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RESUMEN

Se revisa la teoria estocdstica de la mecdnica cudntica propuesta por
Kershaw , con el objeto de eliminar una inconsistencia interna que contiene; al
hacer esta correccidn, se recupera la teoria propuesta recientemente por uno de

; 2
los autores del presente trabajo” .
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ABSTRACT

1,
The stochastic theory of quantum mechanics proposed by Kershaw is re-
vised to eliminate an internal inconsistency contained in it; by doing this, one

recovers the theory recently proposed by one of the authors” .

I. INTRODUCTION

in an inferesting poperl, Kershaw proposed a theory in which the station-
ary states of a classical system subject to random fluctuations of position, corre-
spond to the stationary states described by Schrodinger’s equation; however, the
author did not succeed in covering the nonstationary case. At the same time, in
a series of recent papers2 it has been shown that quantum mechanics may be con-
sistently interpreted as a stochastic process, both in the stationary and in the
nonstationary case. Furthermore, the set of fundamental equations given in ref.
(2) represents a generalization of those previously derived by Nelson® on the
basis of stochastic (markovian) arguments.

A direct comparison of the theories proposed inrefs. (1) and (2) shows,
however, that they are not equivalent, one of their fundamental equations being
different. It is the purpose of this note to explain the origin of the discrepancy
and to eliminate it. With this aim we give first a short account of Kershaw's
theory (section II), omitting most of the mathematical details, but clearly stating
the essential ideas. We then point out the existence of an internal inconsistency

in the theory, the removal of which carries us to the theory proposed in ref. (2)
(section III).

II. KERSHAW'S THEORY

Let w (¢, x, dt, dx) represent the probability of a stochastic (markovian)
particle to be at x + dx at time ¢ +d¢, if it was at x at time . The velocity ¢

of the particle at point x and time ¢ is defined by
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c(x,1) = dtli_r.n , ;T)]dx w(t, x, dt, dx) d (dx) « 4D]

Writing for short

W(t, x,dt,dx) = w(t,x,dt,dx + cdt) ,

.
we require, from standard arguments "3 that

W(z,x,dt,dx) = W(dt,dx)
and (2)
[ (dx)* W(ds,dx) d°dx = 2Ddt,

where D is a constant*. Let us consider now a given time interval At = ndt and

let n — ~ and d¢ = 0 in such a way that At remains fixed; we also write

n
AX = dei .
Then in the limit ¢ — 0 we get for three dimensional motion®
-y "
W(At, Ax) = (dmDAE) ? exp {=(Ax) /4DAL} .
During /At the total displacement of the particle is &x given by

8x = c(x,t) At +Ax ;

r

therefore the probability for the particle to go from x to x + &x during /¢ is ©

.3
P (5x, At,x, t) = (A DAL) ’ exp {(8x = c.’i\t)z/dD../\t} : (3)
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From eq. (3) it follows that the probability p(x, #) of finding the particle at the

point x at time f satisfies the following equation: 2

px,t+A8) = [o(x=8x,1) P(8x, At,x=3x,1)d* bx . (4)

This relation may be alternatively written in differential form as follows:

gi'*—div [pc=-Dgrad p]= 0. (5)
t

All equations written so far, are standard results in the theory of Brownian motion,
eq. (5) being the continuity or Fokker=Planck equation and its integral form (4)
a particular case of the Chapman~Kolmogorov equation for continuous time. In

order to get an additional, dynamical law, Kershaw further assumes that

c, (et ¥ A1) = N-i[[ci(x-gx,t) - A3, V(x=5x)] x
x p(x=8x,1) P(8x,At,x=5x,1) d > ox (6)
where the normalization constant N given by
N=[p(x=5x,¢) P(x, At,x=5x,8)d> 6% . @)
In writting eq. (6) Kershaw argues as follows: to calculate the mean
velocity of the particle at point x and time ¢ + Az froms its velocity at point x = Sx

and time £, we must add to the latter one the velocity increment due to the forces

acting on the particle; this increment is assumed to be = At d,;V,V being the ex-

ternal potential per unit mass. The factor

plx=0x,t) P(dx, At,x=0x,t)
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measures the total number of particles arriving at x from x = 8x in time Az,
Furthermore, a Taylor expansion allows us to transform eq. (6) into differential

form

2

v . 2
Pei .o Vol . (@8
p

k.| t(c*V)e; = -a'.V(x)+D [

Eqs. (5) and (8) constitute the fundamental system of equations proposed by
Kershaw. For completeness, let us indicate how the stationary Schrodinger
equation is derived from this system of equations. The stationary case is de-
fined" as that in which the diffusion velocity DV /0 = u just counter-balances
the mean total velocity, i.e., ¢ = v (in the language of ref. (2), this simply means
that we set v= c=v = 0). The continuity equation implies that in such a case
both ¢ and v are time independent. Some simple algebraic manipulations then

allow us torewrite eq. (8) in the form

WV V5 + Wo = Em Vo (9)

.r:*=‘[p[;T mu2+v] a’x . (10)

Eq. (9) is Schrodinger’s equation for a stationary state with the amplitude

where

Y= vVpexp[-iE ¢ i
¥ A 7

clearly, E is the average energy of the particle’ when v = 0. Let us now intro-
duce the operators defined in ref. (2); in the Markovian case the systematic de-
rivative is

1\ t vV an

_ 2
¢ 9
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and the stochastic derivative is written'as:
2
DS=U'V+DV . (12)

Then, the total (mean) derivative is

19=l0c+a’93=_a te- V4DV, (13)

¢

where, as usual, the (mean) total velocity is

c=vtu. (14)

In terms of these operators, the gradient of eq. (5) for curlless v is written as

1gsv+lgcu=0 (15)

and eq. (8) takes the form
Bv=Bou= =200 . (16)

It is now possible to compare both theories. With respect to eq. (15) there is not
any trouble because it is the same in both theories; however, eq. (16) differs from

the corresponding equation in ref. (2), where it lacks the term 2.‘9Cu:

ﬂcv-ﬁsu=-vv. a7n

To realize the consequences of this difference, let us proceed as follows.
Firstly, we recall that from eq. (17), Schrodinger’s equation follows in all cases,
including the electromagnetic one if we introduce the corres ponding external
force instead of = V.2 Secondly, we have just seen that from eq. (16) we may
recover the stationary Schrodinger’s equation; but in order to be more general, let

us apply to this equation the procedure used in ref. (2) for deriving Schrodinger's
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equation. The result is
272 i O
-V vy =20 P, (18)

where we have introduced the definition.

Vo= V=40’V s-29 , (19)
¢ being such that
DVp = (u*V)v (20)

and, as usual, /= exp (R+ i§) with v = 2DVS and v = 2DVR. Clearly, in the
general case, the right-hand-side of eq. (20) is not the gradient of a function,
i.e., ¢ does not exist and we cannot write eq. (18) . Interesting enough, when §
does not depend on the coordinates ;Jnd hence v = 0, eq. (20) is satisfied with
¢= 0and Vg reduces itself to V, eq. (18) going into the stationary Schrodinger
equation. Still simpler: in the particular case v = 0, the function 19Cu reduces
to zero and hence eqs. (16) and (17) coincide, i.e., the two theories become
mathematically equivalent.

However, the derivation of eq. (16) is not free from inconsistencies. In
fact when writing down eq. (6) the classical law Ac = m'lfDAt, where f_is the
external force, is assumed to be valid, although the equation of motion is given
in this theory by eq. (16) and not by Newton’s second law. This inconsistency
leads to incorrect results, as for example eq. (18). Clearly, we can follow
Kershaw’s method and still obtain the correct result, if instead of considering
only the force f , we also take into account the effective force acting on the

stochastic particle.

III. DERIVATION OF THE EQUATION OF MOTION

From the above discussion it follows that instead of ef. (6) we must write
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-1 )
c; (0 +At)= N f[c‘.(x-Sx,t)-AfaiV{x—Sx)+A:F1_(x..§x,;)} 52

X px=8x,2) P(x, Dtyx=5x,¢) d> 8x @21

where = 0.V + F, is the total effective force (per unit mass) acting on the particle;

F; is a force that guarantees the internal consistency of the theory. The differ-

ential form of eq. (21) is

iO::-Vv+F+21()Sc. (22)

We can write similar relations for v; and u, , the velocity increments for the first
being At [~ a. v+ F;] and for the second /At F; . The results are, in differenti-

al form,

By - -Yv + F' +2‘1C’Sv : . (23)

[

.:QU: F"PZlOSU . (24)

Since, from eq. (14), the forces must satisfy the relation

F-F +F (25)

and furthermore, according to eq. (24), F'is given by

F'= 0. u=-B v, (26)

it follows that only cne of F or F' remains to be fixed. We fix it by demanding

that the dynamical equations be invariant under time reversal (T-transformation).

Let us rewrite eq. (22) in the form
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@Cv-lgsu_—_-VV+F+l95v-lQCu @ (27)

Then its T-transform is?

B .veBu=-Vy+F =Bgv+Bu, (28)

where F = TF. From eqs. (27) and (28) it follows that the simplest choice of F

which makes eq. (27) T-invariant

F:-DSV"}'QCU:z@CU (29)

and hence, that
F'- Du . (30)

With F given by eq. (29), eq. (28) reduces itself toeq. (17), i.e., we
recover the set of equations proposed in ref. (2). Itisa simple task to convince
oneself that the proposed selection of F, F' and F' does not introduce any
further inconsistency. In this form we see that the extra term —QLQCU in Kershaw's
theory (compare egs. (16) and (17)) is due to his neglecting the force F, which
just cancels it.

The derivation of the basic equations of the stochastic theory of quantum
mechanics presented here is not only less straightforward than the original one,
but also more restrictive; nevertheless, it has the advantage of throwing a little
light upon the complex nature of the motion of the stochastic particle, as it allows
us to explicitely write the effective forces F, F' and F"; besides, it represents
an alternative and more orthodox derivation of the fundamental stochastic equations

of quantum mechanics.
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