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Sr rt'visa la tt'oría t'stocástica dt' la mt'cánica cuánlica proput'sla por

Kt'rshaw1• con t'l obj~to dt' ~limillar una inconsislf"ucia inlt'ma qut' cmJlirnt'; al

hacn t'sla corTt'cción. St' rt'cupna la lt'oría proptlt'sta rt'cit'nlt'mt'lIlt' por uno d,

los aulort's d,l prt'st'nlt' lrahajo2 •
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ABSTRACT

REV .• MEX. F 15.

I
Tbr stocbastic tLtOl'Y 01 quantum mrcbanics proposed by Kersbaw is rr.

visrd to r/iminatr an internal iPJconsistrncy contained in it; by doing thü. one
2

rrCOfJers tbr tbeory recently proposed by onr 01 tbr authOl's •

I. INTRODUCTION

In an interesting paperl, Kershaw proposed a theory in which the s.tatian-

ary states of a classieal systcm subject to random fluctuations of position, corre-

spond to the stationary states described by SchrOdinger's equation; however, the

author d¡d not succeed in covering the nonstationary case. At the sorne time, in

a series of recent papers2 it has been shown that quantum mechanics may be con-

sistcntly interpreted as a stochastic process, both in the stationary and in the

nonstationary case. FLI'therm«e, the set of fundamental equatiens given in ref.

(2) represents a generalization of those previously derived by Nelson3 en the

basis of stochastic (morkovian) arguments.

A direct comparison of the the«ies proposed in refs. (1) and (2) shows,

hO'Wever, that they are not equivalent, one of their fundamental equations being

different. It is the purpose of this note to exploin the «igin of the discrepancy

and to eliminate it. With this aim we give first a short account of Kershaw's

theay (section JI), omitting most of the mathematical details, but clearly stoting

the essential ideas. We then point out the existence of an interna I inconsistency

in the theay, the removal of which carries us to the theory proposed in ref. (2)

(section JII).

1I. KERSHAW'S THEORY

let w (t, x, dt, dx) rep'esent the probability of o stochastic (morkovian)

particle to be at x +dx at time t +dt, if it wos ot x at time l. The veJocity e

ef the portie le at point x ond time / is defined by
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c(x,t)~ dtli~o (~t)fd'W(t,.,dt.d.)d3(dX),

Writing for short

W(t,x,dt,dx} = w(t,x,dt,dx + cdt}

we require, from standard arguments ". s. that

W(t•• ,dt,d.) = W(dt.d.)

and

J' 3(d.) W(dt, d.) d dx = 2Vdt,

VOL. 18

(1)

(2)

where D is a constant". Let us consider now a given time interval6t = ndt and

let n ....•oc and dt ....•O in such a way that 6t remoins fixed; we also write

n

Then in the limit dt ....•O we get for three dimensional motions

- 'j,
W(lIt.lI.) = (411VlIt) 'e.p {-(lI.)'/4DlIt}.

Oll'ing l:::.t the total displacement ef the porticle is ox given by

Sx = c(x,t) 6t +6x i

f . 6
there ore the probobility fer the particle to go from x to x + Sx during 6t IS

,dh 2

p(S"lIt.x,t) = (411Vl',t) 'exp{(S.-cllt)/4vlIt}. (3)
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From eq. (3) it lollows thot the probobility p(x, 1) 01 linding the portie l. ot the

point x at time 1 satisfies the following equation: 5

p(x,I+61)= jp(x-8x,l) p(8x,6I,x-8x,l)d'8x. (4)

This relation may be alternatively written in differential form as follows:

ap + d'_ IVa, [pe-D grod p] = O. (5)

Al! equations written so far, are standard results in the theory of Brownian motion,

eq. (5) beíng the continuity or Fokker-Planck equation and its integral form (4)

a particular case of the ChapmJn-Kolmogorov equation for continuous time. In

arder to get an additionol, dynamical law, Kershaw further assumes that

'fe.(x,I+61)= N [e.(x-8x,I)-6Ia.V(x-ox)] x, , .
xp(x-8x,l) p(8x,6I,x-ox,l)d'ox

where the normalizotion constant N given by

N = jp(x -ox, t} P(ox, 61,x -8x, 1)d' ox •

(6)

(7)

In writting eq. (6) Kershow argues as follows: to calculate the mean

velocity of the particle ot point x and time 1 + 6.1 froms its velocíty ot point x - bx

and time t, we must odd to the lotter one the velocity increment due to the forces

acting on the particle; this increment is ossumed to be - 6.10; v, V being tne ex.

terna I potential per unit moss. The factor

p(X-ox,l) P(ox,61,x-8x,l)
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m80sures the total number of particles orriving at x from x-8x in time 6.t.
Furthermore, a Taylor expansion allows uS to transform eq. (6) into differential

form

[

2 2 ]Oc. V pc; V
.,2- + (c .'1) c. = - o. V(x) +0 __ - c. -E.
01 I I P I P

(8)

Eqs. (5) and (8) constitute the fundamental system of equations proposed by

Kershaw. For completeness, let us indicate how the stationary SchrOdinger

equation is derived from this system of equotions. The stotionary case is de.

fined1 as that in which the diffusion velocity ovp/p E: u just counter.oolonces

the meon total velocity, i.e., e = u (in the language of ref. (2), this simply meons

thot we set v = c - u = O). The continuity equotion implies that in such a case

both c and u are time independent. Some simple algebraic manipulations then

allow us to rewrite eq. (8) in the form

(9)

where

(lO)

Eq. (9) is SchrOdinger's equation for o stationory stote with the amplitude

<P= Ipexp (-; F ,) ;

cleorly, E is the average energy of the particle2 when v = O. Let us now intro-

duce the operators defined in ref. (2) i in the Markovion cose the systemotic de-

rívative is

liJe=O+v.V
dt
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ond the stochostic derivotive is written 'as:

2DS = U' 'V + v'V •

Then, the toto I (mean) derivotive is

REV. MEX. FIS.

(12)

"O +c.r:¡¡+Dr:¡¡:2,
al (13)

where, as usual, the (mean) total velocity is

c= v+u. (14 )

In terms of these operators, the grodient of eq. (5) fOl' curlless v is written as

(15)

and eq. (8) takes the form

(16)

It is now possible to compare both theories. With respect to eq. (15) there is not

any trouble becouse it is the SOrne in both theories; however, eq. (16) differs from

the corresponding equotion in ref. (2), where it locks the term 2fJc u:

(1 7)

To reolize the consequences of this difference, let us proceed os follows.

Firstly, we recall thot fram eq. (17), SchrOdinger's equotion follows in 011 coses,

including the electTomagnetic one if we introdllce the corresponding externol

force insteod of - 'VV.:2 Secondly, we hove just seen that from eq. (16) we moy

recover the stotionory Schroo inger's equotion; but in order to be more genero 1, let

us opply to this equotion the proeedure used in ref. (2) for deriving SehrOdinger's
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equation. The result is

where we hove introduced the definition

2 2
VK = V-40 'V s-20<jJ ,

<jJ being .ueh !ha!

o'V<jJ = (u • 'V) v

VOL. 18

(l8)

(19)

(20)

and, os usua 1, I.j; = exp (R + iS) with v = 2D\lS and u = 2D'VR. Clearly, in the

genera 1case, the right-hond-side of eq. (20) i s not the gradient of o function,

i.e., cP does not exist and we cannot write eq. (18). Interesting enough, when S

does not depend on fhe coordinotes ond hence v = O, eq. (20) is satisfied with

cP = O and VK reduces itself to V, eq. (18) going into the stationary SchrOdinger

equation. Still simpler: in the particular case v = O, the function lJcu reduces

to zero and hence eqs. (16) and (17) coincide, i.e., the two theories become

mathematica Ily equiva lent.

However, the derivation of eq. (16) is not free from inconsistencies. In

foct when writing down eq. (6) the classicallaw!::'c = m-ll !::.l,where I is theo o
external force, is assumed to be valid, although the equation of motion is given

in this theory by eq. (16) and not by Newton's second law. This inconsistency

leads to incorrect results, as for exomple eq. (18). Clearly, we can follow

Kershow's method and still obtain the correct result, if insteod of considering

only the force lo' we also toke into occount the effective force acting on the

stochastic ?Jrticle.

III. DERIVATION OF THE EQUATION OF MOTION

From the aboye discussion it follows that instead of erl. (6) we must write
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X p(x-6x,/) P(Óx, 6/,x-8x,1) d3 Óx , (21)

where - e\V + [-i is the total effective force (per unit moss) octing on the particle;

1~ is a force thot guorontees the interna 1consistency of the theory. The differa

entiol form of eq. (21) is

(22)

We can write similar relations for vi and ui' the velocity increments for the first

being 6/ [- d. V + F~) and for the second 61['<'. The results are, in differenti-, , ,
al form,

.r:)v;:o; - Vv + F' -t 21Js v ,

Since, from eq. (14), the force s must satisfy the relation

F = F' + F"

and furthermore, occording to eq. (24), F" is given by

"", ~F = NC U - ~VS U ,

(23)

(24)

(25)

(26)

it follows that only ene ef F or F' remains to be fixed. We fix it by demonding

that the dynamica I equations be invariant under time reversa I (.¡'. transformation).
Let us rewrite eq. (22) in the form
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Then its l'.tronsform is 2

VOL. 18

(27)

(28)

~
where F = TF. From eqs. (27) ond (28) j. lollows .ho' .he simples' choice 01 F

which mokes eq. (27) 1'. invoriant

ond hence, thot

F':1Ju.

(29)

(30 )

Wi.h F given by eq. (29), eq. (28) reduces itself.o eq. (17), i.e., we

recover the set of equations proposed in ref. (2). It is a simple task to eonvinee

oneself thot the proposed selection of F, F' ond F" does not introduce ony

further inconsistency. In this form we see that the extra term -2fJcu in Kershow's

theory (compare eqs. (16) ond (17)) is due to his neglecting the force F, which

iust concels it.
The derivotion of the bosie equations of the stochastic theory of quontum

mechonics presented he re is not only less straightforword thon the original one,

but olso more restrictive; nevertheless, it has the odvontage of throwing a little

light upon the complex nature of the motion of the stochastie portie le, os it ollO'NS

us to explicitely write the effective forces F, F' ond F"; besides, it represents

on olternative and more orthodox derivation of the fundamental stochasticequotions

of quontum meehonies.
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