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ABSTRACT: The paie correlation funceion is obtained from general scaling

laws and, independentl}'~ from an cquation of staee, which has

been proposed recentl}' ro describe (he bchaviour of some fluids

in [he critical region. The consis(ency condition between the

twO rcsults is used lO estahlish lower and upper bounds foe the

cridcal exponen(s. \t'e find (ha( (hese results are also ,.alid for

o(her systems. e. g. magnetic sys(ems and rhree,dimensional
Isinlot models~ and do nor depend on (he in[ernal sUUctute of (he

sysrem, but onl)' on (heir dirnensionaliry. Therefore, (he idea

of uni,'crsal beha,"iour of differen( systcms. in [he ,"iciniry of
crirical poin(s, Iooks a promising one.

l. I:\1TRODUCTION

In a fC('(.f1t papcr1 it has been shown chat [he experimental P\'T data
(t.-.r1{(,4, CO

2
anJ Xc in [he criticai rcgion, can be accoun[cd (or through a

.
.-\ Iso ;.)r Ihe Ins( ir uro 'll"X icano de I Peuóleo. 'l¿;x ico 1-4. [)" F.
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scaling-law equation oí sr3rc which can he expressed in ao anal)'tical formo

Follov •.ing rhe ideas ser farrh by Widom2 and GriffithsJ one can write rhe
chemical potential6.J.1 as

(1)

where

The proposed form for h (x) is given by1,

(")'01)(,/3

(2 )

-1//3
",here x = t Illpl ' t = (T - T YT ; E and E are adjustable paramcterse e 1 2
and x = -xo represcnts rhe values of tand 6.palong rhe coexistence curve.
As uStL:1.1, rhe critical índices S,/3 and y have rhe convencional mcaning"'.
For fixcd valucs oí E ,E ,f3, x and p rhe data for rhe aboye mentioned

1 2 O e
gases was analyzed using several values roc Te and S. le has beco faun! thar
rhe estimated \'alues foe yand aagree wirh experimenr arxl also rhar Eq.(2)
describes rhe data roc rhe rhree gases towithin their estimated precision.
Furthermore, ir is shown thar oC rhe fU ramerers selecred ro perform rhe

sca ling, /3, S, I! and I? are quite sr('ad)', rhe only one varying from subscance ro
1 2

substance be ing x .. o
The purpose of the ¡xesem paper is to extend these calculations ro

analyze the behaviour of the pair corre1arion function in the crirical regions•
lndeed, since we have an anal)'rical express ion for rhe equarion of s[are we

can calculare rhe isorhermalcompressibilirYKT and rhen use the fluctuation

rheorem'" ro find G (r). Furthermorc, Cooper6 has recently shO\\!n hO\v ro
generalize Kadanoff's scalingarguments7 by using rhe asymproric beha\"iour
of a srrongly coupled many body system. A pplying this methal to a fluid,
taking !J.pas rhe order para meter aml!J.J.1- as its rhermodynamic conjugare
variable one can a1so find rhe behaviour of rhe pair corre1arion in the criti-
cal region. Thus W(' are letl to twoexpressions for G (r), which should be

idemical, consisrently with rhe scaling assumprion. The main results of
rhis procedure are rha[ we are led toa series of inequalities which must b(,
satisfied by sorne of rhe critical indices [e.f. Eqs. (33, ame)] and ro obra in
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estimates for the critical indices TJ and v. The predicted values for these
twO indices are f"und to agree with the experimental data quoted by Heller8

and furthermore, they are alsa in agreement with the ca lculations quoted for
three-dimensional spin systems by Fisher and Rurford 9. Secdon Il of this
papee contains a shoet discussion of Cooper's method and its extension to
the pair correlation function. The usual relationship between the critical
indices 11 and r¡ is [herefrom oblained. In Seclion III \Ve shall give lhe calcu-
lation of the pair correlation function via the fluctuadon theorem using the
equalion of stale given by Eq. (1). Compa[ing [he lesulls of seclions II and
III \Ve obmin lhe se[ of inequalities given by Eqs. (33 a-e) \Vhich are [hen
compared with experimental results, not only for fluids but for orher s)'stems
also. This is done in section IV ,:"here also an estimate of the indices vand
TJ is given, together with sorne concluding remarks about the nature of the re-
s uIts obra ined .

II. GENERA LIZATlON OF SCALING-LAWS

The purpose of this secdon is to extend the argurnents given by
Cooper6 to the sttrly of the pair correladon function in the critical region.
For a system consisting of a large number of particles, in the thermodynamic
limit, we fix our attention in the Gibbs funcdon G which depends on two vari-
ables, the reduced temperature t::;:: (T-T )/T and the order parametere e
p(t,h). Here, h is lhe lhelmodynamic conjuga[e variable of pdefined [hrough
h(t,P); oC(t,h)/Op. The idea is loassume chal bo[h tand h are lelaled
to the structure oC the system through the fo11owing rclations, namely,

t;tT(L) and h;hll(L),

where both T and JI are nonsingular, differenti.:'lble unspecified functions oC
the positive variable L. This variable is' the "ce 11 parameter" in Kadanoff's
descripdon of the physica1 system which Cor the particular case of a rec-
tangular latdce of dimensionality d, yields for T and JI the expressions 7,

T (L)
-(2 -TJ)/Y

::;::L .,

The funclions 11 and T appearing in Eq. (3) are lhus ,he generalization of
the scaling equations introouced by Kadanoff, and in sorne way reL'ltc [he
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s ite var iables w ieh rhe ce 11var ia bies. If we now ass ume tha t che Helmholtz 's
free cocegy oí (he systefTI is rhe same whether it is cale u1ared through sites oc
cells, we get Cooper's e.s,sential equacion, namely, chac

p(t,h)= cd --__ p(t,h),
11 (L)

(4 )

which is a funccional equation for che order paramcter p. les most general
solution, is given bylO

IhA I(x)

PU,h) =
113

h f- O

h = O,

(Sa)

(Sb)

AIB
where x:;::; tlb , A and B are arbitrary constants and I(x) is ao arbitrary
funetion of x. S,tbsticution of Eqs. (Sa) and (Sb) baek ineo Eq. (4) leads to
rhe following consistency e onditions ,

1

(Ca )

(6b)

(6<: )

The relationship between rhe illdices r1. and B, and [he critical exponents is
now obcained cbcough che scooy of che equacion "f stace P(I,h) in che critical
reglon. Indeed, [he equation foc che critical isorhcrro is given by

p(O,h) = ://(0)

and chac of rhe coexistence curve by

13
P(t,O) ~ t • (8)

Co •...~ariJIg Eqs. (7) al1<~(8) wúh the definition of f3 and 8-4we finu rhar
A = S.-' and R = ¡3. Thus,
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p(t,h) = b'''.¡(x)

= 1/3

bolO

b = O,

(~ )

(9~)

27

where x = tih1/13S. Notice here that the parameter L which is úf a matllt~'.
h'" 'd ,2 'matical naturc has dissapeared. Also, Eqs. (9) s OWS""1 om s conJccturc,

namel)', that the equation oí state is a homogeneous funcdon of the variat.\e
x. Furthermore, írom :::'q. (9a),

or, in general, we can write that

h = pa g(x') (10)

where x' = l/pi. The calculadon of a and-b ío11ows the same lines as that
dA and B yieWing a = Sand b = 13-', so ,ha,

which gives ,he dependence 01 h wi,h p. The lunctiolls g and ¡are not inde-
pendent but are related through the expression,

• 1//3 •
g (tlp'//3) = r (tlh )

The ~unctions I or g are arbitrar)' hue must obey the conditions set up
by Griífiths3 namcly, those of convexity and ana litic ity in the region
-xo <x'<~ wher~ -xo represents the values oí tand pon the coexistence
curvc:, so that g(-xo) = O. These conditions are mee if g(x) possesses a
series eXpinsion of the'type

g(x)= ~ 7J x,8(b+'.2n)
n = 1 11

(12 )

near x = ~ where 7)n 15 a constant and x = Ilp1//3. Applying Eq. (11) toa
fluid we have tha'

" ,
'O •

6¡.L =6p g(x), (13 )
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aH quantities being defined as in che introouction. Using che definitions for
che isothermal compressibility KT and che specific heat el)' we can now use
(13) 10 sludy lhe behaviour of lhe fluid in lhe ctÍtical legion. In facl, from

we find lha,

(14 )

K - IT--
p2 ]

-1

dg (XI =
dg

1
g(x)

G- 2-d1ng(X)]"'l {3 dx

whic h e ompared w ith che definidon oí y, y ie lds

y; (3( 8 - 1) • (15)

showing symmetty between yand y' since Eq. (14) holds for ,empera,ures
bOlh above and be low Tc'

Furthermore,since

(16 )

we have char

[ ] [ ] 1¡3(Hl)-2;T{3A (3(8+1) {3(8+1)-1

where A is just che value oE (he integral. Comparing with (he definirían of
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a. we get that

(17)

29

showing symmetry between aand a' beeause Eq. (16) is valid for ,empera.
'ure aboye and be low T • Eq. (17) re¡xesen's, in ,he form of an equali,y,

e
,he inequality firs, obtained by Griffi,hs" and if eombined wi,h Eq. (15)
yields, in the form of an eqtnlity, Rushbrooke's inequality12.

Le' us now apply ,he ¡xevious argumen,s 'o ,he s,OOy of ,he pair
corre lation fune,ion g (R) " < p (r) p (r' ) >. Us ing Eq. (4) we have ,ha,

g (t,h,R) = L-d - L-d< p(r)_._p(r'»=
H(L) H(L)

(l8)

where R = Ir-r' lis ,he in'erparticle separa'ionand R =R/L. Eq. (18)
is a functional equation for g whose ,most general soludon is found to be
given by'O

G(R)"g(t,h,R)=
a
h W(x,z) h * O (1~)

b
= t F(z) t * O (l9b)

.c
- AR t=b=O, (l9c)

/
a/b b/cwhere x = t h , z = Rt and the constants A, a, b and c, together with

,he funetions W and F, are arhi'rary. Substi'u,ion of Eqs. (19) baek in,o
Eq. (18) yields a set of consistency e onditions, namely,

L - 2d H - (2 + a) (L) = 1

/la/ b (L) T' 1 (L) = )

Tb/c (L) L = 1 ,

(2 Oa \

(20b)

(20e)

(20d)

(20e)
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which muse be satisficd by rhe ¡nd ices a. b and c. These Índices are re.
lated to rhe critical cxponems through rhe trivial requirerncllt of consistencr
between Eqs. (6) and Eqs. (20). This irnrnedialely yields lhe following e."
qua licics:

a = 2,1 = 2/0

b = 2B 2/3

_ 2ade =
a + 1

2Ad
A + 1

= 2d
0+1

and, with their aid, Eqs. (9) (oc C(!?) can be case imo rhe expressions,

= ,IR • 2d/ S + 1 I = h = O ,

(21a)

(21b)

(21e )

where .t: = 'Ih 1/ /3S, z = R ,13 (S + 1)ld. The arbitrariness of rhe functions If
and F is restricted, since rhey are reL.--tted to f(x) oc g (x') through rhe
fluctuation thencem.

Using Eqs. (2la-e) and [he dcfinition of [he critical exponents vand
r¡ we immcdiatcly arrivc (O rhe follO\\'ing eq~[ions,

v=/3(O+I)/d

do - 1"2-7)= __
0+1

Combining Eqs. (22a,b) Wilh Eq. (15) we find lhal

(22a )

(22b)

(23 )

rhus rccon:'ring dw same expressions as [hose predicted by Kadanoff'. Ir
is imeccsring ro nmiee rhar rhe indices characrerizing [he pair correL"l[ion
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~l-
,-Y<,>' N xn+y

Kr
. o ¿

p2 r: S n:..:: o f3n S' + )n+l
1 ,x .'1:'0

function G (R) obey, io rhe form of equ<:'"tlities, rhe ioequa lities obra incd by
Fisher12 for a d-dimensional ferromagnet oear irs critical point. These ¡ne-
qualities can also be found by substitution of the expressioos obtained for
T) a ntI V inca the Gr i ffiths - Rushbrooke 's ineqU<'llities for a. f3, S and y. lt
is .'lIso worth pointing out that \\le shall obmio sorne inequalities whieh musr
hold for the critical indices of u fluid, from the behaviour of G (R) neur the
critical poim. These expressions although different in their mlthcrnllical
structurc as the ordinary ones are ne\'ertheless consistent both \\;ithsculing-
I..1.W5predícrIDCntS as \\'ell as with experimental results.

III • CA LCULATION OF TIIE PAlR CORRE LATION FUNCTlON.

The subject of rhis secrion is devOled to the calcularion of G (R)

using the well known fluctU<1.tion rhcorem, which relates this funetion to the
isothermal compressibiliry of rhe sysrem. For this L'ltter quantity we shall
use the expression obtained io rhe previous section which itself arises
from [he equation of S[utc proposed by ~1. Vicentini-~Hssoni e[ all. The
resultiog form for G (R) which is rarher complicured, wiU be studied in the
vicinity of the eritical region (t::::: O) and (he asymptotic form thus obraincd
wiU be comparcd with the one deri\'ed froro scaling arguments, i.c. Eq.(21c).
From the compurison of these resuhs we find thar [he eritical indicl's obey
certain incqualities which are thcmsclves consistent with experimental re-
sulrs. This m..1.uerwiII be deaIt within the foI1O'..\.'ing section.

Maintaining [he idea thar our main rask is to sr~iy rhe form of G (R)

in rhe vicinit)."of rhe critical region we shall m.'lke some apprclI{im..'1rions
from [he \"cey beginning of this calculation. Thus, the compress ibility ob-
rained in the previous section may be written as:

[.,213 + 'Y r: (x + x )213]"
O 2 O

'Y - 1

[x2¡3+E (.,+x )2¡3]-;-;B+n
O 2 O

where wc haye eXfUnded (g(x)r1 in a pl1\\'er series of x and we haye caken
into accouO( rhar for \'alucs of.\" e los t.> ro zero,

S » x
lJ

dlllg(x)
dx
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Using z; R¡/3(Ó+ll/d as [he independent variable and recalling tha,
the mast general forro oC [he ¡:n ir eorrelat¡on function will be a function oí x
and z we find, from the fluctuation rheorcm, (haI the integral equation which
must be satisfied by G (R) is:

t-"x"Y
I +P¡o/3(ó+l)ld f G(x,z)dz; kT o_ x

o P 8E
[

x I
n = o

n
[x213 +yE (x+.: )213]o 2 o

')' 01

[X213 + E (x + x )2/3]-;jl + n
o 2 o

(24 )

where the integration limits have beco chosen so chat we can srudy the corre.
lation function in the critical regiDo, namely from the critical isotherm
towards the coexistence curve oc the critical isochore, if x _ (loO.

To find [he solution of Eq. (24) we use the following property of
'La place transforms,

-1
where .c and.c are the direct and ¡nverse transforms, respective Iy and s the
parameter characrcrizing such transformation. Seuing y = z +""0 the
Lapl~ce transform of Eq. (24) is given by:

r; {.( G(x,z)dz } ; kT

/
x

n
~ DO n+')' [x2/3 +YE y2/3]
I I J

(y-xo) o '2x --
n = o (/38)" Xo n + 1 ')' o 1y 13 /3 _+n

[x~ + E2y2 ] 2/3

x

o'(Y-X)
X • o dy _ ¡/3(0+ l)ld

sp
(25 )
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Ex fl1nding aH the binomials, we have that

n +y

~
a = o

(
n) x'/3(n -b) (fi '1)"/3) b
b O ,

-(y-I +n)
[x'/3 + E )"/3 ) '/3

O ,

x

x

y- 1__ +n

'/3
2

e == O

(~;) '/3
c

•

R<or
x)'<_0_
~E '/3,

where in this Jast expression, we have assumed that

~J3
xo(l - E, ) 1 -/3(0+ l)ld

%/3
E,

which is not inconsistem with Eq. (24) since for ~p fixed, x ....•O implies
t ....•.O, which meaos that R will alwa)'~ be less than the coherence lcoght
Ro in order to guarantee the existence of correlatioos. Substituting these
results back ioto Eq. (25) and using the defioitioo of the incomplete gamma
function, we find that

.x
• o

1/3(0+ 1)ld

sp

(26)r("" sxo) being (he incomplete gamma funcdon, A..a positi\'c parameter de.
fined as 11.= Y +2f3(b+c) -a (11.> O) and 1 a constanr defined by ,he
following exprcssion,
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~
1= ¡ _I_

n = O (f3S)n
¡

a,b,c

Taking che lnverse Laplace transform oí Eq. (26), rhe carreladon funcr¡on
reads

k xY -1
G(x,z) =2 _0_ t/3(ÓH)/d"y Ir;

p2 E, O [
sx f(r,., sx )J,o o

X" 1S

_r;"1 [t/3(Ó;l)/dJ

(27)

Furthermore, if k~ IS rhe third cL'lsS mooified I3cssel function of arder ti,
rhenl-4

_ v) _1_ ,as f(v, as),
V" 1

S
(28)

so char raking rhe ¡nverse Laplace transform oí Eq. (28) and substituting
the result back into Eq, (26), identifying v with r,. and a with x we findo
rhat

G(x,z) =
f(l - r,.)

t/3(S+ 1)/d

rp

(29)
wirh A < l. Bur since we have aIread)' found rhar A > O \Ve 1-"1\'<.'thar chis
Jluameter has [O satisfy che condidon [hat O < A < l. Ilenec. foc a gh'cn
s)'stcm chis will impase sc\'crc restrictions on rhe binomial rerms which ap~
reae in rhe constant l. Writing Eqo (29) in [crms oí N. we finally acrive to
the re s u le [ha [

G(/O = kT jt"y"X/3(ó+l)/2d R"(I+>!2) z
p2

K,(2;;-;) __l_
A o np (3 O)
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2x A/2 1
whereJ = O is a numerical constant.

f(l-r..)/! 8
1

\l:'e can now use Eq. (30) tO compare it with the ecsult predic[cd by
,he scaling la\Vs, namely Eq. (21c) RivinR ,he behadour of G(R) in ,he
neighbourhood of ,h,. cri,ical poin,. Since x; t/h1//3 and z; Rt/3(S+l)ld
we examine [he asymp[otic pan of Eq. (30) when / ~ 0, [hat is T ,'eey close
ro T and fixed R. Then ,he dominan< ,erm in Eq. (30), no,icing ,ha,c
.z K...(2 ¡;-;) also goes [O zeeo for small values of t, is

. r, O

G (R) ~ CR-(! + A/2) (31 )

C being a constan<. Thus, comparing Eqs. (31) and (21c) \Ve find ,hal r.. is
reL-ucd to the critical exponenrs 8 [heough the express ion,

1 + ~ ;
2

2d
8+1

(32 )

and sincc A is boundcd, we shall have a natural bound imposed on 8. Indced,
sinee ° <A < 1, we get tha[

:!.. d - 1 < 8 < 2d - 1
3 ' (33a)

d be ing [he d imens iona lit)' of [he s ys le m.
Using ,he Eqs. (15) and (17) «!a,ing S 'o lhe cri,ical exponems'a,

{3a nd y a nd Eqs. (22a, b) re !a1ing 8 'o ti a nd Ti \Ve f ind from (33a) lhe
following incqualities, namely

2{3 (2/ - ~ <'y <2{3(d-l)

2 (1 - d(3) < a <2 (1 _ 2~ d )

:!.. {3 < ti < 2{3
3

(33b)

(33c)

(33 d )

(33 e)
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which amounes to che face thae given one critica! exponent, 5ay j3 in chis case,
che remaining ones are bounded, [he bounds depending onI}' on ane more pa'"
camerer, [he dimensionality ol che system.

00 (he orher hand for systems such char d::) 3, che Ornstein-Zernike's
Ihe<ry gives an explession fOI G (R)4 which, if compaled with Eq. (31),
yie Ids fOI A Ihe va lue

Ao.z. = 2 (d-3)

and hence,

T (11.- AO.Z.J = (2 -d ~~~) = 7) (34)

A being Ihe value given by Eq. (32). Thus one half of ,he diffelence be.
(ween che values of [he parameter A will give a measure oí che deviation
between (he behaviour Di G (R) in [he critica 1 region as obrained from classi-
cal theories and frolD experimento In [he case d = 3, /...o.z. = O so char
1/2 'A. = 7] is precisely che measure of such deviation, consistently with (he
definidon uf 7). AIso, Eq. (30) cannollep,oduce Ihe classical behaviour of
G (R) beca use ir would require a va lue oí A. = O, in d isagree me oC w ith (he
bound found for this para meter. In short, the scaling ..1aw equation of state
proposcd by M. Vicentini-Missoni et al1 predicts a correlation functian
G(R) which, consistent1y with the scaling 1aws, has a non-c1assical be-
haviour near the critica 1 point.

IV. COMPARISON WITH EXPERIMENT

,.. <;' ing the va lues oí (3 and S for He 4 , CO
2
and Xc given in Ref. 1,

Ihose iOI CIO, and Ni quo,ed by Kouvel and Rodbe1I1s aod fOI olhe, mag-
netic systems which are summarized in a receO[ paper by Cooper et a¡t6,
we have used Eqs. (22a,b) to calculate the values of V and 7J, the results
being shown in Table 1.*

.Different values for [he same subs[ance correspond [O reports given by different

authors 16 •
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TABLE 1 •

Critica 1Exponents

Substanee f3 S V T)

ca, 0.35 4.6 0.653 0.071

x~ 0.35 4.6 0.653 0.071

Hc' 0.359 4.5 0.652 0.101

CrO, 0.34 5.7 0.759 - 0.103

CrBr 3 0.368 4.28 0.647 0.137

CrBr 0.364 4.32 0.642 0.128
3

Ni 0.41 4.22 0.713 0.149

Ni 0.373 4.44 0.676 0.104

Ni 0.375 4.48 0.681 0.105

Ga 0.370 4.39 0.664 0.113

From these results we natiee that, exeept for Cr02, all values of o
lie wirhin ,he range specified by Eq. 03a), namely, 3 < S < 5. 1, is also
easy 'o check ,ha' V and T) are also consis'en' wi,h Eqs. 03d,e). Thus,
we conclude that the data for Cr0

2
is ineonsistent with scalin~. A similar

statement is al50applied toa twodimensionallslOgsystem forwhicho =15.
It is al50 interesting to point out that for the majoriry ofthesysrems

analized in the w ide litera tu re on this subjeet, one fineis that f3 1\,; 1/3 and
S"" 23/5 which predic, V "" 0.62 and T) 'v 0.07, aH oC these estima,cs Iying
wi[hin [he specified bounds given by Eqs. (33) and also in aRreeme'm with
the recent calculations reponed by Fisher and Burford9 forthreedimension
al spin systems. However, [he numerical estimates for v and TJ cannot be
yet compared with accurate experimental results due to the difficulties in-
volved in their measurement8•
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Sorne concluding remarks are pertinem in view of [he resulcs derivcd
here. First, ir is importane to emphasize the lace chat {rom [he scaling.L'lw
equation oE s[acc proposed (or rhree gases, in their critica1 region, ir is
possible to derive 00 equation foc [he pair corre Iation function G (R) which.
if required to be consistent with its own scaling-law form, ¡roposes sorne
bounds 00 [he criticaI exponcnts, execpe (oc the one chosen (Q be indepeooent.
Furchermorc, [hese rcsults hold [fue nOI ooly foc rh("se fluids bUl also foc
sorne nngncric systems, rhus suggesting that indeed [he idea oE seeking foc
a universal behaviour oC physical s)'slcms in thcir critical regioos 15 promis-
IOg.

SeconJly, ir i5 interesting to notice thar once a crüical exponent is
chosen to be fixed by experimem, the bounds imposed on (he rermining ones
de pcnd on Iy on the dime ns iona lit y of the s yste ms and no( on (he ir intrins ic
structure. This fact1 once more suggests (hat the imeractions be(ween the
particlcs wi11 be simihu for a11 systems near critical poims, which is of
course consistent wirh the gcneralizatioo of '.he scaling.Iaws. In fact,since
we haveananaly(icalexpression for G(R), (so far too complicated) 1 we
could io principIe derive from it the form of such imeractions.

FinaIly, the bounds for (he cri(ica1 exponems 7] and V found here
have sorne bearing on (he remarks made by Fisher in a recenl PIperlJ. In
fact Eq. (30) indeed shows (hat the pair correhtion funccion lor a fluid,and
optimisrically for other sys(ems also, will sho\\' an oscillarory behaviourfor
small \'aIues oí .~, rhrough the appearance of the Bessel functioo
K\ (2/x 0%)' and a monotonic decaying ra iI w ith a de pendence on R given by
Eq. (31). Due [O lhe complexily of lhe exp[ession ob,ained here for G (R)

ir is premature ro rmke srronger scatements; however, qualitarively, we can
expect rhe dcsired behaviour.
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RESIJi\IEN

La función de correlación de dos ¡:urtículas es obtenida a rnrtir de
las lcyes generales del escalamiento e, independientemente, a ?lrtir de una
ecuación de escado propuesta recientemente ¡:ara describir el comportamiento
de algunos fluÍdos simples en la región crítica. 'L'l condición de consistcn-
cia a que deben obedecer ambos resultados se traduce en establecer cotaS ¡n-
ferior y superior mra los exponentes críticos. Se encuentra adcmás que es-
tos resultados son válidos para otros sistemas, e.g. sistemas magnéticos y
mooelos de Ising tridimensionales y no dependen de la estructura interna del
SiSteml, sinosoJamente de sudimensionalidad. Así pues, la idea de que los
fenómenos que se observan en diversos sistemas físicos, en la vecindad de
puntos críticos, obedecen a un comportamiento universal, (nrece ser más pro-
meted ora.




