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RESUMEN

En este trabajo se exhiben las inconsistencids que aparecen al intentar
explicar las anomalias que presentan los coeficientes de transporte de un fluido
simple en la vecindad del punto critico cuando se utiliza la suposicion de que
las fluctuaciones en densidad evolucionan en el tiempo de acuerdo con las ecua-
ciones de la hidrodindmica. También se hace ver, contrario a lo que se supone
en los modelos relevantes, que los detalles de la forma del potencial intermolecu-
lar si juegan un papel importante en este problema. Los potenciales que aqui se

consideran son el de Yukawa, el Gaussiano y el potencial de Lorentz.
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ABSTRACT

We show, in this paper, the inconsistencies that appear when one is trying
to explain the anomalies in the transport coefficients of a simple fluid in the vi-
cinity of the critical point, when one makes the assumption that the density-
density fluctuations obey the bydrodynamical equations. We also show, against
what is normally assumed, that the form of the intermolecular potential plays an
important role in this problem. The potentials considered are the Yukawa, the

Gaussian and the Lorentz potentials,

I. INTRODUCTION

For the past two decades the behaviour of matter in the neighbourhood of
critical points has received considerable attention. In particular, the behaviour
of transport coefficients of fluids has been analyzed both through theory and ex-
periment, the subject still remaining in a very controversial stage. On the one
hand, the experimental data is scarce and somewhat innacurate. Indeed, as it
has been indicated by Sengers,!*? in his thorough and extensive analysis of the
existing data, the viscosity of a simple gas does not'show anomalies in the vi-
cinity of the critical point and a¥ the critical point itself the anomaly is very
small, if it exists at all. The thermal conductivity does show an anomalous be-
haviour in the vicinity of the critical point, but the result has not yet been com-
pletely confirmed. Neither has the shape of such an anomaly. Furthermore, the
experimental evidence is based only on work performed mainly with CO2 . On the
other hand, a certoin ammount of theoretical work frying to explain these experi-
mental results has been developed®. However, the situation is very far from
being at all satisfactory.

Several of the theoretical models which have been proposed to deal with
this problem are somewhat related to the idea that the qualitative features shown
by a fluid in the neighbourhood of a critical point should be independent of the

specific shape of the intermolecular potential acting between the molecules and
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depend only on its long range contribution. This idea was exploited by
van Kampen® in his work on the classical gas in equilibrium and was extended to
non-equilibrium phenomena by Mountain and Zwanzig® and more recently by De
Sobrino®.

Following Mountain and Zwanzig’s approach, the contribution of the long-
range potential to the shear viscosity and thermal conductivity of a simple gas can
be obtained by evaluating the time-correlation functions which are known to re-
late these properties to microscopic currents characteristic of the system itself’ .
This approach is mainly based on the two following assumptions:

a) The anomalous behaviour of the transport coefficients arises from the
density-density fluctuations, which the system displays in the vicinity of a criti-
cal point.

b) These density-dendity fluctuations are described through a microscopic
density operator which appears in the expression for the current in the time-corre-
lation function. The assumption is then made, that this operator can be substi-
tuted by the local macroscopic density fluctuation which is found by solving the
linearized equations of hydrodynamics.

Regarding assumption (b) one immediately falls into an inconsistent
scheme. In fact, the linearized equations of hydrodynamics ®* ? involve the
trans port coefficients themselves and when solving them one assumes that these
quantities show no anomalies, i.e. are well behaved near the critical point.
Afterwards, one uses these results to evaluate the time-correlation functions in
order to exhibit their anomalous behaviour in the vicinity of such a point.

In their work, Mountain and Zwanzig used a Yukawa potential to show how
the shear viscosity and the thermal conductivity have the same qualitative criti-
cal behaviour as that indicated by experiment. The purpose of this paper is to
extend these calculations considering two other potentials, the Gaussian and the
Lorentzian, both having a long-range behaviour which is similar to the former
one. The results obtained show that in none of the three cases the results coin-
cides Thus, one is led to the conclusion that the agreement obtained with experi-

ment using Yukawa's potential is merely accidental. Also, the inconsistency of
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the model pointed out above, shows up in an explicitly way, namely, within the
proposed mode| the shape of the attractive part of the potential strongly influences
the expressions for the transport coefficients near the critical point and, moreover,
we do not get a unique behaviour of such quantities.

Section II of this paper will be devoted to make a resumé of Mountain-
Zwanzig's paper. In Section IIl we shall give the calculations of the trans port
coefficients with the two proposed potentials and finally some concluding re-

marks will be given in Section IV.

Il. MODEL OF MOUNTAIN AND ZWANZIG®"

As it was mentioned in the previous section, the approach used by these
authors is to evaluate the time-correlation functions which relate the shear vis-
cosity and thermal conductivity of a simple fluid to the microscopic currents
representing the response of the system to an external force. These expressions
were derived long ago by Green!® and Kubo!! and are currently referred to in the
literature os the Green-Kubo formulae. Explicitly,” the shear viscosity 7 is

given by

1 e 18T xy
n-ﬂB-—Tjodt 0 >, (1)

where the current J*7 is:

I + 3 p*p?Y
+ SERY , @)

p;' Y being the x and y components of the linear momentum of the j-th particle, Ff
the x component of the force acting on it and R’. its position vector. The brackets

< > indicate that an average is to be taken over an equilibrium canonical en-

‘Hereoher referred to as MZ.
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semble with temperature T and volume V. Also, kg is Boltzmann's constant.

The thermal conductivity A is defined through,

e e e ) ~ 513 3)
3k, T? ©

where § is the heat gurrent defined by

Pi 1
Sw T@-st D «lg BE L 4
2=k - Ty iy, @

In equation (4), H, is Hamiltonian of the #-th particle, b is the enthalpy
per particle and the rest of the symbols are the same as the ones appearing in
Eq. (2).

Rather than repeating unnecessary algebra we would like to emphasize
upon the philosophy which lies behind the ca leulation of Eqs. (1) and (3). Ac-
cording to assumption (a) in the introduction, the first step is to express the
operators | and § in terms of a microscopic density operator. This is easily
achieved by using van Kampen's method, namely, to substitute the summation
over particles of a long-range slowly varying function by a summation over con-
veniently defined cells, where the weight of the function is now the particle

density inside each cell. Thus, if w(ri;r.} is such a function,

lE}f[w(ri].)]—' Eb ﬂzf[w(rab)]n(rb) ¢ (5)

L

where a, b, . ... label the cells, A is the volume of each cell and n(r,) is the
number density in the h-th cell. By Fourier-transforming the expressions thus
obtained, one is led to consider summations in k-space, where statistical aver-

ages of products of the Fourier components v, (¢) are involved, where
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vin)=n(r)-n,,
n, being the equilibrium number density. The second step is to calculate these
statistical averages involving the Vk's. It is here where assumption (b) enters,
In fact, one now assumes that in terms of a certain initial value v, (0), the time
dependence of 1, () is identical to that which corresponds to the Fourier trans-
form of the macroscopic density fluctuation obeying the linearized hydrodynamic
equations. The explicit form for v, (¢), first derived by Landau and Placzek!?,

has been discussed by several authors'?, the approximate expression used by

MZ being®

Ak? _k2+ K?

# G

Vk{t)= v, (0) exp { - _
o by | A4+ k2

t ' (6)

where A is the thermal conductivity, Cy, the specific heat at constant volume, ¥
the ratio of the heat capacities and «™! is the so-called correlation length de-
fined a la Ornstein-Zernike!*,

It is quite important to notice that the use of Ltq. (6) implies two as-
sumptions, namely, the validity of local and linear hydrodynamics in the vicinity
of the critical point where the correlation length «~ ! >> q"", (the hydrodynamical
length) and, furthermore, that the trans port quantities 71 and A are finite in that
region.

The calculations of 7 and A are rather straight-forward. Since ) depends
upon C,, one begins by calculating this equilibrium quantity. From standard

fluctuation theory we know that

Cy= 1 <(E)> . (7)

Expressing the contribution to 8E coming from the long-range interaction
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and following the above scheme it is easy to show that

:p”.l +Buw, - ,Bwk)-z i (8)

2
Cr= 1 3 w) (
72 I il

B
where w, is the k-th component of the Fourier transform of w(r), the long-range
potential, and | " | is the magnitude of the second derivative of (= () times the
free energy per unit volume. As usual, 8= (kBT)'l, and the superscript L indi-
cates that we are only taking the long-range contribution.

If we take for w(r) a Yukawa potential,

w

':__P_ﬁi, 9
uk 1+ k2 L2 7

L. being a constant, and substitute Eq. (9) back into Eq. (8), replace the sum-
mation by an integral whose evaluation is rather straightforward and take its limit

when T = T_, we find that

i Vk
Cp = — B lim

1 (10)
]617L4 fe=cl, K

where « is for this potential the inverse of the correlation length, defined by

"

|
Ko el an
L3(|¢" |+ Bwy)
5 [ oo | s : ; - . "
Since | 4" | is proportional to | T L. | in the vicinity of the critical point,
&t diverges in the same manner as the Ornstein-Zernicke's two-particle corre-
' -

lation length and hence C,, diverges as «~' near the critical region. This agrees

qualitatively with some experimental results, but the point still remains unsettled'?

413



1969 REV. MEX. FIS.

When evaluating the time-correlation function for the shear viscosity one

is led through the first step described above, to the following expression:

xy L x
U= 13 (aredy) (K (Igl*=<ly >, 02

| —

which combined with Eq. (6) and substituted in Eq. (1) leads, after the summation

over k is replaced by an integral, to the following result,

2

- dk k? [M
& ]

2 2 2 2
0w | KA [y vBu,- fuih)]
o kK tyk

s ol

(13)

Taking a Yukawa potential, the integral is evaluated straightforwardly

and yields,

k. T c
Ly = B° 3o+ Y fim DoV (14
critical 30772 16 41 1= Tc A

which depends on the behaviour of v« and C,,/ A at the critical point. In the MZ
paper it is shown that these two quantities remain finite at the critical point and
so does nL , there upon agreeing with the experimental results. We shall come

back to this point later on.

Finally, the expression for the thermal conductivity can be obtained by
evaluating Eq. (3) following essentially the same steps as in the previous case.
However, the calculations are longer, so that we shall avoid to sketch them here
and refer the interested reader to the original source®. The final resulfais that,
for a Yukawa potential close to the critical point, the thermal conductivity be-

haves as
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L 3
\ ) 8L w, (15)
n,Cy 3m A T
G

critical n

It is important to recall that the values of A and 7 which appear in the
denominator of Eq. (15), are a consequence of using the solutions of linearized
hydrodynamics to calculate 1,(¢). In particular the shear viscosity enters
because in the process of calculating §, the particle current shows up, and its

T
transverse part J, is found to be given by!3

i ; (16)

Thus, \ and 7 are assumed to be finite in the right hand side of Eq. (15)
even in the vicinity of the critical point. Hence, this result is inconsistent.

L -
Indeed if A is finite, then, since C;, diverges as ™',

2l
A_ <0 as ‘T—Tc|

nOCV

and, therefore, 1) should diverge at the critical point contradicting Eq. (14), our
former result. On the other hand, if )\L diverges as ]/CV, then the left-hand side
of (15) is finite. The result is consistent only if P\/CV is also finite, which re-
quires the inconsistent assumption of A being infinite. In this case 7 is finite,
which agrees with (14), and the total result agrees with experiment. This is es-
sentially the MZ argument developed in Appendix II, of their paper, which,
however, works only for the Yukawa potential. As we shall see later on, this is

no longer true for a Gaussian potential.
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II. THE GAUSSIAN AND LORENTZIAN MODELS

This section will be devoted to the calculation of the shear viscosity and
the thermal conductivity for a simple fluid assuming that the long-range at-
traction between the molecules is given by-

a) a Gaussian potential
and

b) a Lorentzian potential, which, as depicted in Fig. 1, behave for large
distances as the Yukawa potential, thus suggesting that within the present formu-

lation one should be led to results similar to those obtained with the latter one.

W (r)

Gaussian
—>
//.—_ Yukawa

Lorentzian

Fig. 1. The three potentials used in this paper, namely, the Yukawa, Gaussian
and Lorentzian are shown on a comparative scale.
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Let us start with the Gaussian potential, analytically defined by:

w(r):Aexp(-azrz) . (7)

where A and a are constants. Its Fourier transform is also a Gaussian functior,

namely,

Wy, = w, exp (- kz/daz) i (18)

where w, = Ara™? .
The specific heat at constant volume is readily obtained substituting

Eq. (18) into Eq. (8). Introducing the variables,

2 w
x= X and G = _ Py
+/3w0

"

4a° | P

and replacing the sum by an integral we get,

- a3
Gy =

. (19)

ﬂkT2(| [I-Ge J

The integral appearing in Eq. (19) can be easily performed to yield the

following result,

2 3
Vw  a
ck_ 1 _‘*277 x 30300785 .

m? kBT2 (l ¢” | +[3wo)

L
In the limit when T ~ T_, ¢" = 0, and C, remains finite with-a value

given by

417



1969 REV. MEX. FIS,

(cy) =Vkga® 2 x3.0..., (20)

crite -n!/z

a result which disagrees both with experiment and with Eq. (10), obtained using
a Yukawa potential.

The formula for the shear viscosity is obtained through direct substitution
of Eq. (18) into Eq. (5), yielding

-k2/242

2
- kz/Za 2]

an n, va: o dk(k6+’)fK12k4)e
12027) kT ha*
B 2 2 "
0 [(k +K1) | ¢ |+,Bw0e

(21)
where K, s the inverse of the correlation length for this potential, whose be-
haviour in the critical region is analogous to the « for the Yukawa potential
because, by the nature of the approximations we have used, this characteristic
length does not depend on the explicit form of the potential,'*

To study the integral appearing in Eq. (21) let us introduce the following
notation:

u (k)

1]

156+’)/.'<12 k* »

" | + B, .
Pw,

Calling such an integral I, we have that

= ] —/-"D H(k)dk . (22)
2
B ws 5 (k2+Kf)[D exp(ﬁzzﬁri.rxz)-l]2
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Using the inequality,

u
" <

(k2 + k) [p exp (k*/4a®) =1] ! k2 [D exp (k2/4a*) -1 ]2
1 1

one has that

. = (k6+y»<|2k‘)dk

1<
By <)* ] 1 oxp (#2/4a%) 11"

which may be transformed into

oo -2
(2a)°y% +2a)'y% e dy

1< 1 a
2

(ﬁwoxl)z p? 5 [1-p"*e™¥]

where y = k*/4a* .

18

The above integral can now be decomposed into two integrals of the type,

2n+1
2 =y 1
y 1 ey =r(n+1)[m(n intli)-
g 2 2

[ -D-le-y]

-M(D.l;n"'%;])]

for n = 1,2; M denotes the confluent hypergeometric functions. Since D remains

finite at the critical point, these integrals are simply constants and, hence, we

have that

1< const " (23)
.Kf
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Substitution of Eq. (23) back into Eq. (21) yields,

wo2 ﬂ(:. CV const . (24)
60k, T (271%) a* xf X

n" £

In this case we find once more that the behaviour of the shear wiscosity

‘nL in the vicinity of the critical point depends on

lim 1
T_'Tc Kf?\

i.e. on the knowledge of how the thermal conductivity behaves in such neighbour-
hood. When one investigates this quantity, it is found ‘®by a process which is analo-
gous to that described in MZ, and the use of Eq. (18), that

)\L = nowo X
37 mT
= exp(-—kz/ddz)(kz +"/K12) dk
A (R +k?) + (2 +w<2)] [\ @"| + B~ B, exnl- sz'4a2)]
A n,C, 1 mn, 1 0

(25)

This expression already gives rise to a difficulty similar to that pointed
out in the case of a Yukawa potential. Indeed, if in the right-hand side A and 7
are assumed finite and A% could be divergent as KIZ , according to Eq. (24).
This contradicts the experimental evidence. On the other hand if P\L is infinite
we get an inconsistency, because A in the denominator of Eq. (25) has been as-
sumed finite; however, qualitative agreement with experiment could be expected.
Furthermore, since CV is finiteat T = T, we do not have the apparent consisten-
cy which shows up in the Yukawa potential.

Let us now consider the case of the Lorentzian potential. Here
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w(r) = A 7 (26)
dz + r2

with @ and A being constants. Its Fourier transform, as it is well known, is a

Yukawa function in k-space, namely

- ka
w, = 2m° A . (27)
so that when k£ = 0, irrespective of anything else, w_= o~ . This implies ac-

(]
cording to Eqs. (8), (13) and (25) (with w (k) in general), that all the three

quantities considered here vanish identically, namely,

This is of course completely unphysical, but what is relevant here is that
there exists a potential of the same long-range characteristics as Yukawa's and
possessing a Fourier transform, for which the model fails. This result seems to
point out the inconvenience of formulating these type of problems in k-space,

instead of using directly the configuration space.

IV. CONCLUDING REMARKS

The results obtained in the preceeding section, together with those de-
rived by MZ for the Yukawa potential, lead to the following remarks.

It is rather clear that the scheme described here is inconsistent in so far
as the explanation of the apparent anomalies displayed by fluctuating quantities
in the critical region. This was pointed out by Resibois® and it is explicitly
exhibited by the results derived both for the Yukawa and the Gaussian potentials.
Thus it is through the use of more basic approaches to this problem that one can

expect to get better answers to this problem!” 18 | Yet, the final and definite

421



1969 REV. MEX. Fis.

explanation is still a challenge.

Besides this general consideration, other feature of this paper is also rele-
vant. In fact, even for fluctuating equilibrium properties, the model proposed by
van Kampen seems to be inadequate, the specific heat ut constant volume calcu-
lated for the three potentials considered here being different for them all. Hence,
the details of the potential do matter in so far as the critical behaviour of such
quantities. This point has been discussed by Mistura and Sette!® in another
context and seems to be related to the validity of the Ornstein-Zernike’s ex-
pression for the two-body correlation function in the critical region. Finally, in
a recent paper, De Sobrino® has attempted to calculate the transport properties of
a gas in a non-equilibrium state using van Kampen’s model, but starting not from
the correlation function approach but by solving the first two equations of the
BBGKY hierarchy using a linearization scheme to simplify the equation for the
two-particle distribution function. His results are, for the equilibrium case,
identical to those of MZ and hence subject to the same criticisms we have pointed
out above. For the transport coefficients his results differ completely from those
of MZ but, what is more interesting, he shows that the discrepancy arises from
assuming that the density-density fluctuations obey the hydrodynamic equations
with the obvious expressions for the transport coefficients. This is in

agreement with the inconsistency pointed out above.
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