory of quontum mechonics. A formol

"but very interesting opprooch 01009 these lines has recently been proposed
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Our second remark refers to the structure of the amplitude corres pond ing

to two particles. We wish to recoll that it can be shown on very general groundss,

and without the use of any argument about the indistingu;shability of the particles,

thot a two-porticle omplitude constructed form single-porticJe amplitudes must be

either symmetric or ontisymmetric. Thus Eq. (27) implies nothing about the

indistinguishability of the two portieles.

Let us now give some simple orguments to ¡ustjfy from o stochostic point

of view the use of two.porticle amplitudes of the usuo 1 form (27). For this

purpose, we reca 11 once more thot a prod uct of the type tjJ a (1) tjJb (2) refers not to

a system of two porticles, but to two independent systems¡ furthermore, thot the

portie les must not be lobelled to distinguish them, s ince they are supposed to be

identicol. Let the system be stationary; if the energies of the porticles are

Ea ond Eh' and these do not interoct classicolly., the total energy of the system

is E = Ea t Eb• The probabi 1ity for the portic le w ith energy Ea to be between

, and, + d, is H' (1a) d, = () (1) d, , and so on- clearly, ony one of the porti.
I I I 1 . al'

eles may be in the neighborhood of, with probobility density W(1a) or w(lb),
1

depending on its energy stote. Now we se lect two arbitrary points in space and

ask for the probobility of the partieles being in their neighborhoods. There will

be two different answers, occording to whether we require the porticle within d,
1

to be in one of the energy stotes Ea or Eh' or whether we refer to O portic le

without regord to its energy. In the fi,st case, there ore the two following possi-

b le q ues t ions :

o) we moy osk for the probobility W(la; 2h) d'l d'2 of o porticle with energy Ea

to be within d,¡ ond the other porticle with energy Eh to be simultaneously within

dr2 '

b) '" we mayas k f", the prababi 1ity If (1 b; 2a) dr dr 01 a IXIrtic le w ith energy 1'1
1 2 '

being within d, and o particle with energy r: being simultaneously within dr •
I fl 2

Hence the probability per unlt volume for two portie les to be simultoneously

within the ranges d, ond dr , ¡rrespective of their energies, is
1 2

Thal is, if 5chf~dinger's (;quolion eilher does nol conloin on inleroction pOlenliol or we
ore neg lect ing it.
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w(12;al»= w(1a;21»+w(11>;2a) •

REV. MEX. FI51CA

(34)

If 1'(2b Ila) stands for the probobility pp'r unit volume thot o particle with energy

Eb is ot r]. while the other porticle (with energy Ea) is ot'l' then

and therefore,

W(la;21»= II(la)/'(21>Ila)= W(21))I'(1aI21>)

w (12; ab) = W (la) /'(2b jla) + W (1b) /'(2a Ilb)

(35)

(36)

Stochastic independence implies P (2b Ila) = W(2b) = f'h (2); any deoarture from

this relotion is a consequence of the mutual interoction between pa;;,cles.

We moy nO'N' identify 1+ (12; ah) with pos given by Eq. (28), since it is

evident from its construction that such a p gives the probability per unit volume

thot the particles are at, and, , without regard to their spCcific energy states.
1 2

For simplicity, let us consider the most common case O = O" (this holds, in par-

ticular, for stationary, non~egenerate stotes). Writing el = e and e
2
= €"C, we

hove

W (12 ; ab) = e 2 [ •• (1a) W (21)) + E 2 W (2a) w (1 b) t

+2, /W(la) w(lb) W(2a) W(21))] •

From Eg•• (36) ond (37) it then follow. tha!

(37)

(380)

'S~ciol core musf be token wnen moking cos ~: '= 1. since tne sign of /W is then los ••

To see this, lel us write S - S' •. i"". where" '= n(') is O or 1, occording to the s;9n of

(; in, (¡piS - (_)1'1 e R •. iS' ; then ,'If" - /.¡,' ';, == (_)1'1 pR. In whot follows we sholl

everywhere incorporote Ihis overoll sign (_}Il inlo /W and toke cos (; 1.
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P (2a 11 b) = r:' w (2a) [., • E W (1 a) W (2 h) ] •
w(lh) 11' (2a)

VOL. 18

(38b)

Since an interchonge of a and h in P (2a 11 h) must lead to P (2h Ila), we necessari-

Iy hcve I,cm (38)

(39)

The amplitude '1' in Eq. (27) thus becomes either symmetric or antisymmetric with

respect to an interchange of a and h (or r ond r , which is equiva lent). That this
l ,

condition is trivio I may be seen from Eq. (36) or even from the very definition of

,he prcbeb;lity density, which ,equi,es that 11' (12; ah) = 11' (12; ha) = 11' (21; ab).

Eq. (39) simply states that symmetric probabilities can be generated only by sym-

metric or antisymmetric amplitudes.

Moreover, for consistency, our results must satisfy the following re-

quirements:

a) Since a double integration of W (12; ah) over 011 SJXlce counts the porticles

twice, we must hove

JW(12;ah)dr dr
I ,

b) Since energy is conserved,

2 • (40)

fer any r , ond so on.
l

c) The probability for one particle being in state a is

(41)

r.(la)dr (42)
1
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d) From Eqs. (35) ond (41), we 0150 must require thot

REV. MEX. F1SICA

(43)

Eq. (42) IS sotisfied by construction. Upon introducing condition (43) into Eqs.

(38), we obtoin

e' JII'(2b)dr +e'E [;(lb)f/II'(2a)If(2b)dr = 1,'(If(la)' ,

which, together with (42), means that for the interp-etation to hove o meaning, two

conditions are to be sotisfied, nomely,

and

e = '1

/1I'(1a) lI'(lb)/11f(2a) 1I'(2b)dr,= O.

(44)

(45)

This lost equation, written in terms of the amplitude, has the only non-trivial 50-

lution

J !':(r) -lb(r) dr = O (46)

and hence condition (43) demands that the amplitudes belonging to different energy

eigenstates be orthogonol. But frf'Jm the stotionary SchrOdinger equation we knO'N

that this ¡s alwoys the cose, and hence Eq. (43) is sotisfied. Further, we note

frolT' Eq. (44) that in the stochastic interpretation, the normalizatlon is fixed,

giving o volue of unity to the coefficient e insteod of the quontum-mechanical

value 1;'/2 for a 1. b. NO'N, it is easy to check thot if both conditions (44) and

(46) are fulfilled, then If (12 ; ab) as given by Eq. (37) and If (la; 2b) automatica 1_

Iy sotisfy the carresponding requirements (40) and (41).
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Thus we eonelude that o system of two elassiearly non-interaeting parti-

eles moy be deseribed with the aid af singre~portiele amplitudes, expressing the

total amplitude os a symmetric Ot antjsymmetrie eombination of them¡ that with

this amplitude we may assoeiate the eonditionar probabirities

p(2b Ila) = 11' (2h) [1 + </ab (1,2) ] (47)

and that, s inee P (2b Ila) I W (2h), this eonstruetion automotieally tokes into oe-

eount the mutual interoetion between the stochastie partieres. In Eq. (47), ¡ab

is given by

11' (1 b) 11' (2a)
lf(1a) 11' (2h)

and has the follOW"ing interesting property:

Now we proceed to show that, in the stationary state, the amplitude (27) corre.

sponds to an effeetive ottraetive state between portieles when t = + 1, and to o

repulsive state when € = -l. The first step eonsists in ealculoting the relotive

veloeity of the partieres deseribed by Eq. (27). The systemotie velocities vi moy

be set equo I to zero, s inee for non'¿egenerate states we moy take s; (1) = - Eal,

and so on 7; furthermore, OS wos mentioned aboye, we may write a = o for stotion-
ary stotes. On the other hand, a direet ealculation gives for the stoehastie veloci.

t¡es at the points Ti' j = 1,2:

1 i. I
" = - [" (i) t "h (i) ] + (-), 2 a
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with

REV. MEX. F ISICA

(49)

i ~1

The factor (-) takes care of the change of sign which otherwise would affect

P when the space~var¡ables are interchanged. Hence, the relative velocity

u = u - u is, 2 1

witp

Ur = (50)

(51)

A few algebraic manipulations allow us to rewrite Eq. (49) in the particularly

simple form:

where

, {tanh 6R lar E = + 1
F = (tahh 6R) =

eath 6R lar E = - 1
(52)

(53)

Let us now consider the special situotion r = , • We see from Eq. (51) that in
1 2

this case u(+) = 0, but u(-). O,' f,om Eq. (53). we have also 6R = ° lar, = ,
1" 1" r 1 2

and hence, F = O for E = 1, but F = "" for E = - l. Upon introduction of these

valoos into Eq. (50) we obtain:

{:il E= + ¡
u (, _ , ) _

(54)1" 1 - 2 -
il E = - 1
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In other words, a symmetric amplitude implies fhat when l!lt- Vlll~' í( (lrc very

near each other, their relative vclocity goes to zero ond thl"', will (:ontillue movin1

together; this result is what "•.e are interpreting as On cffe{li f: I~tt(..:.:dion between

particles in the symmetric state. On the other hcnd, fa t;::. - I we hQ\': tilC ,)pposite

situation: if the pcrficles happen to come clase to eoch other, they acqL'ilE" \Jn un.

bounded relotive velocity, which causes a violent separotian; this is th~ resl..ilt we

are interpreting as an effective repulsion between porticlcs in the o)r.ti~~H\I;letric

stote. Cleorly, the value of € must be selected occording to the physicoj SITU-

ation. For exomple, when the spin of the electrons Is introduced in the usuoJl

quantum mechanics, € is selected occording to the relotive spin orientotions,. in

such o form as to guarontee ottroctian (€ = + 1) for antiporollel spins and re-

pulsion (€ = - 1) fer porollel spins; in other words, it is selected such that the

total omplitude (the pr~uct of spin ond configuration factors) be ontisymmetric.

This gives us On interesting insight into the exclusion principie fTom eleme-.tary

cons iderot ions.
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