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s~ calcula la matriz l' df' muchos cu~rp{)s para mI siS/f'ma d(' jumimus

qUf' ill/t'ractúan únicamt'n/f' por mf'dio d~ tOla {unza ."¡mp/~ d~ dos cllt'rpos )'
- I

a/Tactiva, a tU/a /('mpf'ratura apt'uas mayor qut' la tt'mpf'ra/ura d~ transición f3c
a la {aS(' sup~rc()l1duc/ora. Es/~ mod~/o ha sido discutido par Kadano{{ and

,"lar/in, qUif'l1t'S han mostrado qUf' la aparición d~ .,1 polo complf'jo f'tI la matriz T,

como {unción df' la /~mpf'ra/UTa, para I'al()r~s nulo,'{ dt' la f'n~rg¡a )' d~1 impulso

linf' a 1, indican la transición a la {asf' supncollduc/ora, En f's/~ trabajo st' ('IJa.

lúa la matriz'" para impulso Ii'tf'al total)' t'llHg;a di/nt'''/t' dt' cno.

This work wos b"gun while the oulhor wos on leove 01 Ihe Deportment of Physics, Unjo
versily of Illinois.
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Tb~ matl)'-bod)' T-matr;x ;5 calcu/at~d lar a s)'st~m ollnmions itlt~racting

on/)' tbrougb a simp/~ /Il'o-bod)' a/tractif)~ intnaetion, just abot!~ th~ supneon-
• I

dueting /rmlsi/ion /~mpna/ur~ f3c • This mod~/ has butl discuss~d b)' Kadanoll

and .\lar/in II'bo hat'~ shor/'n /ba/ /h~ app~aranc~ 01 a comp/~x po/~ in /h~ T-matrir

as a june/iou oj umpna/ur~. lar uro ~n~rg)' aud momnJ/um. signa/s th~ /ransi/ion

to th~ supl!reonducting phasf'. l/nI! /hl! T-ma/rix lor /0/0/ mom~n/um and ~n~rg)'

dilj~r~nt from Zf!rO is H'aluat~d.

l. INTROOUCTION

As pcrt af a program to investigate the volidity ond limitations of both the

non-eonserving ond conserving T-approximotions to the two-portic!e Green's

functionl in the theory of superconductivity, we have colculated the many-body

T -matrix for non-zero total momentum ond energy, both far pure ond dirty super-

conductars just aboye the transition temperature. In this poper we report the

value of the T-matrix far pure superconductors using the simplified model of

Kadanoff and Martin2• This mooel is such that the fermions ore allowed to

interact only through a two-p::nticle constant attractive potential different from

zero on a shell about the Fermi surface. The candition

(1)

which restricts the momentum of the incoming porticles le, defines this shell.

Here "F is the Fermi momentum ond (Lb is the Debye frequency*. The Debye

cutoff appears here rather artificially but, os we shall see later on, its usage is

connected w ith the a ppearance of s ame otherwise divergent integra Is due to the

We use units such thath =: I thraughout this papero
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t idealistic noture of the attractive potential proposed.

shown that when a more reolistic retorded potential is

VOL. 18

More 1and AndersonJ hove

used, the Debye cutoff op-

¡::eors noturally.

The mony-bcxly T .matrix as discussed by Kadanoff ond Baym4
, is charac.

terized by the foct that multiple scottering processes of the direct ond exchonge

types are included automaticolly up to an infinite arder in the scattering potential.

This opproximotion is useful for cases in which the scattering potential octing

between the particles is no' small even though its overo 11effect may be smoll

beco use the range of this potentiol is short. In this discussion we ore using the

zero.ronge potentia I introduced in reference 2, so we expect the T .matrix to give

a reolistic representation of the interoction taking place in our simplified mcxlel.

The idea of cons idering the influence of multiple.scottering processes in

the superconducting phase transition was expounded by Thouless5 , who utilized

the lodder opproximation to the thermodynamic potential in pure superconductars

both oboye and below the tronsition temperoture. Our work reproduces the results
- 1

of Thouless oboye f3c ' but 0150 introduces SOrne new feotures due to the in.

clusion of impurities, ond the use of the conserving T -approximation, os will be

shown in o forthcoming publicotion12•

In section 11 of this paper we define the T .matrix following the nomen-

cloture used in reference 4, ond reproduce Some of the properties of this opp-oxi-

mation which are giyen fully in that reference. The approximations used ore

clearly estoblished in this section and the structure of the T.motrix for these ap.

P""oximotions is olso discussed. Section III presents the actual colculation of

the T .motrix for our model. Sorne of the integrols that appeor in this section are

eyaluated in the Appendix, where the assumptions used in obtoining the mothe.

maticol results ore pointed out.

11. DEFINITIONS AND APPROXIMATIONS

The generalization of Quontum Field Theory techniques to treat condensed

systems has been one of the most successful tools in the study of these systems.
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Martin and Schwinger6 hove developed a very elegant theory far this purpose.

Very succintly we can soy that the bases of their method are:

i) The equations of motion that the Green's functions, or time-dependent

field correlation functions, should obey. These equations of motion are obtained

directly from the Heisenberg equations of motion that the field operators satisfy,

and therefore are a consequence of the Quantum-Mechanica I treatment of the

prob lem.

ii) The boundary condition, which permits first, to characterize fully the

solutions to the equations of motion, since these equations ore Hrst-order differ-

entiol equations in the time variables, and the boundary condition is o time-

boundary condition¡ ond second, to introduce directly in the formolism the thermo-

dynamical characterization of the averages in terms of which the correlotion

functions are defined.

iii) The ona Iytic continuations necessary to pass from the complex-frequen-

cy Fourier ano Iysis (which tokes into account the boundary condition), to the

real-frequency Fourier coefficients. Boym and Mermin 7 hove shown that, given a

Fourier coefficient G(z ) defined for a set of discrete points in the complex z-v

plone, o unique onolytic continuotion G(z) moy be achieved, if and only if,

o) G(z) is analytic for z off the real axis, and b) G(z) --+ O when z --+ <XI o long ony

stroight line in the upper or lower half-plane.

The Green's functions or time-dependent field corre/ation functions ore

grand-eanonica I averages of d iagono I matrix e lements of certo in prooucts of fie Id

operators. For our purposes, we sholl be interested in the one-electron Green's

function G (1,1'), in terms ofwhich the T-motrix is defined. This function G is
1 1

defined os

- i (2)

where T is the chronologicol operotor that orders from right to leh in arder of in-

creasing distance from the origin tO'Hards (-;,8), olong the negative port of the
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Irnaginary axis in the complex I-plane. T also introduces o change in sign ac-

cading to the numher of permutations of the operatCfs in p:Jssing from the standard

adering in Eq. (2) to the ordering required by the operotor T_ This change in

s ign is represented by (-1 )p, wnere P is tne number of permutotions. Tnerefae

we moy symbolically write

T(
p

)=(-1) ( ). (3)

where ( )+ indicates only the time-ordering operotion. The field operatas in

Eq. (2) satisfy tne anticommutotion re1ations

{<J;(l),<J;'(l'), ~" =8(,,-';)', , (4 )

where the number in the arguments represent both space and time variables. The

reason for the appearance of complex-time orguments in this formalism is due to

the foct that, in this manner, the boundery condition takes en especially simple

form'" 6 ,

_~8}J,GI(1,1')lt =-ij3 ,
1

(5)

end therefore it can be included directly in the formalism by eXp:Jnding.the

function G
I
(1, 1') in o Fourier series alon9 the interval [0,- ;,6] in the complex

I~plane. Then

-iw(t-t'), 1 . l' I I ,
G (1,1 ) = --,-" 1 r G (, " ; w )
1 -ijJlI 111v

(6)

where we hove ossumed thot the system is "homogeneous" in time. Clearl.,., ifwe

want condition (5) to be satisfied by the representotion (6), we should hove
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(7)

which defines the set of discrete points for which the coefficient G (r , r' , w )
1 I J 11

has been calculated.

The function G (1,1') is obtoined fram the equation of motion
1

(

i d
dI,

\/' )+ -'- G (1,1') = S(1- 1') - i f dr v (r - r ) G (12; l' 2') I t _ t2m I 2 1 2 2 1 - 2

(8)

where v(r - r ) is o two-bcdy potential acting between the porticles. G, is the, ,
fwo--electron Green's function defined os

[
- 13(/1- p.t'l) + +, ]

G (12;1'2')= (-i)' TR , T(0(1)0(2)0 (2')0 (1)
, -a(".~N)

TR ~
(9)

ond

, ,
2 ::::;:(r , t + €), when € -o O, , (10)

Since we ore ossuming that the ~rticles ore free between the scotterings

due to the two-body attractive potential that produces the condensotion in mo-

mentum spoce of the Fermi liquid, typicol of the superconducting phase, the

equotion that would describe this free propogation can be obtained from Eq. (8l

by setting the potentia! equol to zero; that is,

(
i~ + ":')GO(l,l')=S(1_¡')

(JI 2m J, (110 )

By Fourier-transforming the aboye equation both in time ond spoce we obtoin

384



VALLADARES

1
Zv - €(k)+ ¡L

VOL. 18

(11b)

where we show explícitly the dependence on fl, the chemical potential. E{k) is

given by the free-lxHticle expression k2/(2m).

When the scattering potentio 1 is token into account Eq. (8) moy be solved

in terms of Eqs. (11) to give

~(2,2')= -iJV(2-3)G,(23;4'i')G;'(4,2') , (13)

the self-energy or moss operotor. The oors over the arguments, e_g. 2, indicate
both splce and time integrations with the time orgument varying in the intervol

[O, -iJl), and v(1 -2) = &(, - t ) v (, -'). Sinee ou' syslem js hamogeneous
1 2 1 2

in space and time, we can find the Fourier tronsform of Eq. (12) ond solve for G ,
1

obtaining

G (k,z + ¡L)
1 v

z - € (k) + ¡L- ~ (k, z + ¡L)
v v

(14 )

It is clear, from the equotion aboye, that the real plrt of the mOSS operator l,
gives rise to o correction to the electron energy. The imoginory plrt will give

us informotion obout the l¡fe-time of the particle in the stote of momentum k. The

contribution of the real part of ¡ moy be token into Occount by redefining the

electron energies E(k) to include this termo Since we ore not interested in re-

ncrmolizotion effects in this plper, we ore going to neglect oltogether the cor-

rections due to the moss operator in Eq. (14), ond, os for os the T-approximation

to the two-portic1e Green's function is concerned, we will OSSume thot the propo-

gotion of on electron is going to be represented by Eqs. (11). This is our first

opproximotion.
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The second approximation we shall make refers to the strueh.l'e of the

attraetive potential that shall be used. We propose it to be of the fam

with

v(l-2) = - Av8(1 -2) 8a+/3,O

Ivl, ¡or
Ik'-k~1

~wD
2m

v=

O , for
Ik' - k~ I > wD •

2m

(lSo)

(15b)

Since the potential proposed is a zero.range attraetive potential of strength '\V,

the only kind of particles that would interact through it are portie les with oppo-

site spins, due to the Pauli exeJusion principie .• This fact is shown explicitly

in Eqs. (15) by means of the function (5 n .• Here a and f3 refer to the pro-
a + ¡..J, O

jection of the spins of the particles along the axis of quantization. The di-

mensionless constant ,\ is assumed to vory between zero and one, and it will

become useful in future calculations. The Debye cutoff w
D

that appears in

Eqs. (15), has already been discussed in the introduction. So, the second.

quantized Homiltonion for OlJ" system moy be written as

11 (1) = :£J d"f; +(r,l) (- 7'),¡; (r,l) +
a (l 2m (l

(16)

Now thot we hove estoblished the opproximotions to be used in this paper,

we are going to onalyze the structure of the T-motrix using these opproximations.

As given in reference 4 the rnany-body T-matrix is defined by the equation
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< 12 I '1' 11' 2' > = v(1 - 2) S (1 - 1') S (2 - 2' ) +

VOL. 18

Using this result ond Eq. (15), we find thot Eq. (17) becomes

+;I'(1'-2')J<12ITI12> G(l,l')G(2,2')

(17)

It is clear from the equation aboye that T has the following structU'e,

< 12 IT 11' 2' > = S (1 -1 ) S (1 , - I , ) < r ,r 1T(t - I , ) 1r , , r , >
1 2 1 2 1 2 1 I I 2

(18)
fa instantaneous two.body potentials. In FX1rticular, if the potentiaJ has the

form given by Eq. (15) the structure simplifies even more and we hove

< 1a, 2131 T 1¡'a, 2' fl > = < 1 1T)a4 11' > S (1 - 2) S (1' - 2') Sa' iJ, O

(19)

(20)
The subscript A. in T is meont to :-emind us of the presence of the "strength"

IXIrometer thot appeors in the scottering potential. The superscripts in T clearly

show thot the potential we ore using octs between IXIrticles of opposite spin os

wosdiscussed previously. If we now suppress the spin ¡ndices, ond introduce

the definition

1.0(1,2) = ;G(1,2)G(1,2) (21 )

where (-i) 1.0(1,2) is cleorly the uncarelated FX1rtof the two.portic/e Green's

function, we moy write Eq. (20) as
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Tnis is the equation thJt we shall solve ap¡:rc:»cim::Jfelyin the next section, in ader to

find en explicit express ion for the T-matrix tor non-zero total momentum endenergy

ofthe p::Jir.

III. CALCULATION OF THE T-MATRIX

By looking at Eq. (22) and toking into account the boundary condition of

Eq. (5), we find that the T-matrix satisfies the following boundary condition4,

<IITll'>I, "O
1

(23)

Therefore, we can Fourier~nalyze the time strueture of the T ..matrix as

.•iw (1 .• 1 I )

<IITII'>= 1 ~:. v 1 1 <, lT(w )1,'>
~tI 1 ti 1

with

(24)

w =
v 21" + n ,v

(25)

where v is an integer. The Fourier coefficients are then given by

Using these results we can Fourier ..tronsform Eq. (22) to obtain

- ;W
1 +"VLo(Q,nv +21")

(26)

388



VALLADARES

with

1.(0,0+21')=o v

VOL. 18

= i __l_~J~G(q,-Z +1')G(O-q,O +z +1') (27)
_ ;/3 n (217)3" ti n

where the G's are given by Eq. (11). In the equations aboye, Q and (O +2.u)• v

ore the total momentum ond energy of the pairo

The evaluotion of Eq. (27) is given in the Appendix, where the result

is obtoined, ond the assumptions involved ore discussed. In Eq. (28) too lj; 's

ore the di..ogomma functions8•11 and the integration is performed over the solid

ongle Qa. Moreover, /ny = e = 0.577ond

x = - if3 {o + O • qF _ ~}
217 v m 2m

(29)

Now let us go bock to Eq. (26). As discussed in severa I places 2•••• 5.
9
,

o phose transition will occur whenever the denominotor vanishes for ¡:cirs such

thot Q = O, ond O = O. lf we know ~', this would give uS the critico I tempero.
v .1

ture for the superconducting phase trons ition, f3c ,as the solution to the equetion

o (30)

From this condition the BeS result for the trons ¡tion temperoturelO follows. T o

see this, let uS write out Eq. (30).
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(31 )

1
'\N (O) V

from which we obtoin the Bes equation

.1 2
/3e =---2"h'

"

__1-

)N(o}v
(32)

in the w~ok-eoupling limit.

Instead of writing Eq. (26) os o function of the p:Jrameter AV we choose

to write it as o function of the para meter Pe (experimenta/ly, more eosily de.

termined) given aboye. Doing this Eq. (26) becomes

(33)

from which the following is obtained:

N (O) ~ In P...- +'¡' (.!-) _¡dO. ,¡,(.!- + - i/3
/3 2 4" 2 2"e

(34)

NO'H, os stated at the beginning of section 11, the onolytic continuotion of

'1'(0,11 ) in this cose is obtoined simply by letting O -"'0, with 11 o complex• •
variable, s ¡nce 011 the requirements listed then ore satisfied here. The reo 1_

freqvencyresponse functions, 1">(Ú)) ond Y«c.,»), ore obtained by meons of the

390



VALLADARES VOL. 18

optical theaem derived in reference 4 (in particular Eq. 13-22) from the equation

fa 7"(Q • O ) •

Finolly, the complex-frequency result that we shall utilize in our evo lu-

ation of both the conserving ond non-eonserving T-opproximotion to the two.¡:xnti-

cle Green's function for pure superconductas, is given by

N (O) {In f3 + <f; (~) _fdlla <f; (~ + - if37J; 2 277 2 277
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As stated, our purpose now is to evaluate the product of two one.particle

¡:ropogators given by

L (Q, ¡¡ + 2¡L) =o v

= i _1_ ~ (dq G (q, _ % +1') G (Q _ q, ¡¡ + % +1') ,
- ij3 nJ (271)3 n 11 PI

(A 1)

with

(A2)

1 ,
% + ¡¡ +I'-E(q)-R-+
"11 2m

(A3)

We now male the usual simplifications in the theory of metals,

(A4)

with N (O) the density of states at the Fermi level, and

(AS)

When Eqs. (A2) to (AS) are substituted into Eq. (Al), we obtoin:
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i J",. ~ s (O) _a d~

- If-J n 411

-iJ z t

"
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(A6)

We now ha ve two possible ways of evaluating Eq. (A6) which must be

equiva lent. We can either integrate over t first and then sum over rJ, or vice

versa. We propase to do it the first way, s ince in this manner we can obtain Jd~
by means of complex. integrotion techniques. Since the integrand is convergent

os t-2 when t -.."',we may relax the limits of integration to [_ "', + 00] •

(JIere we to Sum over 11 first, and then integrate over t, we would have to be more

coreful with the limits of integrotian). Then, using contour integration techniqLes

we obto in

jdfl
L (Q.!! t 2¡¡) = - S (O) _a_ ~
o ti 471 n) o

(2" ti)

where we hove used the explicit form for rn; thot is,

t - i/3
27T

I

(
Q'q,.. Q')n , __ -_

ti m 2m

(Al)

z
"

(2" ti) 7T

- i/3

Now, os discussed in reference 11, the formally divergent summotian in

(A7) can be "cured" in several different woys. Such divergency is due to the

simplified model that we ore using far the interaction, and disappeors when o more

reolistic retorded electron~lectron interoction is considered. If we use the -llSlCI'"

method of cur ing the d ivergence we obta in (see reference 11):
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1
2n + 1 + ",.

from which we derive

(A8)

¡¡ .;
+ _ ij3 11

217

~'_L)m 2m
2

(A9)

tOOt is, Eq. (28). It is impa-tant to point out that the "usual" method of curing

the divergence agrees with results obtained in the weak-eoupling limit,
• 1

W
D
»f3

c
' for the transition temperotlJe. (See Section 11I).
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