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ABSTRACT:

(Recibido: octubre 15, 1969)

The pair correlation function is obtained from general scaling
laws and, independently, from an equation of state, which has
been proposed recently to describe the behaviour of some fluids
in the critical region. The consistency condition between the
two results is used to establish lower and upper bounds for the
critical exponents. We find that these results are also valid for
other systems, e.g. magnetic systems and three-dimensional
Ising models, and do not depend on the internal structure of the
system, but only on their dimensionality. Therefore, the idea
of universal behaviour of different systems, in the vicinity of

critical points, looks a promising one.

I. INTRODUCTION

Ina recent paper! it has been shown that the experimental PVT data
for He*, C 0, and Xec in the critical region, can be accounted for through a

*
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scalingelaw equation of state which can be expressed in an analytical form.

Following the ideas set forth by Widom? and Griffiths® one can write the
chemical potential Ay as

Ap,=Ap5b(x) (1)

where
Bp = pp,T) = ulp,,T)and Do =(0=0.)/p,

The proposed form for b (x) is given by!,

N . 28] (v=1)/28

X X o S

h(x)=E, 0 1+E, 0 ()
xO xo

where x = ¢ }Ap]-h = (=T, )/T E and E are adjustable parameters
and x = = X, represents the values of t and Apa]ong the coexistence curve.
As usual, the critical indices 8, and ¥ have the conventional meaning*
For fixed values of E, E 2 X, and p_ the data for the above menuoned
gases was analyzed usmg several values for T_and 8. It has been found that
the estimated values for yand aagree with experiment and also that Eq.(2)
describes the data for the three gases to within their estimated precision.

Furthermore, it is shown that of the parameters selected to perform the
scaling, 3, S,El and E, are quite steady, the only one varying from substance to
substance being x .

The purpose of the present paper is to extend these calculations to
analyze the behaviour of the pair correlation function in the critical region”.
Indeed, since we have an analytical expression for the equation of state we
can calculate the isothermal compressibility K and then use the fluctuation
theorem* to find G (r). Furthermore, Cooper® has recently shown how to
generalize Kadanoff’s scaling arguments’ by using the asymptotic behaviour
of a strongly coupled many body system. Applying this method to a fluid,
taking Apas the order parameter and Ay as its thermodynamic conjugate
variable one can also find the behaviour of the pair correlation in the crici-
calregion. Thus we are led to two expressions for G (r), which should be
identical, consistently with the scaling assumption. The main results of
this procedure are that we are led toa series of inequalities which must be
satisfied by some of the critical indices [evks Egs. (33, a-e)] and to obtain
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estimates for the critical indices mand v. The predicted values for these
two indices are found to agree with the experimental data quoted by Heller®
and furthermore, they are also in agreement with the calculations quoted for
three-dimensional spin systems by Fisher and Burford?. Section II of this
paper contains a short discussion of Cooper’s method and its extension to
the pair correlation function. The usualrelationship berween the critical
indices v and 7) is therefrom obtained. In Section Il we shall give the calcu-
lation of the pair correlation function via the fluctuation theorem using the
equation of state given by Eq. (1). Comparing the results of sections Il and
Il we obtain the set of inequalities given by Eqs. (33 a-e) which are then
compared with experimental results, not only for fluids but for other systems
also. This is done in section IV where also an estimate of the indices v and
7 is given, together with some concluding remarks about the nature of the re-
sults obtained.

Il . GENERALIZATION OF SCALING=LAWS

The purpose of this section is to extend the arguments given by
Cooper® to the study of the pair correlation function in the critical region.
For a system consisting of a large number of particles, in the thermodynamic
limit, we fix our attention in the Gibbs function G which depends on two vari-
ables, the reduced temperature ¢ = (T = TC)/TC and the order parameter
p(t,bh). Here, b is the thermodynamic conjugate variable of p defined through
b(t,p) = 0G (t,h)/dp. The idea is to assume that both ¢ and b are related
to the structure of the system through the following relations, namely,

g=g T(LY  and b =BHHE, (3)

where both T and H are nonsingular, differentiable unspecified functions of
the positive variable L. This variable is the “cell parameter” in Kadanoff's
description of the physical system which for the particular case of a rec-
tangular lattice of dimensionality d, yields for T and H the expressions’ ,

“(2=m)/7 ~%(d+2°m)

T(E)y=L H(L) =L .

bl

The functions H and T appearing in Eq. (3) are thus the generalization of
the scaling equations introduced by Kadanoff, and in some way relate the
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site variables with the cell variables. If we now assume thatthe Helmholtz’s
free energy of the system is the same whether it is calculated through sites or
cells, we get Cooper’s essential equation, namely, that

-4
pltbh) = — (ib, 4
H()P ) (4)

which is a functional equation for the order parameter p. Its most general
solution, is given hy!?

A

b f(x) b#0 (5a)

p(t,b) =
t bh=0, (5b)
B

where x = t/h » A and B are arbitrary constants and f(x) is an arbitrary

function of x. Swubstitution of Eqs. (5a) and (5b) back into Eq. (4) leads to
the following consistency conditions,

Lyg4*) gy =1 (6a)
Lt )yTBL)y=1 (6b)
HA/B .ty 77 (L) = 1. (6c)

The relationship between the indices A and B, and the critical exponents is
now obtained through the study of the equation of state 2 (£,5) in the critical
region. Indeed, the equation for the critical isotherm is given by

A
p(0,b) =25 f(0) €
and that of the coexistence curve by

p(1,0) =12, (8)

Co" paring Eqs. (7) and (8) wuh the definition of ﬁ and 8 we find that g
= 8" and B = 3. Thus,
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P, By =h""3f(x) h#0 (%)

B =0, (9b)

Il

where x = t/]ﬁ!*l/ﬁ5 . Notice here that the parameter L which is of a mathe -

2

matical nature has dissapeared. Also, Egs. (9) shows Widom’s conjecture,

name ly, that the equation of state is a homogeneous function of the variable
x. Furthermore, from Zq. (9a),

b=p%"2e/n R
or, in general, we can write that

b=p%g(x") (10)

where x' = t/pl‘ . The calculation of @ and 4 follows the same lines as that
of A and B yielding @ = §and b = 87!, so that

b(t,p) = pdgt/p"/P), (11)

which gives the dependence of » with p. The functions g and fare not inde-
pendent but are related through the expression,

b 5
Y s T Y, e

The functions f or g are arbitrary but must obey the conditions set up
by Griffiths® namely, those of convexity and analiticity in the region
-%, <x'< e where - x, represents the values of #and p on the coexistence
curve, so that g(-xo) = 0. These conditions are met if g(x) possesses a
series expansion of the type

g(x)= ozo 77”xﬁ(5+1-2n) . 12)

n=1

near x = « where s is'a constant and x = t/pl/ﬁ. Applying Eq. (11) toa
fluid we have thar

Ap =0p%g(x), 13)
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all quantities being defined as in the inroduction. Using the definitions for
the isothermal compressibility k. and the specific heat ¢, We can now use
(13) to study the behaviour of the fluid in the critical region. In fact, from

1 ‘a,u, b
K= ? (EF) (14)

we find that

5 .
L 1880° " g (x) - Af/ﬁt'“ "-i,(’”
P Bhp %

- Se1 -1
1 (¢ AR 1 s_x_dlng(x) ,
- p2 x g(x) B dx

which compared with the definition of ¥, yields

KT=

v=pB@=-1), 1s)

showing symmetry between 7y and ' since Eq. (14) holds for temperatures
both above and below T_.

Furthermore, since

2
¢, ==T %fﬂpdp (16)

we have that

e, :Tﬁfx"s(s+1)g(x)dx B_Z_tﬁ(8+1)
s

TR A [B(B+1)][B(8+1)-1] LCTD"2

where A is just the value of the integral. Comparing with the definition of
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awe get that

B(S+1)=2-a, 17)

showing symmetry between a and a' because Eq. (16) is valid for tempera-=
ture above and below T_ . Eq. (17) represents, in the form of an equality,
the inequality first obtained by Griffiths!! and if combined with Eq. (15)
yields, in the form of an equality, Rushbrooke’s inequality'? .

Let us now apply the previous arguments to the study of the pair
correlation function g (R) = < p(r) p(r')> . Using Eq. (4) we have that

L-zd —

- -d
L g(t,h,R)

L-d
g, h,R) = ¢ p(r)

H D) H(L)P(r)> -

H*(L)
(18)
where R = |r=r"]| is the interparticle separationand R =R/L . Eq. (18)

is a functional equation for g whose most general solution is found to be
given by!?

G(R)=g(t,h,R) = b W(x,z) h#0 (19)
b

= £ F(z) t#0 (19b)

- AR™C t=»=0, (19c)

where x = t/b® /b P = Rtb/c and the constants A, @, b and c, together with

the functions W and F, are arbitrary. Substitution of Eqs. (19) back into
Eq. (18) yields a set of consistency conditions, namely,

grid gr+a) py= 20a>
£% ™2 g 5 R e (20b)
L g gy =1 (20c)
Py gy - 20d)

TR G L] (20e)
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which must be satisfied by the indices a, b and ¢ .

lated to the critical exponents through the trivial requirement of consistency

between Egs. (6) and Eqs. (20). This immed iately yields the follow ing e=
qua lities :

These indices are re-

a=2A=12/8
b=2B =28
c=2ad _ 24d _ 24

a+1 A+1 S+1

and, with their aid, Eqs. (19) for G (R) can be cast into the expressions,

GR)=h¥%W(x,z2) b+ 0 (21a)
= 128 F (z) t=0 (21b)
= ARTEITYL 4oy, 21c)

where x = r/bl/ﬁa 2= B8+ 1)/d . The arbitrariness of the functions W
and F is restricted, since they are related to f(x) or g(x") through the
fluctuation theorem.

Using Eqs. (2la=c) and the definition of the critical exponents v and
71 we immediate ly arrive to the following equations,

v=p5(8+1)/d (22a)

o Bl
2=m1=4d 5 22b
T=% s G

Combining Eqs. (22a,b) with Eq. (15) we find that

vR-7m) =7, | (23)

thus recovering the same expressions as those predicted by Kadanoff” . It
Is interesting to notice that the indices characte rizing the pair correlation



Correlation Function in the Critical Region 31

function G (R) obey, in the form of equalities, the inequalities obtained by
Fisher'? for a d-dimensional ferromagnet near its critical point. These ine-
qualities canalso be found by substitution of the expressions obtained for
7 and v into the Griffiths-Rushbrooke’s inequa lities for a, 3, dand y. It
is also worth pointing out that we shall obtain some inequalities which must
hold for the critical indices of a fluid, from the behaviour of G (R) near the
critical point. These expressions although different in their mathematical
structure as the ordinary ones are nevertheless consistent both withscaling-
laws predictments as wellas with experimental results.

Il. CALCULATION OF THE PAIR CORRELATION FUNCTION.

The subject of this section is devoted to the calculation of G (R)
using the well known fluctuation theorem, which relates this function to the
isothermal compressibility of the system. For this latter quantity we shall
use the expression obtained in the previous section which itself arises
from the equation of state proposed by M. Vicentini-Missoni et al' . The
resulting form for G (R) which is rather complicated, will be studied in the
vicinity of the critical region (£ ™ 0) and the asymptotic form thus obtained
will be compared with the one derived from scaling arguments, i.e. Eq.(21c).
From the comparison of these results we find that the critical indices obey
certain inequalities which are themselves consistent with experimentalre-
sults. This matter will be dealt within the following section.

Maintaining the idea that our main task is to study the form of G (R)
in the vicinity-of the critical region we shall make some approximations
from the very beginning of this calculation. Thus, the compressibility ob-
tained in the previous section may be written as:

1 t-yxa’ § by [xgﬁ+y52(x+x0)25]”
"2 E & n=0 phgt : n+1 e
P 1 Ba jxha ) #ota
° [x§ﬁ+52(,+xo)2ﬁ} 28

KT:

b4

n

S . -1 . :
where we have expanded (g(x))” ina power series of x and we have taken
into account that for values of x close to zero,

§>> x ding(x)
dx
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; / ;
Using z = ReA(3+1)/d oo the independent variable and recalling that
the most general form of the pair correlation function will be a function of x

and z we find, from the fluctuation theorem, that the integral equation which
must be satisfied by G (R) is:

1+pt'B(5+1)/dfG(x,z)dz= AT t'7x;" x
0 el 81‘:‘1
. E oty [xg’B'F’)/Ez(x-f- .-0)273} ,
n=20 Sn + n ¥+ y=-1
SR xo) [xzﬁ-l'E (x+r)2/3]2_}3+”
0 2 0
(24)

where the integration limits have been chosen so that we can study the corre-
lation function in the critical region, namely from the critical isotherm
towards the coexistence curve or the critical isochore, if x = >

To find the solution of Eq. (24) we use the following property of
‘Laplace transforms,

F(x,z)= C.I{SEI:F(x,z)dz}

-1 ) ;

where [ and [ are the direct and inverse transforms, respectively and s the
parameter characterizing such transformation. Setting y = z + x, the
Laplace transform of Eq. (24) is given by:

B+ /d=y Y

.C{f:c(x,z)dz} = kT 0

o ElS
o n
X E 1 fm (y-xo)" g [x§B+yEzyZB] X
n=0 8” x n+1 ’)"1+n
(JB ) 0 ¥ [x243+ E yzﬁ] :E
0 2
= -x) B(&+1)/d
g O gy . . 25)

sp
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Expanding all the binomials, we have that

n -ty n+y
(y-xo)"+7: 3 ( ) y”+7 a(-l)ax:

a=20 a

n

b
38 ey = 3 (1) e e

b=0

J8 ey (Pl
[xozﬁ +Ezy25] 28 > % 28

where in this last expression, we have assumed that

L

2
x x (1-E_ ) .
y< 10 or R< 0 . 2 t B(d5+1)/d ;
g8 g8
2 2

which is not inconsistent with Eq. (24) since for Ap fixed, x = 0 implies

t = 0, which means that R will always be less than the coherence lenght

R _ in order to guarantee the existence of correlations. Substituting these
results back into Eq. (25) and using the definition of the incomplete gamma
function, we find that

4
EfoxG(r,z)dz _ kT l t-"B(SH)/d'yl_—r()\, S%o) esxo - Rt/ d
g EIS s sp

?

(26)

(N, sx ) being the incomplete gamma function, A a positive parameter de-
finedas A =7y +28(b+c)=a (N> 0)and I a constant defined by the
following expression,
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V=1
-3 v ([ 5
”:0(,85)" a,b,c a b c

x (-1f +CE2b+C’)/bx: ¥i=28(b* )7

M

Taking the inverse Laplace transform of Eq. (26), the correlation function
reads

¥ ;

G(x,z)=k_T fo_tﬁ(s“)/d'ylﬂ-l esxo M_) -E-l ’B. (SH)_'d.
,02 EIS A=1 ye)
(27)

Furthermore, if kl'/ is the third class modified Bessel function of order v,
then*

s

: {za”f’z pov/2 K, @ (at)l/z)} =Ta-v)1_e*T@w,as),

Sv.1
(28)
so that taking the inverse Laplace transform of Eq. (28) and substituting

the result back into Eq. (26), identifying v with A and a with x, we find
that

v M2 _~n/2 ;
Glxx)= LT panjaey 2o T K@ VRD)  p0e0
o E° '@ -\ e

(29)
with A < 1. But since we have already found that A > 0 we have that this
parameter has to satisfy the condition that 0 <A <1 . Hence, for a given
system this will impose severe restrictions on the binomial terms which a p-
pear in the constant I. Writing Eq. 29) in terms of R we finally arrive to
the result that

G(R):k—r jt")"?\,s(S"'i)/Zd R‘(l+).,f2) z K?\(Z /.1'02 -.]__' , (30)
I ke
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2x M2
where J = %  is a numerical constant.
Fa-ME S

We can now use Eq. (30) to compare it with the result predicted by
the scaling laws, namely Eq. (21c) giving the behaviour of G (R) in thfe
neighbourhood of the critical point. Since x = t/bY P and z = RyBiE+1)/4
we examine the asymptotic part of Eq. (30) when ¢ 2« 0, that is T very close
te T and fixed R. Then the dominant term in Eq. (30), noticing that
z K, (2 \/;;;) also goes to zero for small values of ¢, is

G (R) ~CR-(1*+}/2) (31)

C being a constant. Thus, comparing Eqs. (31) and (21c) we find that A is
related to the critical exponents & through the expression,

1+2§:i, (32)

and since A is bounded, we shall have a natural bound imposed on §. Indeed,
since 0 <A <1, we get that

‘%d-l<8<2d—-1, (33a)

d being the dimensionality of the system.
Using the Eqs. (15) and (17) relating & to the critical ex p onents 'a,
Band y and Egs. (22a,b) relating 8 to v and 7 we find from (33a) the

following inequalities, name ly

28 (23_0’ -) <y<2Bd-1) (33b)
2(1-dB) <a<2 (1-3?3’) (33¢)

‘3‘_;3<v<z/3 (33d)

3-d<n<21—d, (33¢)
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which amounts to the fact that given one critical exponent, say £ in this case,
the remaining ones are bounded, the bounds depending only on one more pa-
rameter, the dimensionality of the system.

On the other hand for systems such that d > 3, the Ornstein-Zernike’s
theory gives an expression for G (R)* which, if compared with Eq. (31),
yields for A the value

Aoz, =2W=3)

and hence,

%(x-xo.z_h (z-ds_s:_;) =7 (34)

A being the value given by Eq. (32). Thus one half of the difference be-
tween the values of the parameter \ will give a measure of the deviation
between the behaviour of G (R) in the critical region as obtained from classi-
cal theories and from experiment. In the case d =3, A, , = 0 so that
1/2 X = m is precisely the measure of such deviation, consistently with the
definition of 7. Also, Eq. (30) cannot reproduce the classical behaviour of
G (R) because it would require a value of A = 0, in disagreement with the
bound found for this parameter. In short, the scaling-law equation of state
proposed by M. Vicentini-Missoni et al' predicts a correlation function

G (R) which, consistently with the scaling laws, has a non-classical be -
haviour near the critical point.

IV.COMPARISON WITH EXPERIMENT

<ing the values of B and & for He* , CO, and Xe given in Ref. 1,
those for CrO, and Ni quoted by Kouvel and Rodbel1)% and for other mag-
netic systems wh1ch are summarized in a recent paper by Cooper etal'®,
we have used Egs. (22a,b) to calculate the values of v and 7, the results
being shown in Table 1.

- . .
Different values for the same substance correspond to reports given by different

authors!®.
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TABLE 1.

Critical Exponents

Substance B 8 v n
Co, 0.35 - 4.6 0.653 0.071
Xe 0.35 4.6 0.653 0.071
He * 0.359 4.5 0.652 0.101

CrO, 0.34 5.7 0.759 -0.103
CrBr 0.368 428 0.647 0137
CrBr, 0.364 4.32 0.642 0.128
Ni 0.41 4.22 0.713 0.149
Ni 0.373 444 0.676 0.1 04
Ni 0.375 4.48 0.681 0.105
Ga 0.370 4.39 0.664 0.113

From these results we notice that, except for CrO_, all values of &
lie within the range specified by Eq. (33a), namely, 3 <3 <5. It is also
easy to check that v and 7) are also consistent with Eqs. (33 d,e). Thus,
we conclude that the dara for CrO2 is inconsistent with scaling. A similar
statement is also applied toa two dimensional Ising system forwhichd =15.

It is also interesting to point out that for the majority of the systems
analized in the wide literature on this subject, one finds that 8~ 1/3 and
8§~ 23/5 which predict v ~ 0.62 and 1 ~ 0.07, all of these estimates lying
within the specified bounds given by Eqs. (33) and also in agreement with
the recent calculations reported by Fisher and Burford® for three dimension
al spin systems. However, the numerical estimates for v and 7) cannot be

yet compared with accurate experimental results due to the difficulties in-

volved in their measurement® .
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Some concluding remarks are pertinent in view of the results derived
here. First, it is imp ortant to emphasize the fact that from the scaling-law
equation of state proposed for three gases, in their critical region, it is
possible to derive on equation for the pair correlation function G (R) which,
if required to be consistent with its own scaling-law form, imposes some
bounds on the critical ex ponents, except for the one chosen to be independent.
Furthermore, these results hold true not only for these fluids but also for
some magnetic systems, thus suggesting that indeed the idea of seeking for
a universal behaviour of physical systems in their critical regions is promis-
ing.

Secondly, it is interesting to notice that once a critical ex ponent is
chosen to be fixed by experiment, the bounds imposed on the remaining ones
depend only on the dimensionality of the systems and not on their intrins ic
structure. This fact, once more suggests that the interactions between the
particles will be similar for all systems near critical points, which is of
course consistent with the generalization of the scaling-laws. In fact,since
we have an analytical expression for G (R), (so far too complicated) , we
could in principle derive from it the form of such interactions.

Finally, the bounds for the critical exponents 7 and v found here
have some bearing on the remarks made by Fisher in a recent paper®. In
fact Eq. (30) indeed shows that the pair corre lation function for a fluid,and
optimistically for other systems also, will show an oscillatory behaviour for
small values of R, through the appearance of the Bessel function
K, 2 l/xoz), and a monotonic decaying tail with a de pendence on R given by
Eq. (31). Due to the complexity of the expression obtained here for G (R)
it is premature to make stronger statements; however, qualitatively, we can
expect the desired behaviour.
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RESUMEN

La funcion de correlacion de dos particulas es obtenida a partir de
las leyes generales del escalamiento e, independientemente, a partir de una
ecuacion de estado propuesta recientemente para describir el comportamiento
de algunos fluidos simples en la regién critica. 'La condicién de consisten=
cia a que deben obedecer ambos resultados se traduce en establecer cotas in-
ferior y superior para los exponentes criticos. Se encuentra ademds que es-
tos resultados son validos para otros sistemas, e.g. sistemas magnéticos y
mode los de Ising tridimensionales y no dependen de la estructura interna del
sistema, sino solamente de sudimensionalidad. Asi pues, la idea de que los
fenémenos que se observan en diversos sistemas fisicos, en la vecindad de

puntos criticos, obedecen a un comportamiento universal, parece ser mas pro-=
metedora.





