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RELATIVISTIC FORM FACTOR OF THE TRITON AND THE
ALPHA PARTICLE"

G.Cochoand J. Flores
Instituto de Fisica, Universidad Nacional de Mexico

(Recibido: enero 14, 1970)

ABSTRACT: Using the methods of group theory, we obtain an explicit ex=
pression for the form factor of a few=particle system, which
is valid at very high momentum transfers. The formalism is
applied to obtain the form factors of the three and four-nucleon
systems. An analysis of the error made in the non-relativistic
approximation is performed.

1. INTRODUCTION

In the usual approximation to first order in the electromagnetic inter-
action, the differential cross section for electron scartering is expressed in
terms of the charge form factor for spinless targets and in terms of the
charge and magnetic form factors for targets with spin % . Since the interpre-
tation of the magnetic form factor results s uncertain, at least for nuclei,
one usually deals only with the charge form-factor data, which provide the
most re liable information for the system under analysis. In this paper we
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shall also restrict our considerations to the charge form factor of a few-body-
system, and propose an €x pression for it, useful at high-momentum transfers.
Since experimental results for electron scattering at very high momentum
wansfers are now available for the alpha partic le! and for the proton? and,
in a somewhat more limited range of values of the momentum transfer for the
triton and *He® the method we propose can be applied in these cases.

To first order in the electromagnetic interaction, the electron scatter=
ing amplitude A is given by

Aﬁeﬁ(k’)y“z}(k)}_z <p'ﬁ|]#|pa> 1.1)
q

corresponding to the Feynman diagram of fig. 1. In (1 1) pand p' are the
initial and final four momentum of the target, kand &' are the corresponding
momenta for the electron, and g is the momentum wransfer,

i I
q, =pL=b, =k, =k, - 1.2)
The labels a and B stand for all other quantum numbers characterizing the
target initial and final states, ]# is the electric current operator and Uy is
the electron Dirac spinor.

If we consider elastic collisions and restrict ourselves to the e-
lectric form factor, Iu is equivalent to the operator

%

0 I
= Ox
n

with I the unit matrix and Q the target charge; hence, the matrix element ap-
pearing in (1.1) becomes

et p) <pBlpa>3.,- (13)

For scalar point targets‘ this is the only contribution although for extended
systems this is not the case.

The electric or charge form factor is, then, proportional to the
scalar form factor, defined as the overlap of the wave function of the system
when it moves with momentum 2, 1€ lative to some fixed reference frame,

. with the wave function of the system when it moves, re lative to the same
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frame, with momentum p’' = p+ gq.

In the non-relativistic approximation, taking this overlap is equivalent
to applying a finite Galilean transformation to  (p) and then taking the
overlap with this wave function (). In momentum space one applies the
operator exp(ig *r) to Y (p) and the scalar form factor then becomes the
Fourier transform of Il[l(p) |2 , which is proportional to the density. This is
the usual interpretation of the charge form factor.

In the relativistic case (i.e. for high values of g2) one should apply
to \J (p) the finite Lorentz transformation operator exp(iL (g)), the scalar
form factor F then being given by

F=<yp") @) >=<yp)|eL@|yp) > (1.4)

where

3
L= iE:lLo'. 9;
and L . stands for the generators of the Lorentz group.

Our purpose in this paper is to obtain an expression for F defined
in (1.4), when i (p) refers to an extended system formed by several parti-
cles. It is indeed possible to obtain an algebraic expression for F if we
use the methods of group theory and classify the state vectors of the system
by the irreducible representations of a chain of groups. Since tocalculate
(1.4) the transformation properties of / under the Lorentz group 0(3,1)
must be specified, the chain of groups must include at least a non-compact
group that contains as a subgroupan isomorphic group to 0(3,1).

This approach has been used to describe the relativistic internal
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motion of a two-body system*. The set of kinematical variables obey a
certain algebra and this gives rise to the “group of relativistic motion” G, that
contains the Lorentz group as a subgroup. Using unitary representations of
G one can then obtain a basis in terms of which the internal motion can be de-
scribed. This is equivalent to using, for the relative motion, a representation
in which the Casimir operators of G are diagonal. In fact, the states of the
basis are labelled by the quantum numbers provided by the little group Gp ;
which is the subgroup of G that leaves the four momentum p of the center of
mass of the pair of particles invariant.

One can generalize this approach for a few-body system by describing
the internal motion in terms of re lative coordinates for each pair of partic les
and then, as in the case above, use an algebraic basis to describe the intermal
relative motion of each pair. One encounters two difficulties with this method
First, the pairs are not independent of each other and secord, the center of
mass of each pair move re latively to each other and to the center of mass of
the whole system.

In group-theoretical language the second difficulty can be expressed
by saying that each little group of internal motion of the pair (ij),GI(":?:) which

1

provides the algebraic basis for this pa ir, corresponds toa different four
mome ntum P!-]- . One can solve this problem under the following assumnrion:
The relative motion of one pair with respect to another is non-relativistic,
In that case, to transform from the center of mass of each pair to the center
of mass of the system, a Galilean transformation may be used. Since such
a transformation does not alter the relative momentum, our assumption means

that all the internal little groups Gé’” correspond to the same momentum P,
]
that of the center of mass.

Regarding the first problem we mentioned above, it can be solved by
us ing harmonic -oscillator states. This has indeed been done for the 3 and
4-body problem by Moshinsky® for the non-relativistic case, us ing Jacobi
coordinates. Specifically, he has obtained a linear expression forthe scalr
form factor of these systems, in terms of single-particle matrix elements,in
which the wave functions are classified by the group U (3) the symmetry group
of the oscillator.

In order to obtain a re lativistic generalization for the form factor, we
assume that the common dynamical group is equal to the non-compact group
U(3,1)%and, using our main ass umption, employ the same ex pression for the
scalar form factor as Moshinsky® , except that we replace the single-particle
matrix elements by those obtained with respect toa basis, whose wave

functions are c lassified by the irreducible representations of the chain of

groups
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U3.1)2 0312006 (1.6)

where the last group is the three-dimensional rotation group.

In the next section we analyze the main points in the group-theoretical
approach to the problem and in section IIl we obtain an explicit algebraic ex-
pression for the form factor of a few-body system. We then apply the formu-
lation to the triton and the a particle and compare our results with the ex-
perimental values.

I1. CLASSIFICATION CHAIN USING NON-COMPACT GROUPS.

In this section we discuss the application of non-compact groups to
the problem of evaluating the form factor of an extended system, with in-
ternal degrees of freedom. We shall first indicate how one is forced to in-
troduce non-compact groups if a covariant formulation of the problem is de-
sired.

Let us first consider the description of the intrinsic properties of the
system; this implies using a reference frame fixed in its center of mass. Our
purpose is to specify the state of the system by a dynamical chain of groups,
which would allow us to obtain an algebraic expression for the scalar form
factor and at the same time be of some physical interest. Since among the
quantum numbers characterizing the state we would like to include the spin,
the classification chain should contain the angular momentum group O (3) .
Among those groups containing O(3) that have been fruitfully used in parti-
cle and nuclear physics one can think of U (3) the symmetry group of the har-
monic oscillator; this will lead to the simplest formulation, although other
classification chains are possible.

Therefore, in the rest frame, one could replace the state vector of a
system by a linear combination of states classified by the chain of groups

vid)ooa@a), (2.1)
which then provides the algebraic basis mentioned in the introduction.

The generators of U (3) are C:’j , 1,7 =1,2,3 with the usual commu-
tation rules

[C,;» Cad =C,y 8, =Cy; 8, (2.2a)
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and those of 0(3), S'.]. ,are given by

Sii = C,-,- -le. : (2.2b)

Let us now look at the system from a reference frame with respect to
which it moves with four momentum pﬂ » 4= 0,1,2,3 and connected with the
rest frame through a Lorentz transformation., Since the operators C:.. have
tensorial properties under the Lorentz group one is forced to cons idér, in
order to obtain a covariant formulation, the operators Cuv , obeying the
covariant commutation rules,

[C,,:Cao) ==2,0Chr*2,,Cop> 2.3)

with the metric tensor g, given by fy = 1 and By == Si‘ g B =123 6
Equation (2.3) defines tﬁe Lie algebra of the non-compact group U (3,1),
which has been previously discussed in connection with current algebra
techniques in elementary particle physics” and with direct reactions in Nucle-
ar Theory®.

Mathematical details concerning U (3,1) can be found in references
(6) and (7). We simply mention here that the complete ly symmetrical states,
corresponding to a single-rowed Young diagram, are labelled by a single
quantum number N, real and negative for unitary representations, related to
the mean square radius of the system®.

In order to complete the classification of the state one has to analyze
how is the chain (2.1) altered when referred to a frame different from the rest
frame. In particular, one should impose the condition that the state vectors
have a well defined four-momentum ¥ - We shall proceed by constructing
linear combination of the generators 4 , such that the Casimir operators
formed with them are Lorentz invariants, on the one hand,and on the other, re-
duce to the Casimir operators of the chain (2.1) when evaluated in the rest
reference frame. It has been shown® that the desired linear combination is

given ey
A P
Cuv = %09# 6, Cy, 2.4)
with
8 =8 ~v 0¥ 2.5)
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and where T /\/I Je, Ij\is the four-velocity. Using the definition (2.5) one

can readily prove that C  reduce to C'.]. when the three velocity v = (0, i.e.
v . .
when referred to the rest frame. One can construct the Casimir operator [

A
Fa 3 C“ (2.6)
M

I
which commutes withall C  and is obviously a Lorentz invariant. Therefore,

if a wave function is eigenstate of [, the eigenvalues (say y) are defined in
an invariant way and coincide with the number of quanta in the rest frame.
Using linear combinations of C'.]. })\ne can define the generators of O (3);with

the same linear combinations of va one defines in an invariant way the
eigenvalues of the invariant Casimir operator of 0(3).
We call the group generated by (2.4) and whose first order Cas imir
operator is [, U(3), and the correspond ing orthogonal subgroup 0 (3), .
The eigenvector of the classification chain will now be denotecf by

Ynnr @) (2

where N specifies the irreducible re presentation of U (3,1) and n and / those
of U(3)p and 0(3)}9 .

Let us now look ata two body problem and indicate how the bas is
(2.7) can be used as mentioned in the introduction. We assume that the
system moves with four-momentum p . The wave function ¥ describing the

relative motion can now be ex pandec{t In momentum s pace, as a linear combi-
nation of the states (2.7),

¥o) = T an, Yy @) (2.8)

The form factor, defined as in eq. (2.4), will now be expressed as a
linear combination of the follow ing scalar products

“Yna't' U’*‘”MN,,I(PP (2.9)

for which closed algebraic expressions can be obtained, as shown in the
appendix.
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In other words, using the classification chain introduced above, one
can obtain an algebraic expression for the form factor of the two-body system
valid in the relativistic limit, i.e. for very high values of the momentum
transfer g2.

We now want to generalize this approach for more than two bodies.
The difficulty one encounters immediately is that there are several four
momenta coming in, one for each pair of particles. This introduces the
problem that different groups U (3)p should be used, one for each relative co-
ordinate. We assume now that the relative motion within the system is non-
relativistic, in such a way that to transform from the center of mass of one
pair of particles to the center of mass of any other pair, a Galilean transfor-
mation is enough. This has the advantage that the transformation does not
alter the relative momentum, therefore allowing us to use a single group
U(S)p , where p is the total momentum of the whole system. Furthermore,
the treatment of the different relative coordinates can be done as in the non-
relativistic case. This has been done for the three and four-body problem
by Moshinsky® using Jacobi coordinates and harmonic-oscillator states,i.e.
states classified by the chain of groups (2.1).

Combining our discussion of the two body system with the technique
developed by Moshinsky and co-workers and using the assumption me ntioned
above, one can obtain a re lativistic expression for the form factor of a few-
body system. In the next section we review the non-re lativistic theory of
the form factor and indicate how the relativistic generalization is done. We
finally apply our formulation to discuss the body form factors of the three
nucleon system and the a particle.

IIl. REVIEW AND GENERALIZATION OF THE NON-RELATIVISTIC
THEORY.

We shall first review the main points in the approach of Moshinsky
etal by which they obtain the form factor of the n-nucleon system®* 9, We
then propose a possible relativistic generalization to this theory.

Moshinsky et al start off by definning the probability density oper=
ator of finding either a proton (v = 0) or a neutron (v=1) ata definite
point x, meassured with respect to'the center-of-mass coordinate X,

S[x-(xs—X)]I:;_'F(-l)vf;] (3.1)
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where tz is the third component of the single-particle isospin. The expec-
tation value of (3.1) with respect to the ground-state function will give the
probability density at the point x .

The ground state is written as

lmgm, M, > = 3 3 a@Liys) S S [lamifr> |ystagfr>]
ay fLs r JM

E

(32)
where the only good quantum numbers assumed are the parity 77, the total
angular momentum and isospin J and T and its projections. With the coef-
ficients @ (@Lf7ys) available (and they could be calculated were the effective
interaction known) one expresses the ground state as a linear combination
of the orbital states |a7 Lfr > coupled to the spin-isospin states
|')/STMT f;> , which have a well defined permutational symmetry, specified
by the Young diagram fand the Yamanouchi symbol r . The orbital states
are built from single -particle oscillator states coupled to a total orbital
angular momentum L. In (2.2) a and ¥ stand for all other quantum numbers
needed to complete the classification.

The matrix element of (2.1) with respect to the state (2.2) gives the

density p,, (x), whose Fourier transform F (g%) is equal to the body form
factor, which can then be written as,

Fegh=L_1 3 3 5 -+ |1+, (onyvz
R Jad i Ls o’ il =] )

1 ¥

x Ca'wrLfte’ M amLfr >
q|x]|

x a (@' Lf'y's) a@Lfys), (3.3)

where Z is equal to the number of protons in the system and d, is the di-
mens ionality of the irreducible representation of the symmetric group,
characterized by the partition f.

The expression, combined with the fact that neutrons and protons are
not point particles, but have a'charge density of their own, gives the final
result for the charge form factor,
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F@*) =/ @*) F @) */,q*) F (¢ (3.4)

where fl and fo refer to the form factors of the neutron and proton, respective-
ly, which are known experimentally?’.

For the particular cases of 3 and 4 nucieus Moshinsky etal. have
derived explicit expressions for the mawix element appearing in eq. (3.3).
In this manner, the charge form factor for these systems is expressed as a
linear combination of the single-particle matrix elements

(nl s—_.i"Qle n'l') (3.5)

qlx|

In the next section we give the formulae for the cases of 3 and 4 particles,
using the most symmetrical partition, to which we shall restrict the numerical
analysis, for simplicity.

We now look for a relativistic generalization of this formula assuming
that the re lative motion remains non-relativistic. This implies using the same
formula as before, but changing the single particle matrix elements (3.5).
Instead of these latter we use the ones obtained with the relativistic-harmonic
oscillator, i.e. with states clasified by the chain of groups (1.6). An ex-
plicit expression for these matrix elements is given in the appendix, for all
cases needed in the applications we shall discuss.

As can be seen from the formulae in the appendix, the form factor be-

haves, for very high values of g%, as (q2)'1 N | , N being the label for the L.R.
of U(3,1). This is consistent with the the oretical lower limit, obtained
either by assuming analiticity in the cut g? -plane,'” or by assuming that the
axioms of local quantum=field theory hold 1 in which case it can be shown
that the form factor cannot decrease faster than exp( -,B\/ |q2 | ). On the
other hand, a truncated oscillator basis always produces a form factor which
asymptotica Hy decreases as exp(- ag?), violating the lower limit. One‘ may
question, therefore, the usefulness of the oscillator basis for very high
transfers and think that the relativistic correction might be substantial.

We shall now compare the results given by both approaches for the

three nucleon system and for the a particle.
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IV. SCALAR FORM FACTOR OF THREE AND FOUR NUCLEON
SYSTEMS.

In this section we shall apply the formalism we have developed, to
calculate the scalar form factors of the three-nucleon system and of the alpha
particle, both in the relativistic and non-relativistic cases and compare the
results with the experimental values.

In both applications we shall restrict the analysis to two many-body
harmonic oscillator states, one of them being the zero-quantum state and the
other one corresponding to four quanta, both states being classified by the
most symmetrical irreducible representation of the symmetric group. This
approximation has proved to be reasonable in the non-relativistic analysis ot
the a particle form factor®. In the three-particle case these are the most

important states obtained in the diagonalization of an effective hamiltonian '
[Fol
i

-
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=== no-rel
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0 2 4 6 B 10 12 14 16 I8 20 22

q2(tm=2)

Figure 2. Comparison of relativistic (solid line) and non-relativistic (dotted line)
body form factors for the three-nucleon system. The value of y= = 0.05
has been used, which implies that the amplitude of the zero-quantum
state is larger than the amplitude of the foursquantum state.
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Using eq. (3.3) and denoting by cos 7 and sin ¥ the amplitudes of the
zeroand four-quantum states, respectively, we find, for the three - particle
system, the following expression for the relativistic body form factor

Fg(g%) =cos %y I, (000]000) +
+v2 siny cos v [1, (000]101) + 1, (000|020)] +

B2
sin
P2y [1,01 101y + 21, 101 |020) + 1 (020] 020)] ,

(4.1)
where
T R — =
IN(nllln2|nl Vnly= 3 % <alwlo0[nlnl 0>
I n
i 1 2
(even)

— P AT - T iL(q) —
[0|n111n2110><Nn2 ll|e an211> (4.2)

and <7 1 5.1 0|n I n 1 0> is the Brody-Moshinsky bracket!® and the
. F 121 17121
matrix e le ment

<Na'T M@ N7 T > )
21 2 7l

is evaluated explicitly in the appendix. The states ll\’}z_2 Tl > are single-
particle states labelled by the chain of groups (1 H) s

In these equations, only states with orbital angular mome ntum L=290
and partition [3] have been considered; these states represent about 90%
of the triton ground state, as can be shown from a realistic - interaction calcu-

lation!* .

The non-relativistic formulae for the form factor can be obrained by
replacing (4.3) by its non-relativistic equivalent '
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— -
n I >
< 11 251
7 |x|
as is discussed in the appendix.
[Fy
]
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Figure 3. Comparison of relativistic (solid line) and non-relativistic (dotted line)
body form factors for the three=nucleon system. The value of ¥ = = 1.03
has been used, which implies that the amplitude of the four-quantum

state is larger than the amplitude of the zero-quantum state

Before discussing the results of the calculation, we note that we have
two free parameters, N and y. They are not independent however, if we fix
the root-mean radius, which is rather well known experimentally® . Using the
fact that the root-mean radius is proportional to the derivative of the form
factor at ¢ = 0 we obtain the relation
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NO
N = P o (4.4)
I # 2 siny
3

where N is calculated by adjusting the root-=mean radius with the zero-
quantum state only.

In figure 2 we show the results for the value 7 = = 0.05 both for the
re lativistic and non-relativistic cases and compare with the experimental
points '3, which are subject to rather large uncertamtles. As seen from the
figure a minimum is predicted around g% ~ 15fm and the relativistic cor-
rection is of the order of 10% at g% ~ 10f/m™? and even larger for higher
values of g2. We then use a value of ¥ = -1.03 which implies that the ampli-
tude of the four-quantum state is larger than that of the zero-quantum state .

I
Flq®)

4 28
q?(fmi?)

Figure 4. Relativistic (solid line) and non-relativistic (dotted line) body form
factors for the a particle. The amplitude of the zerosquantum state
is larger than the amplitude of the four-quantum state; the value of

¥ = = 0.3 has been used
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The results are given in fig. 3. Two diffraction minima are now predicted
and the relativistic corrections are smaller than in the previous case, as
seen from the figures. In view of our approximations, we think that the fit
to the experimental values is rather good for both values of 7, although it
is somewhat better for y = =1.03 .

For the a particle, we again reswict the analysis to two symmetrical
states belonging to the partition [4] using, as in reference (9),a zeroand a
four-quantum states. Again, the values of N and 7 are not independent of

| Fal
|
— rel
= == no=rel.
107
102 .
L
N7
\
i/
| R
N
N
-3
10 N
A\
\
\
\
\
1 1 1 1 | 1 A 1 1 1 1 1 1 \
0 2 4 6 B 10 12 14 16 18 20 22 24 26 28
q2(fm-2)

Figure 5. Comparison between the relativistic body form factor and the experi-

mental results for the a particle. The value of Y = = 1.2 has been
used
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cach other if we fix the root-mean radius. In fig. 4 we give the comparison
of the relativistic form factor with the experimental values!, We take
Y = =1.2 and a reasonable fit is obtained. Two diffraction minima are pre-
dicted, the first around 10[77:'2 and a second one around g% ~ 28fm'2 . In
this case the relativistic corrections are smaller than in the three partic le
calculation, as indeed one would expect since the a particle is heavier than
the triton; the error is now of the order of 3% around g2 ~ 16/m "2, the po-
sition of the second maximum. We now perform the comparison with the
value v = = 0.3 ; the error in the non-relativistic approximation is larger
than for ¥ = = 1.2, being of the order of 6% at g = 12 fm" ? the position of
the second maximum, which is predicted too low, however. For the a parti-
cle, in contrast to what happened for the triton, the experimental values do
distinguish between the two values of .

From the analysis we can conclude that the relativistic corrections
for the form factor are sizeable in some cases and could be important, when
better experimental data are available. Since the asymptotic limit for very
high transfers is different in the relativistic and the non-relativistic cases,
as we mentioned at the end of section Il ,the corrections will also be very
important when experimental points for larger g values are obtained. We
also note that the correction is model dependent being larger the smaller

the absolute value of the mixing parameter.
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APPENDIX

In this appendix we shall obtain an expression for the scalar product

F(g?) = <Y, 1 0+ O |y, @) > (A.1)

where ¢an(p) is the basis for the irreducible representation of the chain of
gl'OllPS

vuis,1)D2U(3),D200) (A2)
p p

and corresponds to a four-momentum 2.
As discussed in reference (6) one can write (A.l) as the contraction
of two generalized tensors, in the form

1 s @pl. . Ky nllz _
I
201+1 k e n il Hyoo o by
sk, ¥ 3 el ol ML
2041 L u.p' vov! k g
x TR Y4
nll v v
x$ z @) w0 a0 gt WEE, gt T
#1"'“kvk+1"'vr k+1 o
5 N-t-ctk
x (v *v) & (A.3)

where /[ is the projection of /, v and v' are the four-velocities corresponding

to pand p+ q,respectively, and (v'*v) is the sca!ar product ot the two
N,o
four-vectors. The normalization coefficient ¢ B is given by

Nyoy 7 _ Vol TI(N=7)!(N=0)!

ch = (A.4)
RO =k) (T=k)!(N=0 =T tk)!
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and
o=2n"+l, T=2m+1 (A.5)
give the total number of osciilator quanta in the bra and ket, respectively.
~nll
The swte vector y  *  (y) is defined as
Koo fy
¥ =g 6
v) = (v) e B A6
Byoooity Byooooy L E S RN Hgpayr Ky G5)

where 9"“’ is given by (2.5) and

A —H —H;
\!Jﬂlm#z(vo)v L. :ul,lz(v) (A.7)

where e 1,0,0,0) and v = (0, v), u'l,[ (v) being the solid spherical
harmonic. )

Using techniques similar to those employed in the appendix of refer-
ence (6) one can now compute expression (A.3). The resultant expression
for F (g?) can now be written as

R 5 ~IN|=2m"+neD)
Fgh=N, N T

n,l
’ 2m?

x %(-l)k”A”(n,n', Ik) A (nyn', 1, k)
]

(2n + l—j)!(Zn'ﬁ;l—j)! Bt a )
(k=7)1Q2n+1=k)!(2n +1=k)!

X

ntn'41-k 2k-j nin'+1-k

(A.8)
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with

A;(ﬂ,n',l’k)z[(]_.f. 2ﬂ+2n'-!- 21_k-1)...(1+ M)
INI IN[
(HM) ao)
[N ]

D(ndyn',i)= 3 (=1) 45 __¥D@"+1)!
st mttes)(n +1=s)!

and

. (i +1)!1Q21=21=1)!

(A.10)
t2s 1) (GE=2s)! (I=t=1)!(I=2t+ 25 =1)!

The normalization c oeffic ient nn ; is given by
?

2
h" ! :Ai(n,n,l,Zrz ) S Quntil=i)!D(n,l,n,i).

1

In eq. (A.8) m stands for the rest mass of the system. Formula (A.8) can
be checked by taking the non-relativistic limit and comparing with the ex-
pression valid for the non-relativistic oscillator given in ref. (9):

"aqz 21 +1 r(-"*'l—) t-s
F,, (@)= S B(n,ln',1,1) 2 (-aq?)
2 st 28 r_‘(! + i)
2
(A.ll)

where the coefficients B (n,1,n",1,1) are tabulated’® . The limit of (A.8) is
obtained by taking 42/2m? <<1 and |N| = = with IN|g2/m? finite. Ex-
pression (A.8) then becomes,
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_IN]g?
2
L =e B s

k+1 ' ; , [ N n4n +l-k
x 3 (1) @utl=dlen'+1=Dlp g, IN|q2
ik (k-t)'(2n+l—k)’(2n + [=k)!

2
m
(A.12)

which coincides with (A.11) if @ is taken to be |N l/Zm2 . The formula
(A.12) gives the non- -relativistic single particle form factor in a more con-
venient way that the alternative expression (A.l11), once the coefficients
D(n,l,n' i) are known. We, therefore, give a table of these coefficients, for
all possible values of the quantum numbers up to 4 quanta. In the table we

have made use of the obvious symmetry relation

Dn,l,n' i)y=D(@n'1,n,i). (A13)
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Table |

Coefficients D (n, l,n',})

n i n' i D n ! n' ] D
0 0 0 0 1 0 0 2 0 1
0 1 0 0 1 1 0 1 0 1
0 1 0 1 2 1 0 1 1 0
0 2 0 0 2 1 0 1 2 4
0 2 0 1 12 1 1 1 0 1
0 2 0 2 14 1 1 1 1 2
0 3 0 0 4 1 1 1 2 4
0 3 0 1 48 1 1 1 3 16
0 3 0 2 156 1 2 1 0 2
0 3 0 & 144 1 2 I 1 12
0 4 0 0 8 1 2 1 2 14
0 4 0 1 160 1 2 1 3 96
0 4 0 2 1008 1 2 1 4 176
0 4 0 3 2400 1 0 2 0 1
0 4 0 4 1992 1 0 2 1 0
0 0 1 0 1 1 0 2 2 8
0 1 1 0 1 2 0 2 0 1
0 1 1 1 2 2 0 2 1 0
0 2 1 0 2 2 0 2 2 16
0 2 1 1 12 2 0 2 3 0
0 2 1 2 10 2 0 2 4 64
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RESUMEN

Se emplean los métodos de la Teoria de Grupos para obtener una ex-

presion explicita para el factor de forma de un sistema de pocas particulas.
La expresion es valida para valores muy grandes de la transferencia de mo-

mento. El formalismo se aplica para obtener los factores de forma de sis-
temas de tres y cuatro nucleones y se discute el orden de magnitud del

error que se comete cuando se calcula dentro de la aproximacion relativis=

ta.





