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RESU,\!ES

En ~s/~ trabajo s~ o:hib~TI las inCOl1sist~ucias qu~ apar~crn al iutrular

~J4:plicar las anomalías qu~ pr~s~nf(1n los C(~/ici~l1tt'S dt' /Tansportt' dt' 1m jluido

simplr ~'l la tJ~cindad d~1 pzmtu crítico cuando st' utiliza la srJposici6n dr qut'

las jlucluaciol1rs r11dnlsidad ~t'ollJciolla1J rl1 ~I ti~mpo d~ aCIIt'rdo con las ('clla-

d(mt's d(' la hidrodinámica. Tambirn s~ hac(' t'rr, contrario a lo qm' s~slIpon('

t'11los m(xülos r~lrt¡ant~s, qu(' los ddallrs dr la jurma d~l potrncial il1lt'Tmol~ctJ-

lar sí ju('ga'l tm pap~l impartanlr ~n rst~ /Jroblrma. Los potrnda/~s qu~ aquí s~

cWlsidrran son t'1 dr Yukau'a, rl Gaussiano y rl po/~llcial d~ LOTrntz.
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ABS1'RACT

REV. MEX4 FIS.

We shOUJ,in this papu. the incQnsisteucies that appear when oue is trying

to explain the anomalies in the transport c~jlicients 01a simple Iluid in the. tJi4

cinity 01 the critical point, when Orle makes the assumption that th, d,nsily~

d,nsity jluctuations oh,y tJH hydrodynamical ~quatíons. W,. also show, against

what is normal/y assum,.d. thal th,. lorm o{ th~ illl~rmol,.cular potential plays an

important rol,. in this prohlem. Th~ pott'lltials considf'r~d are the Yukawa. the

Gaussian and the Lorentz pote'ltials.

I. INTRODUCTION

For the past two decades the behaviour of matter in the neighbourhood of

critical points has received considerable ottention. In particular, the behaviour

of tronsport eoeffieients of fluids has been anolyzed both through theory ond ex.

periment, the subject sti 1I remoining in a very controversia I stoge. On the one

hond, the experimenta I data is scorce ond somewhat innocurote. Indeed, as it

has been indicated by Sengers,1.2 in his thorough ond extensive analysis of the

existing data, the viscosity of a simple gas does not"show onomolies in the vi.

cinity of the critica I point and ot the criticol point itself the onomoly is very

srmll, if it exists ot 011. The thermal conduetivity does show on onomalous be.

hoviour in the vicinity of the criticol point, but the result has not yet been com-

pletely confirmed. Neither has the shape of such an anoma Iy. Furthermore. the

experimental evidence is based only on work performed mainly with CO • On the
2

other hond, o certojn ammount of theoretical work trying to explain these experi-

mental result. has been developed3• However, the situation is very far from

being at 011 sotisfoetory.

Severo 1 of the theoreticol models which have been proposed to deol with

this problem ore somewhot reloted to the ideo that the qualitative feotures shown

by a fluid in the neighbourhood of o criticol point should be independent of the

specífie shape of the intermolecular potential aeting between the molecules ond
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depend only on its long rcnge contribution. This idea was exploited by

van Kampen4 in his work en the classical gas in equilibrium and wos extended to

non~quilibrium phenomena by Mountain and ZwanzigS and more recently by De

Sobrino 6.

Follol'dng Mountoin and Zwanzig's approach, the contribution of the long-

range potentiol to the shear viscosity ond thermal conductivity of o simple gas can

be obrained by evoluating the tirne~orrelation functions which ore known to re-

late these properties to microscopic currents characteristic of the system itself
7

•

This approach is mainly bosed on the two following assumptions:

a) The anomalous behaviour of the transport coefficients arises from the

density-density fluctuotions, which the system displays in the vicinity of a criti-

cal point.

b) These density-dendity fluctuations are described through a microscopic

density operator which appeors in the expression for the current in the tirne~orre.

lation function. The assumption is then mode, that this operotor can be substi-

tuted by the local macroscopic density fluctuatian which is found by solving the

linearized equotions of hydrodynamics.

Regording ossumption (b) one immediotely fa lis into on inconsistent

scheme. In fact, the lineorized equations of hydrodynamics 8. 9 involve the

transport coefficients themselves and when solving them one ossumes that these

quantities show no anomalies, i.e. are well behaved near the critica I point.

Afterwards, ane uses these results to evaluate the time~orrelation functions in

order to exhibit their anomolous behaviour in the vicinity of such a point.

In their work, Mountoin and Zwanzig used a Yukawa potential to show how

the shear viscosity ond the thermal conductivity ha ve the sarne qualitative critj-

col behaviour os that indicoted by experimento The purpose of this poper is to

extend these colculations considering two other potentials, the Goussion and the

Lorentzion, both having o long-range behoviour which is similar to the former

one. The results obtained show thot in none of the three cases the results coin-

cide. Thus, one is led to the conclusion that the ogreernent obtcined with experi-

menr using Yukawa's potentiol is merely accidento l. Also, the inconsistency of
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the modal pointed out above, shows up in on explicitly way, nomely, within the

proposed model the shape of the attractive part of the potentiol strongly influences

the expressions for the trcnsport coefficients near the critical point and, moreover,

we do not get o unique behaviour of such quantities.

Section 11 of this poper will be devoted to make o resumé of Mountain-

Zwonzig's papero In Section 111we sholl give the colculations of the tronsport

coefficients with the two proposed potentials ond finally some concluding re-

marks will be given in Section IV.

II. MODEL OF MOUNTAIN AND ZWANZIG'*

As it was mentioned in the previous section, the approach used by these

authors is to evaluate the time-correlation functions which relate the shear vis-

cosity and thermal conductivity of o simple fluid to the microscopic currents

representing the response of the system to an externo I force. These expressions

were derived long ago by Green10 and Kuboll and ore currently referred to in the

literature os the Green-Kubo formulae. Explicit~y, 7 the shear viscosity 7] is

given by

where the current ]xy is:

(1 )

p~ pY
_1_1_ + ~ F~ R~
m j 1 1

(2)

p~' y being the -'"and y components of the linear momentum of the j-th porticle, ¡-:x
1 ,
the -'"component of the force acting on it and R. its position vector. The brackets,
< > indicate that an average is to be taken over an equilibrium canonical en-.
Hereofler referred lo os MZ.

410



ROBLES OOMINGUEZ ANO GARCIA-COLIN VOL. 18

semble with temperature T and volume V. Also, ka is Boltzmann's constont.

The thermal conductivity f.... is defined through,

where S is the heot current defined by

(3)

S= :£(H.-h) Pi
i' m

Pi
m

(4)

In equotion (4), H
i
is Homiltonion of the i-th particle, h is the enthalpy

per particle and the rest of the symbols ore the SOrne as the anes appearing in

Eq. (2).
Rather than repeating unnecessary algebro we would like to emphosize

upon the philosophy which lies behind the colculotion 01 Eqs. (1) ond (3). Ac-

cording to assumption (o) in the intToduction, the first step is to express the

operators J and S in terms of a microscopic density operator. This is eas i Iy

ochieved by using van Kampen's method, nomely, to substitute the summotion

over particles of a long .•range slowly varying function by a summotion over con.

veniently defined cells, where the weight af the function is now the porticle

density inside each cell. Thus, if w(r,,) is such o function,
'1

(5)

where a, b, ..•. label the cells, 6. is the volume of each cell and n(rh) is the

number density in the h.th ce!l. By Fourier.transforming the expressions thus

obtoined, one is led to consider summations in k-spoce, where statistical over.

ages of products of the Fourier components vk (t) ore involved, where
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no being the equil¡brium number density. The secend step is te colculote these

stotistico I overoges involving the l/k '50 It is he re where ossumptien (b) enters.

In foct, ene now ossumes thot in terms of a certoin ¡nitiol volue IJ
k
(O), the time

dependence of l/k (/) is identical to thot which corresponds te the Fourier trons-

form of the mocrescopic density fluctuotion obeying the linearized hydrodynamic

equotionso The explicit form for vk (/), first derived by Landau ond Placzek12,

has been discussed by several outhors13, the appraximote exp-essian used by

MI. being5

(6)

where 1\ is the therma I conductivity, Cv the specific heat at constant volume, y
the ratio of the heat capocities ond K-1 is the so-colled correlation length de-

fined a lo Ornstein-Zernike14 o

lt is quite important to notice thot the use af t:qo (6) implies two as~

sumptions, nomely, the validity of local and linear hydrodynamics in the vicinity

of the critical point where the corre/ation length K-1» q~1, (the hydrodynamical

length) and, furthermore, that the transport quantities T] and 'A.ore (i"ite in thot

region.

The calculations of T] and 'A.are rother stroight-forward. Since 'A.depends

upon Cv one begins by calculating this equilibrium quontityo From standard

fluctuation theory we know that

Cv = < (8E)' > •
k
n

y2
(7)

Expressing the contribution to oE coming from the long-range interaction
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and following the ahoye scheme it is eosy to show that

VOL. 18

1
2k '['

lJ

(8)

where wk is the k-th component of the Fourier transform of w(r), the long-range

potentiol,ond I cp" ¡ is the magnitude of the second derivetive of (-,L3) times the

free energy per unit volume. As usua 1, j3 ;: (ka Tf 1 , and the superscript L indi-

cotes that we are only taking the long-range contribution.

lf we take far w(r) a Yukowa potential,

(9)

L being o constant, and substitute Eq. (9) back into Eq. (8), re place the sum-

mation by an integral whose evaluotion is rather straightforword ond take its limit

when T ...•Te ' we find thot

lim
T ....•Te K

(10)

where K is for this potential the inverse of the correlation length, defined by

I~"I
1.'( h" I t !lwo)

(11 )

t
Since I cp" I is proportional to I T - Te I in the vicinity of the criticol point,

K-1 diverges in the some monner os the Ornstein-Zernicke's two-porticle corre-

lation length ond hence c:'~diverges os K- t near the critico I region. This agrees

quolitotively with some experimental results, but the point still remoios unsettled1S
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When evaluoting the time-eorrelotion function for the sheor viscosity one

is led through the first step described aboye, to the following eXJYession:

xy L 1 y xII' I l'(j ) = - ::£ (gradku'k) (k) ( vk - < vk ».
2 k t o

(12)

which combined with Eq. (6) and substituted in Eq. (1) leads, after the summotion

over k is replaced by an integral, to the following result,

L
1] J

o
(13)

Taking a Yukawa potential, the integral is evaluated straightforwardly

and yields,

(
371 YK t!'-)
16 41.

lim
T- Tc

(14 )

which depends on the behaviour Of)'K and Cv/A. ot the critico I point. In the MZ

p::lper it is shown that these two quontities rema in finite ot the critica I point ond
L

so does 7J , there upon ogreeing with the experimental results. We shall come

back to this point 1ater On.

Finolly, the express ion for the thermol conductivity can be obtoined by

evaluoting Eq. (3) following essentiolly the Some steps as in the previous case.

However, the colculations are longer, so thot we sholl ovoid to sketch them he re

ond refer the interested reoder to the originol sources• The final result is thot,

for o Yukawo potentiol close to the criticol point, the thermal conductivity be.

hoves as
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(15)

It is important to recall that the values of f... and 71which appear in the

denominator of Eq. (15), ore a consequence of using the solutions of linearized

hydrodynamics to calculate vk(t). In particular the shear viscosity enters

beca use in the process of calculatíng S, the particle current shows up, ond its

transverse pJrt J[ is found to be given bylJ

T o ( k')Jk = Jk exp - :no t (16)

Thus, i\.. ond 71are ossumed to be finite in the right hond side of Eq. (15)

even in the vicinity of the criticol point. Hence, this result is inconsistente

Indeed if i\.. Lis finite, then, since Cv diverges as K.
1

,

-- O os

and, therefore, 71 should diverge at the criticol point contradicting Eq. (14), our
L

famer resulte On the other hond, if i\.. diverges os l/Cv' then the left.hand side

of (15) is finite. The result is consistent anly if N'CV is olso finite, which re.

quires the inconsistent ossumption of A being infínite. In this case 71 is finite,

which agrees with (14), ond the total result ogrees with experimento This is es.

sentiolly the MZ argument developed in Appendix 11, of their paper, which,

however, works only for the Yukowo potentiol. As we sholl see loter on, thís is

no longer true for o Gaussion potential.
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III. THE GAUSSIAN AND LORENTZIAN MODELS

This section will be devoted to the calculation of the sheor viscosity ond

the thermol conductivity for o simple fluid ossuming thot the long~ronge ot ..

troction between the molecules is given by'

a) o Gauss ion potentio I

and

b) a Lorentzian potentiol, whieh, as depieted in Fig. 1, behave for lorge

distonees os the Yukawa potential, thus suggesting that within the present formu~

lation one should be led to results similar to those obtoined with the latter one.

W (r)

Gaussion

--- Yukowa

Lorentzion

Fig.1. The three potentiols used in this popet, namely, the Yukawa, Gaussion
ond Lorentzian ore shown on a eomparotive sea le.
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Let us start with the Goussian potentiol, onolyticolly defined by:

w (r) = A exp (- a' r') , (17)

where A ond a are constonts. Its Fourier transform is also a Goussion functiol",

namely,

(18)

where !lIo = ;\11% a-3

The specific heot at constont volume is readily obtained substituting

Eq. (18) in'o Eq. (8). In.roducing .he variables,

x =
k'

4a'
ond G =

j3w o

ond replocing the sum by an integro I we get,

1 f ~¡;r' ,.d.

(1 'i''' 1+ ¡Jwo) , [1 - Gr" J'
ú

(19)

The integral oppearing in Eq. (19) can be easily performed to yield the

follOYling result,

,¡:; x 3.0300785.
2

" d LIn the limit when T --o Te' <P ....• O an C\, remoins finite with-o volue

given by
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(20)

e result which disegrees both with experiment end with Eq. (lO), obteined using

e Yukawa potentia l.

The formula for the shear viscosity is obtained through direct substitution

01 Eq. (l8) into Eq. (5), yielding

'/ '2 6 2 -4 • k 2a
" CV'" f~ dk(k +YK k).o o 1 _

120(27T)'kIlTAa' [ -k'¡'a']'
o (k' +K') 1'1/' I +f3'" •

1 o

(21)
where K is the ¡nverse of the correlation length for this potential, whose be.

1

haviour in the critical region is analogous to the K for the Yukowo potentiol

becalJse, by the nature of the opproximotions we hove used, this characteristic

length does not depend on the explicit form of the potential.l-4

To study the integral appearing in Eq. (21) let us introduce the following

notation:

D
I <p" I + f3'" o

f3",0

Ca lIing such en integra I 1, we hove that

1 f~ u(k) dk
22 22 22 2

f3 "'o o (k +K,)[Dexp(kI4a )-1]

418
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Using the inequolity,

u

(k' +K') [Oexp(k'/4.') -1 J',
•

one has that

VOL. 18

u

, [ "]'K Oexp(k/4a)-l
1

which may be transformed into

l~ f ~ 6 ,/, • '/,] "' y!!- [(2.) y '+(2.) y': dy
o' o [1-0"',"Y]

where y = k2/4a2 •

The aboye integral can now be decomposed into two integrals of the type,

f~~ "y
y ,dy

(¡-D"',"Y]'
o

= r (n t ~) [M(O"' ; n + !- ; 1) -
2 2

fa' n = 1,2; M denotes the confluent hypergeometric functions. Since D remains

finite at the critical point, these integrals are simply constants and, hence, we

hove that

'" const
'K',
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REV. MEX. FIS.

const

K' A
I

(24)

In this case we find once more that the behaviour of the shear viscosity

T}L in the vicinity of the critical point depends on

i.e. on the knowledge of how the thermal conductivity behaves in such neighbour~

hood. When one investiga tes this quantity, it is folXld16by a process which is anolo-

gous to that described in MZ, and the use of Eq. (18), thot

x

J 00 exp( - k'/4a')(k' +YK') dk

[_A_(k' +K') +....'L(k'+YK')] [1 q>"j +~w -f3w
n e 1 mn 1 o oo o V o

.,p(- k'/4a')]

(25)

This expression already gives rise to a difficulty similar to that pointed

out in the cose of a Yukowa potentiol. Indeed, jf in the right~hond side i\ and TJ

ore assumed finite and i\I. could be divergent os K~2. occording to Eq. (24).

This contradicts the experimentol ~vidence. On the other hond if f.. L is infinite

we get on incansistency, becouse i\ in the denominator of Eq. (25) has been os-

sumed finite; however, quolitotive ogreement with experiment could be expected.

Furthermore, since Cv is finite of T = Te we do nof hove fhe opparent consisten-

cy which shows up in the Yukawo pofenfiol.

Let us now consider fhe case of the Lorentzion pOfentiol. Here
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w (r) (26)

with a ond A being c:onstonts. Its Fourier tronsform, os it is well known, is o

Yukawo func:tion in k.spoce, namely

-ka
2' rwk = 71 A

k
(27)

so that when k = 0, irrespective of onything else, Wo = oo. This implies ac-

cording lo Eqs. (8), (13) ond (25) (with w(k) in generol), Ihol 011 Ihe three

quontities considered here vonish identicolly, nomely,

This is of course completely unphysicol, but what is relevont here is thot

there exists o potentiol of the some long-ronge chorocteristics os Yukowa's ond

possessing o Fourier tronsform, for which the model foils. This result seems to

point out the inconvenience of formulating these type of ~oblems in k-spoce,

instead of using directly the configuration space.

IV. CONCLUDING REMARKS

The results obtained in the preceeding section, together with those de-

rived by MZ for the Yukawo potential, lead to the following remorks.

It is rather clear that the scheme described here is inconsistent in so for

as the explanation of the opporent onomolies disployed by fluctuoting quontities

in the criticol region. This was pointed out by ResiboisJ ond it is explicitly

exhibited by the results derived both for the Yukawa ond the Goussion potentials.

Thus it is through the use of more basic approoches to this ~oblem that one can

expect to get better answers to this problemI7•1B• Yet, the finol ond definite
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explonotion is still O challenge.

Besides this genero I considerotion, other feoture of this poper is o 150 rele~

vant. In foct, even for fluctuating equílibrium properties, the model ~oposed by

van Kompen seems to be inodequate, the specific heot ut constont volume calcu~

lated far the three potentiols considered here being different far them 011. Hence,

the details of the potential do motter in 50 for 05 the criticol behaviour of such

quantities. This point has been discussed by Misturo and Sette19 in onother

context ond seems to be reloted to the volidity of the Ornstein.Zernike's ex~

pression for the two~body carretotion function in the criticol region. Finolly, in

o recent poper, De Sobrin06 has attempted to colculate the transport properties of

o gas in a non-equilibrium stote using van Kompen's model, but storting not from

the correlotíon function app-ooch but by solving the first two equotions of the

BBGKY hierorchy using a linearizotion scheme to simplify the equation far the

two-porticle distribution function. His results ore, for the equilibrium cose,

identicol to those of MZ and hence subject to the SOme criticisms we hove pointed

out abave. For the tronsport coefficients his results differ completely fram thosl'!'

af MZ but, what is more interesting, he shaws that the discreponcy orises from

ossuming that the density'¿ensity f1uctuotions obey the hydrodynomic equotions

with the obvious expressions for the tronsport coefficients. This is in

ogreement with the inconsistency pointed out aboye.
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