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RESUMEN

El propisito de este trabajo es mostrar que la teoria cudntica estocdstica
comprende también el problema de dos (o, en general, de N) cuerpos. El metodo
utilizado muestra que las dos particulas interaccionan muluamente, ain en el caso
en que el potencial cldsico de interaccion se supongd nulo. Se discute asimismo

el modelo de dos particulas inde pendientes a parlir de la interpretacion estocdsti-

1 A short account of part of this paper was presented at the X || Congress of the Sociedad
Mexicana de Fisica, Guanajuato, México, April 1969.
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ca; enesta forma, se recuperan varios resultados conocidos y se obtienen otros

interesantes respecto a la interaccicn entre las particulas,

ABSTRACT

The purpose of this paper is to show that the quantum stochastic the ory
covers the two-body (and in general, the N-body) problem. The method shows
that the two particles interact with each other, even when the external classical
interaction is assumed to be zero. The two-independent particle model is dis-
cussed from the stochastic point of view; in this form, we are able to recover some
well-known results and obtain other interesting ones about the interaction between

particles,

[. INTRODUCTION

The purpose of this paper is to show how the stochastic theory of quantum
mechanics which we have discussed in previous papers!:2 may be directly ex-
tended to cover the two-particle case. The procedure is straightforward and may
be easily extended to cover the N-body problem. The method used in our deri-
vation (Sec. II) is as follows: starting from the system of dynamical equations
obeyed by the two particles, we obtain the equations of motion in terms of center-
of-mass and relative coordinates (which will be referred to as the C.M. system).
The result is what one may expect in advance: if we speak in terms of two-quasi-
particles, one associated with the C. M. coordinate with mass M = m tm, and
the other with the relative coordinate with reduced mass ;& = m, mz/M‘ then the
motion of each of these “particles” is described by the same dynamical equations,
written for the corresponding external forces.

At this point we introduce the only additional postulate, which establish-
es that the C. M. velocities depend only on the C.M. coordinates, while the rela-
tive velocities depend only on the relative coordinates. This postulate is fa-

miliar from classical mechanics and represents the most economic one in con-
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nection with our problem. Introducing this restriction and following the method of
integration discussed in previous papers!'?, we arrive at a couple of Schrodinger
equations for the C.M. and the relative coordinates, which yield directly the single
Schrodinger equation for two particles in its usual form, with an external potential
separable in the C. M. system. In this form, our theory justifies the assumptions
usually made in quantum mechanics when dealing with the two-body problem.

Two comments are worth making about the method employed here to es-
tablish Schrodinger’s equation for two particles. In the first place, our starting
point is a particular case of the fundomentﬂl_stochas’ric equations, which means
that the resulting two-body Schrodinger equution represents a mathematically
simple, but physically non-immediate way of describing the very complex motion
of two ~in general, interacting - stochastic particles. Secondly, from the very
beginning, the equations show that the two particles are interacting - ith each
other, even when the external classical interaction force is assumed to be zero,
In other words, our dynamical equations are such that when applied to a system of
particles they automatically exhibit the dependence of the motion of one particle
on the others motions.

In Sec. Il we demonstrate that, under the above-mentioned postulate about
the velocities, our original system of dynamical equations is also a direct conse-
quence of Schrodinger’s equation. This demonstration is included only for com-
pleteness, but should not be considered as a proof of the val idity of the dynamical
equations, since in the form they are written down they correspond only to a par-
ticular case and their physical sense is lost, or at least not immediate.

In Sec. IV we apply the previous results to a usual case, the so-alled
inde pendent-particle model (or approximation, according to the specific situation);
in this simple model we explicitly show how the very construction of the probabili-
ty amplitude implies that the particles are not independent, but strongly influence
one another (which, incidentally, shows that the current name is not appropriate to
the situation). We close this section with a discussion of the possibility of in-
terpreting the usual results from a stochastic point of view: we ll-known results
emerge as direct consequences of this interpretation. For example, the “two-in-

dependent-particle” amplitude is consistent with a stochastic interpretation only
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when it is symmefric or antisymmetric, and the one-particle amplitudes must be-
long to an orthonormal family of functions. This description is interesting in that
it allows to state clearly the effects of one particle on the other; for example, the
probability of one particle to be in some given state depends on the state which is
simultaneoulsy occupied by the other particle. All these results are almost trivial,
but this part of the paper is written within the spirit of the well-known statement
by Feynman®, that “there is a pleasure in recognizing old things from a new point
of view”. In fact, the whole series to which this paper belongs is written in this

spirit.

Il. THE TWO-PARTICLE SYSTEM

As shown in reference (1), a stochastic particle of mass m, subject to the
action of the external force F = mf , has a motion characterized by the system-
atic and stochastic velocities v and v, respectively, which satisfy the system of

equations

B .v=0.v=_2
0 S m"

195V+£0CU= 0 .

QC and l@s are the systematic (or current) and stochastic derivative operators
previously defined' . System (1) is written for the particular case in which the
constant defined earlier A = 1 and the external force f, is invariant under time-
inversion® ; furthermore, we shall restrict ourselves to the second-order approxi-
mation, when explicitly writing down the operators D(,‘ and H¢ . As has been
demonstrated %, all these assumptions are consistent with the quantum-mechani-
cal description of the particle’s motion. Presently we shall deal with two parti-
cles: hence we must write down the corresponding set of equations. Since Egs.
(1) correspond to the stochastic generalization of Newton's second law, we shall

write the same system for each particle, i.e., instead of Egs. (1) we have
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F. .
| = 0 o7
Bev; = ooy =
i

(2)
Nev; * bev; = 0,

where i may take the values 1 and 2, corres ponding to the two particles acted on
by the external forces Fi- Our purpose is to show that the first integral of Egs.
(2) leads to Schrodinger’s equation. To achieve this in the simplest possible

way, let us transform to center-of-mass and relative coordinates:

R 8.7 ,;
21 12

(3)
P B~k i
where
m : m
o B B os ks B
1 M m = M m
1 2
4)
mlmz
=m *m ; o= = .
The above definitions imply the relations
L
a ta =1; ala:::i] i (5)

which will be frequently used in the following. For further convenience, let us

introduce the definitions:

p-%_p+p
r 2# 1 g 7
(6)
DR=_£= e T
2M D
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D, is the diffusion coefficient associated with the motion of the quasi-particle of
mass . equal to the reduced mass of particles 1 and 2; likewise, Dy is the dif-
fusion coefficient associated with the motion of the quasi-particle of mass

M= m t m,. The inverse of (3) is

r =R-alr 3

..,
"

R+ ar.

Let us apply to (7) the operators ) = 0. + D and 0= - 0. + ¢ in succession.

From the usual definitions ' and Eq. (7), above, we have
.@r1 =v, tu=V+U=0(vto)

Or - v,tu,=Vilta (vt

(8)

algf ==v tu :'V'+U-a1(-v:'u)
Bry=-v,tu,=-ViUta, (-vty),

where ¥ and U are the systematic and stochastic velocities of the C.M. and v and

v refer, in the same order, to the relative motion. Hence we obtain

¥ = V"CLIV

V2: V+'12V
(9)
v =U-avu
1 1
- U+ta
ug_U a,u
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and correspondingly:

V=V =V

(10)

Under the transformation defined by Eqs. (S,, the system (1) assumes the follow-

ing form:

f
0. ve Qv 20
G S L
an
!OSV + .ZQCU =0
F
G 5 M
(12)
Dev + fBcU=0,
where we have introduced the abbreviations:
E = ﬁ s i ’
’!J_ m m
2 1 (13)

Clearly, fn is the relative force between narticles and F_ represents the total
force acting on the C.M. It should be emphasized that f and F_ refers only to

the classical forces which come directly from F, ;and do not include any additional

329



DE LA PENA Y CETTO

force which may arise from effective interactions between the particles or between
any given particle and the vacuum. In fact, since the operators Ye and ':'S depend
on the velocities v, and v, , we see from Eqs. (2) that the motions of the two parti-
cles influence each other in a generally complex way. In other words f,and F,
are the classical relative and C. M. forces, respectively.

Egs. (11) and (12) represent a first result of interest: they indicate that
the laws of motion of the “particles” of masses M and . are equal to the law of
motion of a single particle. The separation into relative and C.M. motions corre-
sponds closely to that usual in classical mechanics. However, this separation is
still not complete, because in general the operators JQC and J")S involve both co-
ordinates through the four velocities v, and u; « In fact, upon substitution of (7)

in their definition', we obtain
+ v-i% +v-21 (14a)

and

A - 2 2
Bo=w Vte -V+DV +DV =
1 1 2 2 11 2 2

— UVt +D,V, +D,Y . (14b)

Introduction of (14) into Egs. (11) and (12) explicitly shows the presence
of crossed terms. But both from the physical and the mathematical point of view,
we may assume that the C.M. velocities ¥ and U do not depend on r, while the
relative velocities v and v do not depend on R. This postulate will be referred

toas (P) in what follows, With it, Eqs. (11) and (12) separate completely to

give:
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f
\ oy e
O v"?v—u':ru-D V, U= o
3¢ r T i

(15)
: - 2
2% +v-Vutu-VviDV, v= 0
at

N E

IV 7 ¥ e 0
SV VY= U3 Yyll= DN [ = 22
at R R R R M

(16)
au

S0 VT U TV 25T V= O

These sets of equations refer to two independent stochastic particles. As

known from previous treatments!:?, each one of these sets give ris- upon inte-

gration and simple mathematical transformations, to a corresponding Schrodinger
equation, namely,

2iup,

2
2
rvrljjr +Vrur L
g,
2i MD, = - 2MD; VR U + Vi Vi

where llb = ij (r), ‘rR = %)R (R) ’

==YV, and Fo = —VR Vv, From Egs.
(17) it immediately follows that the funcfion
Y=y, (18)

satisfies the equation:

. 3y 2 2
ib 3_:1 = -ﬁplvl W -51)2‘\72-¢ gl 1 (19)
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i.e., Schrodinger’s equation for a potential v, which may be expressed as the sum
of an external, C.M. potential Vi and an interaction potential V,. (Clearly, in Eq.
(19) these two potentials are to be considered functions of r and r2). Thus we
have achieved our first purpose, namely, to show that the usual Schrodinger
equation for two particles is a direct consequence of the system of dynamical

equations (2).

IIl. RECOVERY OF THE FUNDAMENTAL EQUATIONS

In this section we proceed to recover the system of equations (2), starting
from Schrodinger’s equation (19) and using (P) as the only additional postulate.
Although the result will not give anything fundamentally new, this demonstration
is profitable in that it yields useful relations as byproducts (which, incidentally,
could have been obtained from the expressions appearing in Sec. II). Furthermore,

it allows us to see clearly that the treatment can be generalized to N particles

without any further complication.

As suggested by the procedure used earlier!*2 we write the amplitude |/ in

the usual form
trcvexp(R+ £8) (20)

Clearly, the most general form for the functions R and § is

R=R,(1,2) + R (1) + R, (2} ,

§=950,2)+ S!(]) t s, @)
(The time-de pendence is omitted for brevity). R, and s, are the terms responsi-
ble for the interference between particles, while R, (/) = R, (r,) and §, (i) = §,(r,)

correspond to independent-particle motions. As usual, the velocities of the

particles are:
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<
]

20,V 8 =20V, (S, +5,)
(22)
20,V;R = 20,V;(R_+R)) ,

i

and must therefore satisfy the relation

vz'(mlvl)-_-v“(mzvz)

and a similar relation for u; . To see the meaning of these restrictions, we

transform to the C. M. system, thus obtaining

\7R “fv) = ¥ = {MV) ;
(23)
VR (uv) = V- (MUY

Now it is evident that under (P), Eqs. (23), and hence (22), are valid”, We
proceed further by introducing Eqgs. (20) and (22) in (19), and separating real and

imaginary parts;

a - =1
+R_+ 1V ev+V o v +
&g (R, R, Rz) Js "1 vz 0,

-1
U *‘v+tD urv =0
Y, 11 g =2 @2 e

: %(S(; ¥ 52) -Vl 'uldvz Yl (201)-1(":- uf) ¥ (202)-] (V:_ ui) B -

It is a simple though somewhat lengthy task to show that the two equations (24)
represent the first integral of the four equations (2). To accomplish this, we

apply the operators Vl and \?2 to both equations in (24). Let us briefly sketch

*
(P) is somewhat stronger than the conditions expressed in Eqs. (23) ; later on we shall
make full use of it to recover system (2).
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the procedure on an example, by applying Vl to the first of Eqs. (24). From the

previous definitions, we have that

2 2
. + _ = . -
v, v D, \71 = 195 u, v, Dzvz
and hence the result may be written in the form:

0 0

#i - ‘
N + |\ + . =5 . i
cY ! 5, Dz {Dl (v2 "/1 ) Y, D:e (V:z v;z) Y1 }

-1 -
+ ( 57 _ T V4 p T (T e R val v Vo
D, {D (i.l2 '1)v2 D:)(u2 .f2) ¥ lDlvl(Jz vz} B,V AV, ~v}F= 0's

It is easy to show that upon use of (P), each one of the expressions enclosed by

curly brackets vanishes identically, thus yieiding as a final result

which corresponds to one of the equations in (2). Let us transform, for example,

the first bracket:

D (v

v - 2 -
1% 'l)u: D, (v, ‘“z)ul‘

=D LV rav) e (=Y, @, T) 1 (U ta,u)-D, [(V +a,v) (¥, +a, V) (U= a,v) -

= = r sl U7 " ot _ v i1 )
= (Dlaz nle)_v N i= ¥ ‘RU o ¥ AV u—a 'RU" 0.;
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since

bou 5
2m m 2m
i 2

Da =D a =
1 2 2

B
= £ 0.

1

Following an analogous procedure with the remaining equations, we finally obtain:

l@cvi - Dsu,. s e

which is just the original system (2).

Now that the equivalence between Schrodinger’s equation for two particles
and the corresponding system of stochastic equations has been established, we
may go further and introduce the dynamical operators, in order to assign a physi-
cal meaning to the first-integral system (24). The procedure is similar to that
followed for the case of one particle'. [n the present case, it can be readily

shown that the first equation in (24) assumes the form of a Fokker-Planck equation
for the probability p= )"\ :

oo 2 2
g% +Y, €A +V, (e, ) =DV, p-DV p= 0 , (25a)

where, as usual, ¢;=v; tu,. Interms of C.M. and relative coordinates, we
have:

a3 . . 2 2
§t£+v, (€,0) + Vg (gP) =D,V p =DpVppo= 0 . (25b)

From the discussion included in ref. (1), it is evident that the second equation

in (24) is the energy law of the problem; from this we infer that the kinetic energy
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due to the stochastic motion is simply the sum of the contributions of each parti-
cle, i.e., all the interference effects are due to the dependence of each ve locity

on the coordinates of both particles.

IV. THE TWO-INDEPENDENT-PARTICLE SYSTEM

From Eqs. (20) and (21) we have:

p=Yy=e®o oM p@p0,2) (26)

where o.(i) = p,(r;), i=1,2, may be considered one-particle densities, while
Py(1,2) = exp [QRO(T,Z)] is a two-particle factor, which measures the effect of
interference between particles upon the probability density. Clearly, if we put
P, =1 the two particles become independent and at the same time, the Fokker-
Planck equation separates into two independent equafions* « When the potential
can be written as vV = V,(13 +V,(2), this separation is in general permissible and
causes any interference between particles to vanish, since the probability ampli-
tude becomes ) = L,Lfl (1) L,/J2 (2), and hence 5= R = U,

From a stochastic point of view, this situation is physically acceptable
only for very distant particles, i.e., when in tact we are dealing with two
stochastically independent systems. Since we are considering that each particle
interacts with the vacuum, we are obliged to accept the existence of a correlation
between the motions of the particles, induced by their motion in a common medium.
In other words, the two particles and the vacuum must be treated as a single
system.

This lack of independence between the motions of classically independent
identical particles is usually taken into account in quantum mechanics by intro-
ducing a very simple but extremely far-reaching idea: Pauli’s exclusion principle.

In the text-book language of quantum mechanics we say that being there two

*
This is equivalent to writing for two events @ and b, P(ab) = P(a) P(b), i.e., the events
are srtatistically independent.
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states @ and 5*, the identical particles 1 and 2 may be in either state,due to their

indistinguishability, and we therefore write:

Y= C o, (N (2)+ C, ¥ My () , (27)
where C_and C_ guarantee the normalization of ¥ and the required symmetry proper-
1 2
ties according to Pauli’s pfinciple**. At first sight, it appears that Eq. (27)
refers to independent particles but, as is well known, this is not the case; the
simplest and most frequent way to show this consists in constructing the proba-

bility density associated to W :

=€ 5 My 2) + € 15, (2) g, +2¢,C, Yo, M) 7, (1) 4,(2) 5, (2) cos @,

(28)

where

Q=5,2)-5,2) +s,(1)-5,) (29)

and the C, are assumed to be real, Eq. (28) explicitly shows the existence of
interference, which means that the amplitude (27) corresponds to two particles
with correlated motions. But now the argument breaks down: we constructed ¥
thinking in terms of two indistinguishable independent particles and yet we arrive
at the conclusion that the particles are not stochastically independent. However,

we also know that in spite of our arguments, Eqs. (27) and (28) are

For simplicity we shall consider only different, non-degenerate eigenstates, hence
E. s ,
a h

-
The text<book arguments are not entirely consistent, at least from the standpoint of a
corpuscular theory like ours. This lack of consistency comes about in the following
torm: First, the particles are labelled and then some correspondence is established
between labels and states, thus implying some distinguishability between particles.
Next, it is argued that actually the particles are indistinguishable and hence the labels
may as well be interchanged, obtaining a second wave function. Since from very gener-
al arguments it may be shown that the wave function for two classically non=interacting
particles must be symmetric or antisymmetric (ref. 4), the total wave function is con-
structed from the two previous ones, in order to achieve the required symmetry proper=
ties. Similar criticisms have been raised by other authors (see for example ref. 5) .
Arguments concerning the distinguishability of particles introduce into the physical
theory a subjective ingredient related to our capabilities of chservation. As long as we
do not explicitly introduce into the theory an external perturbation due to our obser-
vations, the system must be considered unperturbed and unobserved and evolving ac-
cording to its own laws, which have nothing to do with our capability to attach labels
to the porticles.
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physically correct. QOur purpose in this section is to assign to the above ex-
pressions a consistent meaning based on our stochastic point of view. At present
we content ourselves with the display of some basic ideas, hoping to extend them
in a forthcoming paper.

Let us begin with two remarks, concerning the interference term in Eq.(28)
and the general structure of W. First, we know that the interference terms appear
when dealing with amplitudes instead of probabilities, and actually their ex-
istence is essential for the foundation of quantum mechanics. In stochastic
theory, on the other hand, such terms are non-existent. This apparent contra-
diction might seem to indicate that our stochastic interpretation of quantum me-
chanics is incorrect. However, a more careful analysis shows that although such
interfarence terms are uncommon in stochastic theory, they are entirely con-
sistent with its fundamental equations. We may construct a theory with or without
them; which one to use is to be decided by considerations not properly within the
scope of the theory itself. |n particular, Eq. (28) is consistent with our basic
stochastic equations, and these, as has been previously shown, contain the
Fokker-Planck equation. To clarify this point, let us consider the followina
simple example: if A, and P, are two different solutions of the continuity equation
(which, with v = ¢ = v, gives the Fokker-Planck equation'), both for the same

systematic velocity v, then P;0i=1,2,is asolution of

9P 4V (vo)= 0 . | (30)
ot

Since this equation is linear, p = ap, +/(3p2 is also a solution, but not the most
general one that can be constructed with P and ©, + To show this, let us intro-

duce the function
p=p?p?, @3N

1 2

with p and ¢ real numbers. Substitution in the continuity equation gives
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20 4+V e vp)= (A=p=g) W+ ¥

Hence the function (31) is a solution of Eg. (30) if pand g are such that
f tag=ill : (32)

which means that from any pair of solutions 0,4 /), we may construct an infinity

](.‘ 2‘.' "-l) ' Wl?h

arbitrary (real) g. Three out of these are particularly important to us, namely,

of new solutions as linear combinations of terms of the form o

those corresponding to g = 0, 1and 1,2, which give:

p=ap t Lo ty vV PP, (33)

Generally, in stochastic theory one selects a priori v = 0, to eliminate any inter-
ference between different £; i quantum mechanics, however, is a particular
stochastic problem in which such interactions play a significant role. Since
itself is also to be interpreted as a probability, the constants @, /7 and ' are not
independent of each other. The density o has the same form as that given by Eq.
(28), except for the factor cos ). As can be easily shown, this factor arises
when o and £, are not assumed to correspond to the same velocity v anymore; in
this case, the probability density assumes the more general form give 1 by Eq. (28)
and satisfies the continuity equation for a new velocity whose value is obtained
from the corresponding amplitude, i.e., Eq. (27). Hence we see that to deal with
amplitudes instead of probabilities provides a simple means of introducing inter-
ference terms of the particular form illustrated by Eq. (33), which amounts to
constructing a stochastic theory more general than classical stochastic theory.
However trivial this result may seem, it merits the above discussion, because it
points out the fundamental difference between classical and quantum stochastic
processes. This difference is so important that it may be used as a starting
point for the formulation of the stochastic theory of quantum mechanics. A formal

6
but very interesting approach along these lines has recently been proposed
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Our second remark refers to the structure of the amplitude corresponding
to two particles. We wish to recall that it can be shown on very general grounds®,
and without the use of any argument about the indistinguishability of the particles,
that a two-particle amplitude constructed form single-particle amplitudes must be
either symmetric or antisymmetric. Thus Eq. (27) implies nothing about the
indistinguishability of the two particles.

Let us now give some simple arguments to justify from a stochastic point
of view the use of two-particle amplitudes of the usual form (27). For this
purpose, we recall once more that a product of the type i, (1)), (2) refers not to
a system of two particles, but to two independent systems; furthermore, that the
particles must not be labelled to distinguish them, since they are supposed to be
identical. Let the system be stationary; if the energies of the particles are
F, and E, , and these do not interact cicssically*, the total energy of the system
is F = E, + E, « The probability for the particle with energy E, to be between
r and rot drl is W (la) a'r1 = p (1) d:rl , and so on; clearly, any one of the parti-
cles may be in the neighborhood of r with probability density w (1a) or W (15),
depending on its energy state. Now we select two arbitrary points in space and
ask for the probability of the particles being in their neighborhoods. There will
be two different answers, according to whether we require the particle within dr1
to be in one of the energy states F, or E, , or whether we refer to a particle
without regard to its energy. In the first case, there are the two following possi-
ble questions:

a) we may ask for the probability w (1a; 25) drl drz of a particle with energy E
to be within drI and the other particle with energy E, to be simultaneous ly within
dr

A
2

b) or we may ask for the probability W (14; 2a) dr| dr, of a particle with energy F,

’

being within dr, and a particle with energy E_ being simultaneously within dr .
Hence the probability per unit volume for two particles to be simultaneously

within the ranges c.r'rl and dr_, irrespective of their energies, is

That is, if Schrodinger's equation either does not contain an interaction potential or we
are neglecting it.
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W(12; ab) = W (la; 2b) + w(1b; 2a) . (34)

If P(25]1a) stands for the probability per unit volume that a particle with energy
E, is atr , while the other particle (with energy E,) is at T then

W(la;2b) = w(la) P(2b1a) = w (2b) P(1a |2b) (35)

and therefore,

W(12; ab) = W(la) P (25 |1a) + w (1) P (22 |15) . (36)

Stochastic independence implies P (25 | la) = W(2b) = p, (2); any departure from
this relation is a consequence of the mutual interaction between pa:iiicles.

We may now identify W (12 ; ab) with pas given by Eq. (28), since it is
evident from its construction that such a © gives the probability per unit volume
that the particles are at L and r without regard to their specific energy states.

*
For simplicity, let us consider the most common case () - 0 (this holds, in par-

ticular, for stationary, non-degenerate states). Writing €, = Cand C,= €C, we

have
W(12; ab) =c*[W(1a) w (25) + €2 W (2a) W (15) +

*2eW (1a) W (16) W 2a) w (20) ] . (37)

From Egs. (36) and (37) it then follows that

P(2b|1a) = Cc*w(24) [1 + e/ W(15) W (2a) ] ,

v W (la) w(25) 158)

Special care must be taken when making cos ) = 1, since the sign of v'W is then lost.

To see this, let us write S = 5" 4 inn,where n = n(r)is 0 or 1, according to the sign of
& o f s -
Giny=GeS = (e BT yhen W = L3ty = ()" &R

. In what follows we shall
everywhere incorporate this overall sign (=)™

inte VW and take cos () - 1.
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P(2a|16) = C*W (2a) [62+e W(‘“)L@ﬂ] . (38b)
J wW(b) W (2a)

Since an inferchange of @ and 4 in P (2a | 15) must lead to P (2b | 1a), we necessari-

ly have from (38)

=11, (39)

The amplitude ¥ in Eq. (27) thus becomes either symmetric or antisymmetric with
respect to an interchange of @ and & (or r and o which is equivalent). That this
condition is trivial may be seen from Eq. (36) or even from the very definition of
the probability density, which requires that W (12; ab)= W (12 ; ba) = W (21 ; ab).
Eq. (39) simply states that symmetric probabilities can be generated only by sym-
metric or antisymmetric amplitudes.

Moreover, for consistency, our results must satisfy the following re-
quirements:
a) Since a double integration of W (12 ; ab) over all space counts the particles

twice, we must have

VJ-W(IZ;aEv)drldrz =2. (40)
b) Since energy is conserved,

W(la) = [W(la; 26) dr_ (41)

for any r , and so on.
1

c) The probability for one particle being in state a is

Iw(la)dr -1 (42)

1
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d) From Egs. (35) and (41), we also must require that

[Pk 1a) dr = 1. (43)

Eq. (42) is satisfied by construction. Upon intreducing condition (43) into Egs.
(38), we obtain

2 2 fwan [ -
c* [w@b)dr + e /:ETE\‘_/: W(2a) w(2b)dr =1,

which, together with (42), means that for the interpretation to have a meaning, two

conditions are to be satisfied, namely,

G £ 1] (44)
cmd
Vi (a) wnb)f/w (2a) W (2b) dr, = 0. (45)

This last equation, written in terms of the amplitude, has the only non-trivial so-

lution

[ ey ) dr = 0 (46)

and hence condition (43) demands that the amplitudes belonging to different energy
eigenstates be orthogonal, But from the stationary Schrodinger equation we know
that this is always the case, and hence Eq. (43) is satisfied. Further, we note
from Eq. (44) that in the stochastic interpretation, the normalization is fixed,
giving a value of unity to the coefficient ¢ instead of the quantum-mechanical
value 1/vV2 fora 4 b. Now, it is easy to check that if both conditions (44) and
(46) are fulfilled, then w (12 ; ab) as given by Eq. (37) and W (14 ; 2b) automatical-
ly satisfy the corresponding requirements (40) and (41).
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Thus we conclude that a system of two classically non-interacting parti-
cles may be described with the aid of single-particle amplitudes, expressing the
total amplitude as a symmetric or antisymmetric combination of them; that with
this amplitude we may associate the conditional probabilities

P(2b1a)= w(2b) [1+ ef 5 1] ] (47)

and that, since P (2b |1a) # W (2b), this construction automatically takes into ac-
count the mutual interaction between the stochastic particles. In Eq. (47), Fi

is given by

2021 MBIH D)

and has the following interesting property:

Lyl s b @8 < 5, 08 »

Now we proceed to show that, in the stationary state, the amplitude (27) corre-
sponds to an effective attractive state between particles when € = + 1, and to a
repulsive state when € = =1. The first step consists in calculating the relative
velocity of the particles described by Eq. (27). The systematic velocities v, may
be set equal to zero, since for non-degenerate states we may take 5. (1) = = F ¢,
and so on’ ; furthermore, as was mentioned above, we may write () = 0 for station-
ary states. On the other hand, a direct calculation gives for the stochastic veloci-

ties at the points r,, i= 1,2:

u; = ;_ [ug () +uy ()] + (-)i-1 ;_ (o, ) =v, ()] F, (48)
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with
F=[p,Mp, R =p0)p,2)1/p. (49)

The factor (=) o takes care of the change of sign which otherwise would affect

F when the space-variables are interchanged. Hence, the relative velocity

U =u=u_is
r 2 1
v, = uf” ¥ u’(,') E 5 (50)
with
oB Ll @F g, M te,@=-um] . (51)
2

A few algebraic manipulations allow us to rewrite Eq. (49) in the particularly

simple form:

4 tanh AR for €= +1
F = (tahh AR) = (52)
coth AR for e- =1

where

mz:;_ (R, @) =R, (M =R, 2)+R, (1] . (53)

Let us now consider the special situation R We see from Eq. (51) that in

this case ur(*) = 0, but u£') + 0; from Eq. (53), we have also AR = 0 for b=
ond hence, F = Ofor €= 1, but F= oo for €= =1. Upon introduction of these

valuves into Eq. (50) we obtain:

0 if e= +1
u, (r1 = rz) = (54)

oo if €E==1 .
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In other words, a symmetric amplitude implies that when the paif:ic- cre very
near each other, their relative velocity goes to zero and they will continue moving
together; this result is what we are interpreting as an efterii e tirc tion between
particles in the symmetric state. On the other hand, for € = ~ I we have the opposite
situation: if the particles happen to come close to each other, they acquire an un-
bounded relative velocity, which causes a violent separation; this is the result we
are interpreting as an effective repulsion between particles in the antisymetric
state, Clearly, the value of € must be selected according to the physical siru-
ation. For example, when the spin of the electrons is introduced in the usual
quantum mechanics, € is selected according to the relative spin orientations, in
such a form as to guarantee attraction (€ = + 1) for antiparallel spins and re-
pulsion (€ = = 1) for parallel spins; in other words, it is selected such that the
total amplitude (the product of spin and configuration factors) be antisymmetric.
This gives us an interesting insight into the exclusion principle from eleme-itary

considerations.
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