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RESUMEN

Se calcula la matriz T de muchos cuerpos para un sistema de fermiones
que interactian dnicamente por medio de una fuerza simple de dos cuerpos y
atractiva, a una temperatura apenas mayor que la temperatura de transicion ﬁ;l
a la fase superconductora. Este modelo ha sido discutido por Kadanoff and
Martin, quienes han mostrado que la aparicicn de .u polo complejo en la matriz T,
comao funcion de la temperatura, para valores nulos de la energia y del impulso

lineal, indican la transicicn a la fase superconductora, En este trabajo se eva-

lia la matriz T para impulso lineal total y energia diferente de cero,

7
This work was begun while the author was on leave at the Department of Physics, Uni-
versity of Illinois.

379



1969 REV. MEX. FIS,

ABSTRACT

The many-body T-matrix is calculated for a system of fermions interacting
only through a simple hwo-body attractive interaction, just above the supercon-
ducting transition temperalure ,8;1 « This model has been discussed by Kadanoff
and Martin who have shown that the appearance of a complex pole in the T-matrix
as a function of temperature, for zero energy and momentum, signals the transition
to the superconducting phase, Here the T-matrix for total momentum and energy

different from zero is evaluated,

I. INTRODUCTION

As part of a program to investigate the validity and limitations of both the
non-conserving and conserving T-approximations to the two-particle Green's
function' in the theory of superconductivity, we have calculated the many-body
T-matrix for non-zero total momentum and energy, both for pure and dirty super-
conductors just above the transition temperature. In this paper we report the
value of the T-matrix for pure superconductors using the simplified model of
Kadanoff and Martin®. This model is such that the fermions are allowed to
interact only through a two-particle constant attractive potential different from

zero on a shell about the Fermi surface. The condition

2 2
| &% - & |

2m M

4
b&

which restricts the momentum of the incoming particles k, defines this shell.
Here k. is the Fermi momentum and wp, is the Debye frequency”. The Debye
cutoff appears here rather artificially but, as we shall see later on, its usage is

connected with the appearance of some otherwise divergent integrals due to the

We use units such that % = | throughout this paper.
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idealistic nature of the attractive potential proposed. Morel and Anderson® have
shown that when a more realistic retarded potential is used, the Debye cutoff ap-
pears naturally.

The many-body T-matrix as discussed by Kadanoff and Baym*, is charac-
terized by the fact that multiple scattering processes of the direct and exchange
types are included automatically up to an infinite order in the scattering potential.
This approximation is useful for cases in which the scattering potential acting
between the particles is not small even though its overall effect may be small
because the range of this potential is short. In this discussion we are using the
zero-range potential introduced in reference 2, so we expect the T-matrix to give
a realistic representation of the interaction taking place in our simplified model.

The idea of considering the influence of multiple-scattering processes in
the superconducting phase transition was expounded by Thouless”, who utilized
the ladder approximation to the thermodynamic potential in pure superconductors
both above and below the transition temperature. Our work reproduces the results
of Thouless above f:‘;l , but also introduces some new features due to the in-
clusion of impurities, and the use of the conserving T-approximation, as will be
shown in a forthcoming publication'?,

In section Il of this paper we define the T-matrix following the nomen-
clature used in reference 4, and reproduce some of the properties of this approxi-
mation which are given fully in that reference. The approximations used are
clearly established in this section and the structure of the T-matrix for these ap-
proximations is also discussed. Section Il presents the actual calculation of

the T-matrix for our model. Some of the integrals that appear in this section are

evaluated in the Appendix, where the assumptions used in obtaining the mathe-

matical results are pointed out.
II. DEFINITIONS AND APPROX IMATIONS

The generalization of Quantum Field Theory techniques to treat condensed

systems has been one of the most successful tools in the study of these systems.
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Martin and Schwinger ® have developed a very elegant theory for this purpose.
Very succintly we can say that the bases of their method are:

i) The equations of motion that the Green’s functions, or time-dependent
field correlation functions, should obey. These equations of motion are obtajned
directly from the Heisenberg equations of motion that the field operators satisfy,
and therefore are a consequence of the Quantum-Mechanical treatment of the
problem.

ii) The boundary condition, which permits first, to characterize fully the
solutions to the equations of motion, since these equations are first-order differ-
ential equations in the time variables, and the boundary condition is a time-
boundary condition; and second, to intreduce directly in the formalism the thermo-
dynamical characterization of the averages in terms of which the corre lation
functions are defined,

iii) The analytic continuations necessary to pass from the complex-frequen-
cy Fourier analysis (which takes into account the boundary condition), to the
real-frequency Fourier coefficients. Baym and Mermin’ have shown that, given a
Fourier coefficient G(zy) defined for a set of discrete points in the complex z-
plane, a unique analytic continuation G(z) may be achieved, if and only if,

a) G(z) is analytic for z off the real axis, and b) G(z) —* 0 when z = ~ along any
straight line in the upper or lower half-plane.

The Green's functions or time-dependent field correlation functions are
grand-canonical averages of diagonal matrix elements of certain products of field
operators. For our purposes, we shall be interested in the one-electron Green's
function Gl(l, 1'), in terms of which the T-matrix is defined. This function G is

defined as

H= 1 N) +
ryayytan) )
=B (H=uN)

-B(
G (1) = =i IR [

TR e

where T is the chronological operator that orders from right to left in order of in-

creasing distance from the origin towards (=if3), along the negative part of the
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imaginary axis in the complex f-plane. T also introduces a change in sign ac-
cording to the number of permutations of the operators in passing from the standard
ordering in Eq. (2) to the ordering required by the operator T. This change in
sign is represented by (—'I)P, where P is the number of permutations. Therefore

we may symbolically write

m J==r L 1 (3)

where () indicates only the time-ordering operation. The field operators in

Eq. (2) satisfy the anticommutation relations

+

{p(M, 3= (Y M, v a9r=0,

“r{(])l‘ﬁ‘f” (],)‘ g ‘?(r;-r;) ’ (4)

where the number in the arguments represent both space and time variables. The
reason for the appearance of complex-time arguments in this formalism is due to
the fact that, in this manner, the boundary condition takes an especially simple

form* 6,

[ B 1]
G (N, co==e"6 0,1, -5, 5)
X = =i

and therefore it can be included directly in the formalism by expanding-the
function G, (1,1') in a Fourier series along the interval [0, = i3] in the complex

t-plane. Then

=j (f =t @
V(l 1)

- i3 le Gl(rl,r:;wv) ’ )

G (1,1 =

where we have assumed that the system is "homogeneous” in time. Clearly, if we

want condition (5) to be satisfied by the representation (6), we should have
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G =l ¥ = _(_Ql_j_D m o, v = integer, (7)
v v Yz
- 1,Lj
which defines the set of discrete points for which the coefficient G, (r! Tl wv)
has been calculated.

The function G, (1,1") is obtained from the equation of motion

2
g T

[ o3 10y oo I - L1t
i % +Tm’ G (1,1 = 80-1" 1jdr2v(rl r) G (12,12 )"1"‘2
(8)
where y(r1 - rz) is a two-bedy potential acting between the particles. G, is the

two-electron Green’s function defined as

-B(H=uN) -
6 (12:172 < (=12 TRL "M@t eyt an]
2 - B(H=KN)
TR e
(9)
and
2*;(r2,:2+e), when €= 0" (10)

Since we are assuming that the particles are free between the scatterings
due to the two-hody attractive potential that produces the condensation in mo-
mentum space of the Fermi liquid, typical of the superconducting phase, the
equation that would describe this free propagation can be obtained from Eq. (8)
by setting the potential equal to zero; that is,

v

§ e . 1 0 ] o ’
e i MU, T e ST =] 11a)
' -‘!l 2m 1( ) ( ) (Na

By Fourier-transforming the above equation both in time and space we obtain
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0 1
Gk B st (11b)
, (koz tp) z - ekt

where we show explicitly the dependence on ;., the chemical potential. €(k) is
given by the free-particle expression k*/(2m).
When the scattering potential is taken into account Eq. (8) may be solved

in terms of Eqs. (11) to give
6 (1,1 =62(1,1 +[6°(1,2) £ 2,2 6,2', 1", (12)
22,2 =-ifv2-3)6,023;33) 6 E2") , 13)

the self-energy or mass operator. The bars over the arguments, e.g. 2, indicate
both space and time integrations with the time argument varying in the interval

[0,-i3],and V(1-2) = (¢, =t )v(r =r). Since our system is homogeneous
in space and time, we can find the Fourier transform of Eq. (12) and solve for G-

obtaining

G, (k,z,*u) = ! . (14)

g =e(kyt pe E(k,zv+,u)

It is clear, from the equation above, that the real part of the mass operator X,
gives rise to a correction to the electron energy. The imaginary part will give
us information about the life-time of the particle in the state of momentum k. The
contribution of the real part of 3 may be taken into account by redefining the
electron energies € (k) to include this term. Since we are not interested in re-
normalization effects in this paper, we are going to neglect altogether the cor-
rections due to the mass operator in Eq. (14), and, as far as the T-approximation
to the two-particle Green's function is concerned, we will assume that the propa-

gation of an electron is going to be represented by Eqs, (11). This is our first

approximation,
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The second approximation we shall make refers to the structure of the

attractive potential that shall be used. We propose it to be of the form

V(1=2)== ) vE(l=2) 5“/3'0 ; (15a)
with
V], for %'_ <,
V= (15b)
0, for # > wpy

Since the potential proposed is a zero-range attractive potential of strength AV,
the only kind of particles that would interact through it are particles with oppo-
site spins, due to the Pauli exclusion principle. This fact is shown explicitly

in Eqs. (15) by means of the function & . Here aand [ refer to the pro-

a+f, 0
jection of the spins of the particles along the axis of quantization. The di-

mensionless constant A is assumed to vary between zero and one, and it will
become useful in future calculations. The Debye cutoff w, that appears in
Eqgs. (15), has already been discussed in the introduction. So, the second-

quantized Hamiltonian for our system may be written as

2

Zfdr f' (r, 1) -,Z_ Y (r,2) +
m
-gizfdnzf;(r.w.* (O, (Y (1) (16)

Now that we have established the approximations to be used in this paper,
we are going to analyze the structure of the T-matrix using these approximations.

As given in reference 4 the many-body T-matrix is defined by the equation
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TN T |12 > = (1<) 8 1Y B2 40%)

+iv('=2") [<12|T|12> 6 (1,16 (2,2') .
(17)

It is clear from the equation above that T has the following structure,

& LT N - [ - = S
S LAbdll i >:L(r1 rz),(tlf tza)<rl,r2\"r(r1 tl;)ﬂr];,rz.

(18)
for instantaneous two-body potentials. In particular, if the potential has the

form given by Eq. (15) the structure simplifies even more and we have

< 18,28 | 1| 1a, 28 > = <1 |T;"’3\1'> §(1-2)8(1'=2") 5

atfB,0

(19)
Using this result and Eq. (15), we find that Eq. (17) becomes

<1 T;'-IH'\ = =AV3(1=1)-iAv[<1 }Tj'-l |T>GI(T,1')G (1,1%)

-a
(20)
The subscript * in T is meant to remind us of the presence of the "strength”
parameter that appears in the scattering potential. The superscripts in T clearly
show that the potential we are using acts between particles of opposite spin as
was discussed previously, If we now suppress the spin indices, and introduce

the definition

L,(1,2) = i6(1,2) 6(1,2) 20

where (=17) 1_0(1,2) is clearly the uncorrelated part of the two-particle Green’s

function, we may write Eq. (20) as

V> = =« Avs(1-1") = Av] <1 5| T>L, (0,1 . @2)
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This is the equation that we shall solve appraximately in the next section, in order to
find an explicit expression for the T-matrix tor non-zero total momentum and energy

of the pair.

Ill. CALCULATION OF THE T-MATRIX

By looking at Eq. (22) and taking into account the boundary condition of

Eq. (5), we find that the T-matrix satisfies the following boundary condition*,

SIS £ e s | ) 23)
1

L =0 t'=ag
1= .’9

Therefore, we can Fourier-analyze the time structure of the T-matrix as

i (t=t 1)
vl

<1 |r|1 2= _1”? %e <rl\r(my)]rl'> (24)
with
21
= 2L F = 2t ’ 25
o= 2+ 2 L uvq, (25)

where 1 is an integer. The Fourier coefficients are then given by

-i8 i(2u+Q M =ts) '
<1T(2,u+QVH>=f d(!;-ttu)e s <iT(f1-11f)‘>.
0

Using these results we can Fourier-transform Eq. (22) to obtain

T.(@,Q +2u)= =M 2
2.8, *2u) T+AVL,(@,Q +2u) 26l
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with

LO(Q’ QV + 2,1) =

E sJ__zj‘ﬂi_s(q,-zﬂ+p)G(o-q,Qv+z”+P) , e
-iin (277)3

where the G’s are given by Eq. (11). In the equations above, Q and (Q + 2u)

are the total momentum and energy of the pair.

The evaluation of Eq. (27) is given in the Appendix, where the result

L,@Q,Q +2u) =

dQ ‘b’y AW 1 %

is obtained, and the assumptions involved are discussed. In Eq. (28) the i's

are the di-gamma functions ® 11 and the integration is performed over the solid

angle Q, . Moreover, Iny = C = 0.577 and
-if Yo + 9 0"
27 B m 2m

(29)

X =

Now let us go back to Eq. (26). As discussed in several places? 4579

o phase transition will occur whenever the denominator vanishes for pairs such
that @ = 0, and Q _ 0. Ifweknow V, this would give us the critical tempera-
<

ture for the superconduchng phase transition, 5_ , as the solution to the equation

1+ }\VLZ(O,‘Z,&) =0 (30)

From this condition the BCS result for the transition temperature'? follows. To

see this, let us write out Eq. (30).
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L (0,20)= =N dn 20 _ o 1
20,200 = =N tn < -
or
. Tt -.__]_

from which we obtain the BCS equation

1
AN(a)V

-1
B: =2,
i T be

in the weak-coupling limit,

MEX. FIS.

@31)

(32)

Instead of writing Eq. (26) as a function of the parameter AV we choose

to write it as a function of the parameter . (experimentally, more easily de-

termined) given above. Doing this Eq. (26) becomes

e -1
750Q, 9, +2u) = (L] (0,24) - L (Q, Q+24))

from which the following is obtained:

1
T, @Q)-

(33)

Q2
i ™

1 a -1 m
- nt +4ft) - LI
v(0)3nﬁc "3 fdﬂ [ o * 5

(34)

Now, as stated at the beginning of section II, the analytic continuation of

T(Q, Q]‘} in this case is obtained simply by letting Qv =, with  a complex

variable, since all the requirements listed then are satisfied here,

4
frequency response functions, T (
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optical theorem derived in reference 4 (in particular Eq. 13-22) from the equation
for T(Q, ).

Finally, the complex-frequency result that we shall utilize in our eva lu-
ation of both the conserving and non-conserving T-approximation to the two-parti-

cle Green's function for pure superconductors, is given by

T, @, -

Q + o S
_ " 1\ %% [ =i m 2m )
_N(O){I_BC_+¢(§) f?'n ’[(;_T+2-,7 5 )
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APPENDIX

As stated, our purpose now is to evaluate the product of two one-particle

propagators given by

LO (0, Qv +2}‘J.) =

sl B LN ely tr)G(Q-q,Q *tz tu),
—iﬁ i 3 n v n
(27) A1)
with
1
Glg=% ®i0) — e 0 A2
(qo=z, + 1) g S (A2)
GQ-9,Q tz, +u)= :
z. 4+ *+ -E(q)-_Q_z,,+ Qg
" s 2m m
(A3)y

We now male the usual simplifications in the theory of metals,
df)
d_qa———-N(O).[_‘ffdg, (A4)
ar) 4
with N (0) the density of states at the Fermi level, and
S=cl@)-p=clp)=ntv @=qp) % v, (q-qp) .

(A5)
When Egs. (A2) to (A5) are substituted into Eq. (A1), we obtain:
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L,Q, Q +2u) =

+w,
aq, P
=;“’z~(0)f Y [ g— ] =
R e Py IR

2m m

(A6)

We now have two possible ways of evaluating Eq. (A6) which must be
equivalent. We can either integrate over &£ first and then sum over », or vice
versa, We propose to do it the first way, since in this manner we can obtain [d&
by means of complex-integration techniques. Since the integrand is convergent
as rf.z when &£ = =, we may relax the limits of integration to [= =, + =],
(Were we to sum over # first, and then integrate over £, we would have to be more
careful with the limits of integration). Then, using contour integration techniques

we obtain

....
o
=
o
=)
-
N
U
|
Z
P
\9
R,
B
SRR
b
w i
o
(]
Q
B
L]

where we have used the explicit form for z, ; that is,

e - @7
n -i,-q

Now, as discussed in reference 11, the formally divergent summation in
(A7) can be "cured” in several different ways. Such divergency is due to the
simplified mode| that we are using for the interaction, and disappears when a mere
realistic retarded electron-electron interaction is considered. If we use the *usuwal”

method of curing the divergence we obtain (see reference 11):
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b _]__—— = 1 21 +1 l - ]_+i ,
n0 2ntl+x " bid JB@D tr’(z ¥ ] 2
(AB)
from which we derive
LO(Q, QV i 2,[_1) =
Qg 0?
d ) oy -2
= =N(0 o Y 2P g #pf LY gl lesB ® =  On
()fdﬂ{”-nFD (2 412 271 2
(A9)

that is, Eq. (28). It is important to point out that the “usual” method of curing
the divergence agrees with results obtained in the weak-coupling limit,
1

wp >> B, for the transition temperature. (See Section III) .
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