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ABSTRACT: Using the methods ol geoup theory, we obrain 3n explicit ex-
pression foe the form factor of a few-particle system, which

is valid at veey high momentum transfers. The foemalism is

applied to obtain the foem factoes of the three and foue-nucIeon

systems. An analysis of tbe eeeoe made in che non-eelativistic
approximation is perfoemed.

l. INTRODUCTION

In the USlL:'11 approximation to first order in the electromagnetic imce-
action, the differential cross section for elcctron scaucring is expressed in
terms of the charge form factor (or s pinless targe ts and in tecms of the
charge and rmgnetic (orm factoes [or targets with spin 1. Sioce the interpee-
tation of the magnctic focm factor results is uncertain, at least foc nuclei,
one usuaI1y dea¡s only with the chacge [orm-factor daca, which pro\'ide the
most reliable informarion for the system under analysis. In this paper we
•
\t'ork supported by che Comisión .\'acional de Eneegía :-Jucleae, ~1éxic('.
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3hall al50 restrict OUt considcr3tions [O [he charge form factor oí a fcw-b(tly-
sysrem, and propose an express ion foc ir, useful ar high-momenrum transfers.
Since experimental resulrs for electron scattering ar ver)' high momcntum
transfers are now available foc rhe alpha particle1 and (or rhe proton

2
3mi,

in a somewhat more limited cange oí values oí (he momentum transfer for rhe
triton and 3He3 rhe methoo we propose can be applied in these cases.

To firse arder in rhe electromagnetic interaction, rhe electron scaucc-

ing amplitude A is given by

A; .Ü(k')y¡¡'U(k) 1 <p'.eIJ Ipa>2 ¡¡.
q

(1 .1 )

cOllesponding to the Feynman diagram of fig. 1 In (1.1) P and p' are rhe
initiaI and final four rnomentum oí (he carget, k and k' are rhe corresponding
momenta for rhe electron, arxi q is rhe momentum transfcr,

q ; p' - p ; k - k' .
¡¡. ¡¡. ¡¡. ¡¡. ¡¡.

(1 .2 )

The labels a. and{3 stand for aH other quantum numbcrs charactcrizing rhe
target initial and (inal states, J is the elccrric current operaror ami Uk is

h 1
.' ¡¡.

t e e ectron DlCac Sp100r•
If we consider e la s tic collisions and restrict ourseh'es ro che e-

lecrric form faccor, J is equivale nc to the operacor
¡t

~
Q O I

'ilx¡¡.

wirh I the unir matrix and Q the targer charge; hcncc, rhe marrLx elemcnt ap-

pearing in (1.1) becomes

(1.3 )

"For scalar point targets chis is the only cOllrriburion although for exreooed

systems this is nor rhe case.
The electric or charge form factor is, then, proporcional ro the

scalar form facror, defincd as che overIap of the WJ,\'C function of chc system
when it moves with momentum p, relativc ro sorne fixcd rcference frame,
wirh the wave function of the sysrcm whcn it mm'cs, relati\'e tO the samc
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frame, w ith mamentum p' = p + q.
In the non-telativistie appraximacion. caking chis averlap is equivalem

ro applying a finite Galilean transformation tow(P) and then taking the
over lap w ith this wa ve fune tion 1./J (p). In mamenturo s pace one a pplies che
operator exp(iq . r) CO 1./J(P) and rhe sealar form factor chen beeomes [he
Fourier transform of II.j;(p)]2, which is proportional to the density. This is
the usual interpretadon of the eharge form factor.

In the relativistic case (j.e. for high values of q2) one should apply
cotj;(P) che (inite Lorentz transforma.tion operator exp(iL(q», [he sealar
form factor F then being given by

where

(1 .4)

L=
J
L Lo. q.

i = 1 r J

and Loi scands for the generarors of che Lorentz group.
OUt purpose in chis papee is to obmin an expression for F delined

in (1.4), when tj;(P) refers toan extended system forroed by several parri.
eles. Ir is indecd possible ro obtain an algebraic expressioo for P if we
use [he mc[hoos oí sroup [hcory and classify [he stare vcetoes oí the sysrem
by the irreducible representations of a ehain oí group~. Sinee ro calculare
0.4) [he rransíorm.."1.tionpropcnies oí 1./J under the Lo re ncz group 0(3,1 )
must be spccified, the ehain oE groups must inelude ac least a non-compact
group rhat comains as a subgroup an isomorphic group [O 0(3,1).

This approo.eh has beeo used todescribe che relativistic interna 1



,0 Cocho and Flores

mocioo oC a rv.:o.booy s\'stem4• The ser oC kinematical \"ariables abe\' a. .
certain algebra and chis givcs rise (O rhe ((group oC re Lati\'istic motioo" e.rhar
contains che Lorcnrz group as a subgroup. Using unimry represcntations oC
G onc can rhen obmio a basis in ccrros of which ehe interna 1 morioo can bedea

scribcd. 1'hi5 i5 equi\'alent to using, for che relativc mmion. a representation
in which [he Casimir operawfs oC G arc diagonal. In faer, che states oC che

basis arc labelled by che qU<"lntum numbers provided by rhe liule graup G

h" h " Pw le 15 [he subgroup of G chat lcaves che fouT mornemum p of che ccnter oC
rmss oC rhe pa ir of parrie les ¡ovariant.

One can gcneralize chis apprcllch for a few.boJy system by describing
rhe internal morion in tcrms of rebtive coordinares for each pair of particles
and then, as in the case abo,'e, use an algebraie basis ro describe rhe inrernil
re L'1rive motion of eae h pa ir. Dne ene ounters tWO d iff ic ultie s w irh chis rocthui
Firse, che pairs are not independcnr of each orher and sccor:.d, the center of
rro.ss of each pair move re 1aeive Iy to each orher and ro rhe ccnrer of ITk'lSS of

the ",hole system.
In group.theorericallanguage che second difficuley can be expressed

by saying ehae each li((le group of internal morion of the pair (ij),G~~~) which
IJ

pro\'idcs the algebraic basis for chis pair, corresponds coa differene four
momenrum p ... One can solve rhis problem under the follo.\'inv ;l"""rno'¡" •...

'/ - .
Tbt' Tf'latíu(' molían o/ out' pair tl,ith T~SPt'C/ lo auotht'T ís uon.Tt'lalívís/;c.
In thar case, eo rransform from the eenter of mass of eaeh pair eo che center
of mass of the system, a Galilean rransformarion ma)' be used. Sinee such
a [fansformation does noe alter the ee1aeive momentum, oue assumption means
rhar all che internalli((le groups G~~~)eorrespond ro the same momcntum P,

"thar of the center of mass.
Regarding rhe firsr problem we mcntioned abo\'e, ie can be soh;cd by

using harmonic.oscilheor seates. This has indeed becn done for che 3 and
4.b<.xiy problem by .\loshinskys for rhe non.re la ei,' isric case, using jacobi
coordinaees. S~cifically, he has obeained a linear cxpression forehe scahr
form faceor of these sy$rems, in terms oE single.parricle marri.:x elements,in
,vhich rhe \\'a\'e funeeions are classificd by che group II (3) che symmcrry group

of rhe oscillaror.
In order ro obtain a reL'1tivistic gencralizarion for the forro factor, wc

assumc ehar the common dynami~,ll group is cqual to rhe non-complct group
ti (3,1 )6 and. us ing ou r ma in as.:;;umption, c mploy tl1(.' same ex press ion for the
scalar form faceor as \1oshinskys, excepr rhar \Ve re place rhe single-particle
m.HrLx elemenes by those obmined with respect eo il basis, whose \\'a\'c
funcrions are chssified by rhe irreducible reprcsC'lltarions of rhe chain of

groups
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u (3, 1 ) :) U (3 ) :) O (3) , (1 .6)

il

where the last group is the three-dimensional rotation group.
In rhe nexr secdon we analyze rhe main points in rhe group-rheorerical

approach to rhe prob le m and in sec tion III we obta in an ex plic it a 1gebra ic ex-
pression for the form factor of a few.booy system. \l'e then apply the formu.
Iatioo tO the triton and the a particle and compare our results with the ex.
perimental values.

II. CLASSIFICATlO:-¡ CHAIN USING NO:-¡-cOMPACT GROUPS.

In this section we discuss the applicadon of non-compact groups ro
the problem of evaluating the form factor of an extended system, with in-
ternal degrees of freedom. We shall first indicate how one is forced to in-
troo.uce non-complct groups if a covariant formulation of rhe problem is de-
s ired.

L(:r us firsr consider the descriprion of the intrinsic properties of the
system; rhis implies using a reference frame fixed in its center of mass. Our
purpose is ro speeify the state of rhe system by a dynamical chain of groups,
whieh would all(J'.\' llS ro obra in an algebraic express ion for rhe scalar form
facror and at rhe same time be of sorne physical interest. Since amoog the
quantum numbers characrerizing the state we would like to inelude the spio,
the classification ehain should contain the angular momentum group 0(3).
Among rhose groups eontaining 0(3) rhar have been fruitfulIy used in parti.
cle and nuclear physics one can think of U (3) the syrnmetry group of the har-
monic oscillator; this willlead to rhe simplesr formularion, alrhough other
classificarion ehains are possible.

Therefore, in rhe rest frame, one could re place rhe state vecror of a
sysrem by a linear combinadon of stares classified by the chain of groups

U(3):)O(3), (2.1 )

which rhen provides the a.lgcbraic basis mentioned in the introouction.
The generators oC V (3) are C .. , i ,j = 1,2,3 wirh rhe US\.L.'l1 commu-

'/
ration rules

(2 .2a )
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and ,hose of 0(3), s .. ,are gi',en by
'/
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(2 .2b)

Ler us 00\1'" look ar che system froro a reference {carne with respect ro
which ir moves with foue mornentum p ,¡.;. = 0,1,2,3 and connecred with (he¡J.
test frarne through a Lorentz transformation. Since (he operators C., have

'/
tensorial propercies under (he Lacentz groupone is forced roconsider, in
order [O obmio a covariant formularion, [he operators e , obeying ,he

¡J.V
covariant cornmucation rules,

(2 .3 )

wirh che metric tensor g v given by goo = 1 and gi¡ = - Si; ,i,j = 1,2,3.
Equation (2.3) defines the Lie a 1gebra of ,he non-compact group U (3, 1) ,
which has beco previously discussed in connection with currcnt algebra
tce hnique s in e le mencaey patrie le phys ics 7 a nd w ith d¡rece reactions in Noclc-
ae Theory6.

Mathermtical details concerning U (3, 1) can be found in referenccs
(6) and (7). We simply mention here that ,he completely symmetrical s,a,es,
corres pond ing toa single-rowed Youngdiagram, are labelled by a single
qw.ntum number N, real and negative for unimry representations, re Iatcd to
the mcan square radius of the system8 •

In order to complete the classification of the state one has to an..1.1yze
how is the chain (2.1) altered when referred to a frame different from rhe rest
frame. In particular, one shouM:l impose the condition that the state vectors
have a well defined four-momentum p . We shall proceed by cOllstruccing¡J.
linear combinacion of the generators e such chur rhe Casimir operarors

¡¡.v
formed wich them are Lorentz invarianrs, Ofl rhe one lnnd,aoo on rhe orhcr, re-
duce to che-Casimir operators of rhe chain (2.1) whcn e\'aluatcd in rhe rc:H
reference frame. le has beco shO\vn6 chat rhe desired linear combinaeion is
given by

(2.4)

w ith

(2.5 )
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andwherev =p /Jlpl' is ,he four-veloci,y. Using rhe definition (2.5) one
¡J. ¡J. /\

can readily prove that C reduce to Cí, when the rhree ve loc ity v;; 0, i.e.
¡LV , h' . rwhen referred to the rest trame. One can construc[ [ e CaSlm1r operator

/\
r = í e

¡J. ¡J.
(2.6)

1\
which commutes with al! e and is obviously a Lorentz invariante 1berefore,

¡J.V
if a wave func[ion is eigenstare of r, [he eigenvalues (sa)' y) are defined in
an invarian[ way and coincide with [he number of quanta in the resr frame.
Using linear combinations of C" one can define [he genera[ors of O(3);with

" /1
[he same linear combinations of e one defines in an invariant wa)' [he

¡J.V
eigeovalues of [he invariant Casimir aperaror of 0(3).

We ca II rhe group generared by (2.4) and whose firsr order Cas ¡mir
operaror is r, U (3)p and rhe corresponding c<rhogonal subgroup O(3)p'

The eigeovector af [he c1assification chaio will now be denored by

<PNnl (P) (2.7)

where N specifies rhe irreducible representarian of U(3,1) aod nand ¡rhose
of U(3)p and O(3)p'

Lct \LS 00\\' lookat a two body problem and indicate how rhe basís
(2.7) can be used as mentioned in rhe inrroduction. We assume [har rhe
sysrcm mm'es with four-momentum p • The wave funcriao 'P describing rhe
rc1arive motian can nov.' be expandeJ: in momentum spacc, as a linear combi-
narion o( rhe s[ares (2.7),

IjI(P) = v <P- aN, I (P)Nnl n Nnl (2.8 )

Thc (orm facror, defined "'as in eq. (2.4), will nov.' be expressed as a
linear combinarion of rhe follcwing scalar products

(2.9)

for which closed algebraic expressions can be ob[ained, as shown in rhe
appendix .
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In mher words, using (he classification chain introouced above, one
can obtain an algebraic express ion for (he forro factor el (he tv,"o-booy system
vaIid in (he relativistic limie, i.e. for very hi~h values oí [he momentum
transfer q2 •

\l/e now wam to generalize chis appJooch for more (han two boiies.
The difficulty one encounters irnmed1a.tely is [har (here are several four
momenta coming in, one for.~h pair oí particles. This introduces (he
problem [ha, differenl groups U(3lp should be used, one for each rela,ive co-
ordinare. We assume now char (he relative motioo within (he system is non-
relativisrk, in such a way thar to transform from (he cemer oí mass of one
pair oí particles [O (he ,center oí mass of any other pair, a Galilean transfor-
nnrion is enough. This hasthe advanrage char (he cransformation does not
alter the relative rnomemum, therefore allowing us co use a single group
U(3)p' where p is the total rnomentum of the whole system. Furcherrnore,
che treacrnent of che different re1ative coordinaces can be done ,as "in the non-
re lativistic case. This has been done for the chree aro four-booy problem
by ~loshinskyS using )acobicoordinates and harmonic-oscil1ator states,i.e.
sta,es classified by ,he chain of groups (2.1 l.

Combin'ing our discussion of che two booy system with [he technique
developed by Moshinsky aod co-workers and using the assumption mentioned
aboye, one can obtaina relativistic expressionfor che forrnfaccor ofa few-
booy system. lo the next sectioo we review che non-re1ativistic [heory of
the form faccor and indicate h09o' the re1ativistic generalization is done. Vle
fimlly a pply our formularion 'o discuss ,he body form fac,ors of ,he ,hree
nucleon system and che a. particle.

11I. REVIEW AND GENERALIZATION OFTHE NON-RELATIVISTIC

THEORY.

We shall firs, revie ••• ,he maio points in ,he approoch of Moshinsky
ee al by which chey obcain che fo'rrn faccor of che o-nucleon syseemS• 9. We
then propose a possible relativistic generalizadon co chis cheory.

Moshinsky ee al Star[ off by definniog che probabiliey deos iey aper.
acor of finding eicher a proton (v;:;:. O) or a neutron (V;:;:. 1) ae a definite
poine x, meassured wich respecc cdthe cemer-o(-mass coordinace X,

(3.1 1
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where tS is the third component of the' single-particle isospin. The expec-
ration v~lue of (3.1) with respect to the ground-state function will give the
probability density at the point x.

The ground sra te is written as

~ a(aLlys)~ (-1)'
/L. ' IdI

(3.2)
where -the only good quantum numbers assumed are the parity 11, the total
angular mornentum and isospin J and T and its projections. With the coef-
ficienls a (aLlys) available (and lhey could be calculaled were lhe e££ective
i~teraction known) one expresses the ground state as a linear combinadon
of the orbital states la1TLjr> coupled to the spin-isospin state~
lySTMT 7;>, which have a well defined permurational symmerry,specified
by lhe Young diagram I and lhe Yamanouchi symbol r. The orbilal srates
are built froro single-particle oscillator states coupled to a total orbital
angular momenlum Lo In (2.2) a and y srand for aH olher quantum numbers
needed to e omple te the e lass if ica tion.

The matrix element of (2.1) wirh respecl to lhe srale (2.2) gives lhe
densilY P" (x), whose Four;er transform F" (q') is equallo lhe body form
factor, which can then bewritten as,

x <a'1TLj'r' sinqlxl a17Ljr>

qlxl
. , ,

x a (a LI y' s) a (aLlys), (3 .3 )

wherc Z is equal to the number of protons in the system and di is the di.
mensionality of the irreducible representation of the symmetric group,
characterized by the partition f.

The express ion, combined with the fact that neutrons and protons are
noc point parcicles, but have a'charge densicy of che ir own, gives che final
result for che charge form factor,
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F(q') = I (q') F (q') +/ (q') F (q')
1 1 O O
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(3 .4 )

where 1
1
and lo ceree to (he forro factoes oC (he neutron and pcaoo, respectiye"

Iy, which are known experimental1y27.
For (he particular cases oC 3 and 4 nuc reus ~toshinsky er al. have

derived explicit cxpressions foc (he mattix elcment appearing in eq. (3.3).
In (his manner, (he charge form factor foc (hese systems is expressed as a
linear combinatíon oC [he singlc"particle murix elements

(n¡ISinqlxlln'¡')
qlxl

(3.5 )

In [he next section we give (he formulae foc (he cases oí 3 and 4 partic les,
using [he most symmetrical partidon, to which we shall restríet (he numerical
analysis, foc simplicity.

We now look foc a reladvistic generalizadon oC (his formula assuming
thac (he relative motionremains non'"'relativistic. This implies using thesamc
formula as before, bUI changing lhe single particle matrix elements (3.5).
Insread of rhese lauer we use rhe ones obrained wirh rhe relarivis[ic"harmonic
oscillalor, i.e. Wilh Slales clasified by lhe chain of groups (1.6). An ex'
plicit expression for these matrix e le mems. is given in the appendix, for all
cases needed io [he applicatioos we shall discuss.

As can be seen from the formulae in the appendix, rhe form factor be-

haves, for very high values of q', as (q,)"1 NI, N being lhe !abe I for ,he I.R.
of U(3,1). This is consistent with the theoreticallower limit, obtained
either by assuming analiticity in [he cut q2 _plane,lO or by assuming thar [he
axioms of localquantum-fieW rheory holdll, in which case ir can be shown
rhar the form factor cannor decrease faster than ex p( -/3 / I q21 ). On the
orhee hand, a reuncared oscillaror basis always produces a form factor which
asymprocically decreases as ex.p(-aq2), violariog the lO\l.:er limir. One ma)'
qucstion, therefore, rhe usefulncss of rhe oscillaror basis for vee)' high
rransfees and think rhat rhe relarh'istic correction might be substantial.

We shall nCM"compare the results given by both apprroches foe the
duce nucleon systcm and for the a particlc.
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In this section we shallapply the formalism we have developed, to
calculate che scalar form factors of the chree-nucleon system and of chealpha
particle, both in the re1ativistic and non-relativistic cases and compare the
resules with che experimental values.

In boch applications we shall restrict the ana lys is co two many-booy
harrnonic oscillacor states, one. of them being che zero-quancum stace and the
ocher one corresponding Co four quanca, both staces being classified by che
most symrnetrical irreducible represencation of ehe syrnmecric group. This
approximation has proved Cobe reasonable in the non-relacivistlc analys1s ot
che a particle form factor9• In the three-pareicle case these are che mosc
impCX'tant ~t~ces obm ined in the d iagona lization of an effective hami1tonian 12.

iFbl,-

-,,'
--- no-Ifl

o Z 4 6 8 10 12 14 16 18 ZO ZZ
q'UIfl-I¡

Figure 2. Comparison of relacivisdc (solid line) and non .•relativiscic (dotted line)

body form factors for the chree"nucleon sys[em. The value of y= - 0.05

has been used. which implies that the amplitude of che zero"quantum

state is larger chan the amplicude of che four-quantum scate.
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Us ing eq. (3.3) and denoting by e os y and s in y the a mpliludes 01 the
zero and four-quantum states, res pecrive Ir, we find, {or [he (hree" paTrie le
system, [he follO\\'ing express ion {oc [he re1ativistic bo.:l.y form factor

Fa (q2) ; eos 2'1 IN (000 1000) +

+ si;2y [/N(lOlI10l)+2IN(101 1020)+ IN(0201020)] ,

(4.1 )
where

IN(n 1" In' 1',,');
112112

I
1

(even)
n n
1 2

<ni;; I 01" / n/O>
1121 1121

x <ti" / n' TOln',¡'n' ¡' O><Nn' T lriL(q) lNn 1>
1121 1121 21 21

(4.2 )

and < ñ 1;; I 01" / " / O> is lhe Blody.~loshinsky braekec13 and lhe
1121 1121

marrix. elernem

(4.3 )

is evaluated explicitly in [he appencii.x. The states INn T > are single"2 1
particle states Iabelled by ,he ehain 01 groups (1.6).

In (hese equations, 001)' states wirh orbital angubr momentum L = O
and partition [3] have beco considered; (hese stares represcnt abOlle 90%
oí [he niton ground s[a(e, as can be ~hown from a realistic ...interaction calcu.

Iationl'" .

The non-relativistic formulae {oc [he form factor can be obrained by
replacing (4.3) by its non-re1ativisric equivalenr
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< n' T 1 s in q Ixl j
2 1 q Ixl

as is discU5sed in che appendix.

,.-'
--,,'
--- no-frl

,,
I
I,,,

, I:,

/
/

10-

o 4" lO 12 14 11 .1 20 22 24 U

q'(tm.')

Figure 3. Comparison of relativistic (solid line) and non.relalivisttc (doued Itne)

body form faclOrs for the rhree.nucleon sysrem. The value ol y = - l.03

has been used, which implies rhar [he amplitude of the four-quantum

state is Iarger than the amplirude of the 7.ero.quantum srate

Before discussing the results of the calculadon, we note (hat we have
two free parameters, N and y. They are not independent however, if we fix
(he roor-mean radius, which is rather well kno.vn experimenrally3. Using 'che
fact that the roor-mean radius is proporciona 1 to the derivative oí the form
factor at q2 = Owe obtain the reladon
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N
N = O

1+~sin2y
3
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(4.4 )

where No is ca1culated by adjusdng (he roor-mean radius with [he zero-

quamum state only.
In figure 2 \Ve shC1'\' ,he ,esults fo, the va lue y ; - 0.05 borh fo, ,he

reIativistic and non-celadvistic cases and compare with (he experimental
points 15, which are subject [O rachee Iarge uncertaindes. As seco from che
figure a mínimum is predicted around q2 "-' 15!m-2 and (he reL.'Hivistic coc-
recrion is of (he order oí 10% at q2 ""' lO!m-2 and even lar~er foc higher
values oí q2. We chen use a value oí 'Y = -1.03 which implies thar (he ampli-
tude oí [he four-quanrum state is larger (han char oí (he zero-quamum state.

4 , " " 20

Figure 4. Relativistic (salid line) and non_relativis(ic (doned line) body form
factoes for the a particle. The amplitude oí [he zero-quantum stue
is larger than the amplitude of the four •.quantum state; the value oí

?' ::: - 0.3 has been used
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O 2 4 6

The results are given in fig. 3. Twodiffraction minima are now predicted
and. che relativiscic corrections are srnaller chan in the previous case, as
seen frorn che figures. In view of oue approximations, we think that the fit
ro the experimental values is rather good. for both values of y, although ir
is s omewhat better lor y ; - 1.03 .

For rhe a pardcle, we again rescricr rhe analysis to two syrnmetrical
scates belonging to the partidon [4] using, as in reference (9), a zero and a
four"quantum states. Again, the values of N and y are Dot independent of

IF. I
I

rel
no-rel.

lO.'

--

~
~
~
~
~
'\
\
\
\

8 10 12 14 /6 18 20 22 24 26 28
.'((m-')

Figure 5. Comparison betwecn the relativistic body Corm factnr and the cxperi-
~ntal results for the a particle. The value oC 'Y::: _ 1.2 has becn
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cach other if W(, [i." rhe rom-mean radius. In íig. 4 we gl\'f' th" comparison
oí rhe fclari"isric form factor with rhe experimental "aluesl, \X'e take
y = - 1.1 and a reasonablc fit is obrained. T\\'o diffraction minima are rre.
dicrcd. rhe (iesr around IO/m-2 and a second on(' around q2 •.••..•2B/m-l• In
chis case [he r(:'b.tivistic corrections are smallcr rhan in rhe thrce paniclc

calculatioll, as indeed on(: would cxpect since rhe a patrie!c i:-; hea\.ier rhan
rhe tr iton; rhe error is no\\' oC [he arder oC 3 % around q2 161m -2, rhe Pl).
sition oC tillO second maximum. \Ve now perform rhe comparison wirh dlC'

\,31u(' JI = - 0.3; rhe error in rhe non-relativistic approximation is lar,ger
rhan (oc y = -1.2, being oC rhe arder oC 6% at q2 ;; 12/m-2 rhe posi(ion of
[he second maximum, which i.s predic[ed [00 10\\', ho\\'e\'('r. For [he a parti.
cle, in con[ras[ [O whar happened for (he uiron, [he experimental values do
distinguish berween the [WO values of y.

From rhe analysis we can conclude [har rhe relativistic correcrioos
for the form factor are sizeable in sorne cases and could be important. when
better experimental data are available. Since (he asymp[otic limit for n'r)'
high transfcrs is differcIlt in (he relativistic and (he non.relativistic cases,
as we mentioncd at (he end of scction 11] ,tht. corrections wiII also be veey
important whcn experimental points for largce q values are ob[ained. \\'e
alsonote thar (he correcrion is modeldcpci1dcnt beinglarger [he smallce
[he absolute value of.[he mixing paeametee.
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[o [his appendix we shall ob[ain an express ion for [he scalar produc[

(A.l )

where 1.f1
NnZ

(P) is [he basis for [he irreducible representaríon of [he chain of

groups

(A.2 )

and corresponds [O a four-momen[um p.
As discussed in reference (6) one can wri[e (A.!) as [he contraction

of [Wo generalized tensors, in the form

1 k
2/+1 1

%

- . .
~ N, cr,'" ......•J.L1 ••• J.Lk J.Lk + 1 ••• J.Lu ,
",ck t/J, (v)
k o 11%

"(011
x ~ % (v)

J.L1 ••• ¡.L k 1Jk + 1 ••• v.,.

N--r-O'+k
x (v' • v)

,Jlk+1 ,v.,.
v, ... v,v ... v
J.Lk+l J.L(j

(A .3)

where 1% is [he projection of 1, v and v' are [he four-veloci[ies corresponding
[O p and p + q, rcspectively, and (v'. v) is the scalar produc[ ot the tWO

N (T .,.

four-vectors. The normalization coefficient ck' , is giveo by

¡-a-i .7!(N - 7)! (N - a-)!

k! (a- - k)! (7- k)! (N - a- - 7 + k)!
(A.4 )
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and

0'= 2n'+I, T= 2,1 + I (A.5 )

give [he total number ol ose illator quanta in (he bra and kct, respective Ir .
.......,,11

The state vector t/J z (v) is defined as
,ul ... JJ..,..

"(011
'P z (v) =

J.L1 ••• I-L.,.

/1
t/J (v)
1',"". 1'1

e ... e
JL/ .•. l,JJ.Z+2 J.L.,._l,JL.,.

(A.6 )

where el'V is given by (2.5) and

,~ -1', _1'1 11
'f' (vo) V ••• v = 'tI 1 (v)

J.1.¡ ••• JJ.¡ , %
(A.7 )

•

where Vo = (1,0,0,0) and v= (O, v), ~I 1 (v) being the solid spherical
, z

harmonic .
Using techniques simiL.1.c [O those employed in (he appendix oí cefec-

ence (6) one can now compute expression (A.3). Tbe resultant expression
for F (q2) can OO'N be wr itten as

" " ( )-1 N 1- , (o' + o + 1)-'2 ••..2 2

F (q')= h , 1h 1 1 + -q-
I'J, n, 2

2m

x ~(_I)k+IA (n,n',/,k)A '(n,n',/,k)
jk n n

X (2n + /-j)!(2n'+ /-j)! / '")______ ~ ~ __ D (n, , n ,1
(k - j)! (2" + /- k)! (2,,' + /- k)!

L)O+O'+I'k

4m'

(A .8)
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and

2P+21+1)

IN I

D (n, /,n', i) = (n + I)! (n' + 1) !
(n + 1- • ) ! (n' + 1 - .) !

x (i+ 1)!(21-21-1)!--------I! (15 + 1) ! (i - 2.) !(l- 1- 1) ! (l- 21 + 15 - i) !
(A 01 O)

The normaliza[ion coefficiem h 1 is given by
n,

n' ,
1 =A (n,n,I,2n +1) ~ (2n +1-i)!IJ(n,l,n,i) on, '1

In eqo (A.S) m stands fot the rest mass of the system. Fotmula (AoS) can
be checked by [aking [he non-relacivis[ic limh and comparing wüh [he ex-
pression valid-Cor elle non-relarivis[Íc oscil1a[or gi\.cn in re£. (9):

l' (q') =n. ,.
2

I B(l1,I,r;',I,t)
:3t

2 t + I

,.
r(s+.!...)

2

r (1 + ~)
2

I ••
(-aq')

(A.11 )

where [he coefficiems B (n,l,u',/,t) are tabu1atedI3. The limit oC (A.S) is
ob[aineJ by takin~ q2/2m2 «1. and IN 1 - 00 with IN Iq2/m2 finice. Ex.
pression (A.S) lhen becomes,
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x L
ik

,
."n ' Z11 •

k + Z
(-1) (2,,+ l-i)!(2,,'+ I-i)'
(k - i) ! (2" + 1- k) , (2,,' + 1- k) !

Cocho ilnJ Flon's

( )

n+n'+Z.k
D(n,l.n',i) It\;!1;2

m

(..\.12)

whichcoincideswith (A.li) ifa is takentobe [SI/2m2
• The formula

(A.12) gives rhe non-relativistic single particlc:.' form factor in a more con-
venient way rhar rhe alternativc cxpression (A .11 )', once [he coefficicnts
D(n,l,n',t') are known. \Ve, thercfore, givc a rabie of thcse cocfficicnts,for
a1l possible values oí rhe quancum numbers up to 4 qtL.'l.nta. In (he cable \Ve

have made use oí [he obvious syrnmetry re L.'1tion

D (n, /, n " i) :;:::D (1"1 " 1, 1l, i ) • (A .13)
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Table 1

Codficients D(n'/"/.n

. n • j Dn n IJ "
O O O O O O 2 O

O O O O O

O O 2 O O

O 2 O O 2 O • 2 4

O 2 O 12 O

O 2 O 2 14 2

O 3 O O 4 2 4

O 3 O 48 3 16

O 3 O 2 156 2 O 2

O 3 O 3 111 2 12

O 4 O O 8 2 2 14

O O 160 2 3 %

O 4 O 2 1008 2 4 176

O 4 O 3 2400 O 2 O

O 4 O 4 1992 O 2 O

O O O O 2 2 8

O O 2 O 2 O

O 2 2 O 2 O

O 2 O 2 2 O 2 2 16

O 2 12 2 O 2 3 O

O 2 2 10 2 O 2 4 64
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RESUMEN

Se emplean los métodos de L"Teoría de Grupos pua obtener una ex"
presión explícita para el factor de forma de un sistema de pocas pardculas.
L.'\ expresión es válida para valores muy grandes de la transferencia de mo-
mento. El formalismo se aplica para obeener los faceores de forma de sis.
eemas de eres y cu.'l[ro nucleoncs y se discuee el orden de magnieud del
error que se comeee cuando se calcula denero de la aproximación relaeivis-

ca.




