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ABSTRACT: A quantitative analysis of the poles and residues of the S-
matrix in terms of a given R-matrix can be carried out by di-
agonalizing a complex symmetric matrix. In the present paper
we develop an electrostatic analogue for the one channel
problem, consisting of a set of parallel infinitely=long charged
wires; from the intuitive behaviour of the electric field one can
gain a simple qualitative insight on some of the properties of
the S-matrix parameters in terms of those of the R-matrix, for

the single-channel case.

INTRODUCTION

A detailed study of the S-matrix parameters which appear in a gener-
alresonance-pole expansion (Mittag-Leffler expansion) usually involves
the difficulty of explicitly enforcing unitarity of the S=matrix. On the other
hand, the well-known® R-matrix formalism, in terms of which the S-matrix
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may be written, expressly guarantees unitarity: the main advantage of this
formalism is then that one may parametrize the §-matrix through proposed
models for the R-matrix without ever violating probability flux conservation.

In recent years Moldauer has proposed very simple R-matrix models
whereby he has been able to study general properties of the ensuing §-matrix
poles and residues. In particular, he has proposed? an R-matrix consisting
of an infinite number of equidistant poles with identical residues (“infinite
picket-fence”) which turns out to have an exact, analytic solution. Also he
has considered several cases of a “finite picket-fence” model (with and
without a smooth background term) which can be solved numerically, and
furthermore he has studied more realistic models with specific distribution
properties for the poles and residues.

Our purpose here will be to give an electrostatic analogue of the
problem which allows one to visualize, graphically and in a qualitative way,
some S-matrix properties resulting from a given R-matrix model for the
single-channel case.

II. ELECTROSTATIC ANALOGUE OF THE RELATION
BETWEEN R=- AND §- MATRICES.

In the one-channel case, the relation between the Wigner R-matrix,

for n levels,

2

n
s "

R = (2.1)
A=1 E,-E
and the S-matrix, for a given partial-wave, is
R(L"
5 = eup [Rigp=wy] 1R 2.2)

1=RE"

The reduced-widths 'y}f and the R-mawix poles E, are real. The quzfntities
¢ and w refer respectively to hard-sphere and Coulomb phase-shifts ;
.= -B,with L = d +iP being the logarithmic derivative of the outgoing
wave evaluated at the channel-radius @ and B the boundary-condition for

the logarithmic derivative of the R-matrix wave functions at radius @ . The
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functions @ and P are real; P is the penetrability. The S-matrix as given by
Eq. (2.2) is manifestly unitary for real values of E for arbitrary but real
values of the R-matrix parameters ’yf and E,.

For a given set of R-matrix parameters, the problem of finding the
corresponding §-matrix poles is equivalent to finding the complex energies

[
81.5 g e (2.3a)
2
which satisfy
0_2
AN
1-RL°=0 or Pl PP 2.3b)
Melp.-€

Clearly, the roots 8;. of this equation are complex because L® is complex.
The linear, fractional transformation Eq. (2.2) has been studied by
Wigner? for the special case

a R +£:l
f @)
a2 2

with real coefficients @ and 4 ; he finds that the integrated cross-section
O (E) can be written in terms of the real function f in such a way that when

[ has poles, o'(E) has maxima . The poles of f are real and are the solutions
of '

a2R+bQ=() or % B :-52/025‘1 (2.5)

which can be solved graphically as shown in Fig. 1 for the special case of
n =4 levels. We see that, with the exception of the first pole, there is
always a pole of f between two successive poles of R. Therefore the aver-
age distance of a sample of » poles of R not including the first one will be the
same, for n big enough, as the average distance of the corresponding » poles
of f.

Now, the problem of finding the §-matrix poles is more general than
this since one must deal with Eqs. (2.2) and (2.3) which involve complex
quantities so that a simple graphical solution, like that of Fig. 1, is no
longer possible. There exists, however, a simple electrostatic problem
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Fig. 1. Graphical solution for the poles of f (Eq. 2.4).
The dots indicate the solutions and A= = bz/az'

which can give valuable insights in the behaviour of the §-matrix poles and
residues. Consider a set of n infinitely long wires which, in a given car-
tesian coordinate system, lie in the plane y = 0 and are all parallel to the
z-axis; the x-y plane projection is shown in Fig. 2 where the wire pos itions
are given by x; ( A=1,2,...,n); assume that the wires have positive uni=
form charge per unit length 7, . The electric field €(r) at an arbitrary point

r = (x,y) is then given by

Er) = = . (2.6)

To express vectors in the complex (x,y)=plane, associate

r =z =X Fiy ry =25 ,
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Fig. 2. The projection on the xy-plane of the electrostatic analogue of the R-S
matrix problem. The xysplane corresponds to the complex energy plane
in the R-matrix problem; the dots at x = x5 correspond to the poles E?\

of R and are the projection of infinitely long wires perpendicular to the
page and with charge T, per unit length.

so that

r"’wl;-'-lee”’b*, 2.7)

where d)?\ is the angle shown in Fig. 2 . Hence, Eq. (2.6) becomes the
complex function

2T ib
WP (2.8)

M=

E(z) =
Azl |z-z7\|
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”n 2 *
€(z) = = [ s T*] , (2.9)
A =lzl—z

*
so that = € (z) is an R-functiona. If we associate the x-y plane with the

complex energy plane, then from the electric field of the elecrostatic problem

just described, we can deduce the R-function whose poles EJs are associ-
ated with the v’ s of the electrostatic problem and its residues with = 27y -
As the prime objective is to obtain the S-matrix poles and residues,
we are interested in the complex roots 8;. of Eq. (2.3b) in which L" is,
strictly speaking, a function of the complex energy £ however, we shall ex-
pect this dependence to be weak if the ’y;] 's are much smaller® than the
Eys span an energy interval much smaller than their average distance from
threshold. Under this assumption we shall neglect it in what follows and L°
will be taken as a given constant vector in the complex plane. Moreover,
choosing for convenience the logarithmic derivative boundary condition B

equal to #, we have

L°=d+iP-B =iP, (2.10)

so that the equation to be solved becomes

n l_".}?/Z ' 2.11)
= =1 .
A =1E}\_-€
0 2
L0 = 2Py} - (2-12)

Now suppose that we construct an electrostatic problem by associating the
x4's with the E,’s of (2.11) and T4 with I_'ko/zi . The problem of solving
Eq. (2.11) can then be written as

€(z)= =i (2.13)

and this is equivalent to plotting the electrostatic field produced by the n
wires and selecting only those points where the field is vertical, directed
downwards and of unit magnitude. This is evidently fulfilled only in the
lower-half of the xy-plane and is equivalent to the familiar resule that the
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S-matrix has poles only in the lower-half energy plane. The locus of points
in the xy-plane where the field is vertical is obtained from Eq. (2.6) with zero.
horizontal component of €(r) i.e.,

” X=X
2Ty —— =0, (2.14)
N o= A (x-x-)\) Ty

As regards the residues of the S-matrix, Eq. (2.2) becomes, for

.- =iP,
2§ (¢ ~w)
£ = W, (2.15a)
w=1%iPR (2.15b)
1-iPR

and, to conform to the usual notation of the literature, we define the quanti-
ties

gi= lim [(€-E)w(E) (2.16)
w ith S’. a pole of §, i.e.,
1-4PR(€ )= 0. (2.17)

Now, the limit in Eq. (2.16) is easily evaluated and gives

g =-2/ [ﬂ] (2.18)
d€ g-¢,

or,as PR was associated with = 2" [Eqs. (2.11), (2.12) and (2.13)] , we
have
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2 dE.
. =2
. /[dzjlz=z.’ i

where z, is the point in the xy plane corresponding to the pole E',. in the
energy plane.

It is probably evident that the “electrostatic” approach to solving for
theS-matrix poles and residues, from a given R-martrix of » levels, would not
be as pre.tical, from a calculational standpoint. as that, e.g.. used by
Moldauer* based on diagonalizing a complex, symmetric nx n matrix', a
method first introduced by Wigner. But it will become clear that the electro-
static analogi.z provides certain qualitative features of the S-matrix which

are muddled in the matrix-diagonalization method.

IIl . APPLICATIONS

The simplest possible example is the wrivial case of a single wire
(one R-matrix level) in which, of course, the electric field lines emerge
radially, Fig. 3, and the only solution (i.e., the single S-matrix pole) must
lie on the downward, vertical line of force (lower half-plane) at the point
where the field magnitude is unity
]

Fig. 3. The radial electric field of a single wire. The thick line is the locus of
points where the field is vertical and directed downwards. The S-matrix

pole should be on the point of this line where the magnitude of the electric

field is unity.
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1=|e@|=27-T"2 (3.)
z| |z]
|z] =y =T"%. (3.2)

Using notation (2.3a) one gets for the single pole of §

r=r° 3.3)

i.e., the S-matrix width [ coincides with the I"° defined in Eq. (2.12) in
terms of R-matrix quantities. Finally, applying Eq. (2.19) for the poleresi-
due one gets

2 0
& = ’
in accordance with the well-known single-level (Breit-Wigner) resonance
formula result.

Fig. 4. The electric field (drawn only for y < 0) for two wires with the same charge
density. Again the thick lines are the locus of points where the field is

vertical and directed downwards.,

For two wires with equal charge densities 7T the lines of force are
those shown in Fig. 4, where the thick curves are the locus of points where
the field is vertical and directed downwards. It is clear from the figure
that the S-matrix solutions will be exclusively in the lower-half plane and
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that the real part of the two S-martrix poles will always lie between the two
Rematrix poles (which of course coincide with the wires); because of symme -
try with respect to the central vertical, the S-matrix poles will be reflections
of one another relative to that vertical. For very small values of ["° (very
small charge densities ), field magnitudes of unity are realizable only ata
very small distance from each wire and, as Pe 5 increased, the two solutions
will move away from the wires along the semi~circumference until they
“collide” at the point A. At this point the electric field has the magnitude

27/a =T"%2a ,

so that the collision occurs when

=24, | (3.4)

that is, when the “R-matrix width” ["?, as defined by Eq. (2.12), becomes
equal to the distance between the two R-matrix poles. As['° (or, charges)
is further increased, the solutions will move along the directions where the
electric field decreases until the points with |€] = 1 are reached: this is
satisfied by letting the poles move away from A along the vertical thick line,
one towards the point O and the other toward = =, as these are points where
the field obviously vanishes. This behaviour agrees with the results found
by McVoy?® and others on “colliding §-matrix poles”. At an arbitrary point
Q(x,y) on the semi~circumference of Fig. 4, it is easy to verify that the

field magnitude is simply

27 /y =%y,

so that for a fixed ["° the S-matrix poles will occur at y = FO/Z and hence

| (3.5)

. ; 0 0 :
showing that for the two-level case with 1_; = 1_; , the §- and R-matrix

widths coincide also.
We now generalize the previous two-wire example to differentcharge
. 0 0, .
densities: 7. = art, , say, with @ > 0 so that r; = al’” (since we always
have 7, = 1_‘-}? ,“V. This corresponds to a two=-level R-matrix with differ-
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Fig. 5. The locus of points where the field is vertical and directed downwards, for
the case of two wires with different charge densities: T, = 2%, « Netice
how in the limit a =* 1, the locus tends to the semicircumference plus verti-

cal line of Fig. 4.

ent reduced widths ‘y; - Finding the locus of points along which the electric
field is vertical implies solving Eq. (2.14) for » = 2 and in Fig. 5 are plotted
the different loci for @ = 1.01, 1.04, 1.22 and 4. Thus one clearly sees how
as a =1, the loci approach the semi~ircle-and-vertical-line solution of Fig.
4 and as a — > the solution approached is the single-wire solution of Fig.3
for the left wire and a solution that shrinks to a point for the right wire.
From an elecirostatic standpoint, the behaviour shown in Fig. 5 is intuitive-
ly ransparent since, as the charge on the left wire increases, the lines of
force emanating from ivwill deviate from perfect radial lines, due to the re-
pulsion provided by the right wire, farther away from the wire as compared
to the case of equal charges (Fig. 4); the points where the field becomes
vertical are thus removed farther from the circle of Fig. 4. By contrast,for
the weaker-charged right wire the deflection of the electric field occurs
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closer to the wire so that the locus of points where the field is vertical will
be more localized around this wire than for the stronger-charged left wire. It
is immediately evident that the corresponding S-matrix poles will always have
Projections on the real axis between the two R-matrix poles (wires) regardless
of the relative values l_'zo/I:0 = a of the two R-matrix widths since the
electric field never becomes vertical for values of x outside the spacing of
the two wires. Again, we observe that for smlll_' ’s the two S-matrix poles
will respectively lie in the vicinities of the R- matnx poles and that asI-'

are increased they will move away from the wires along the curves so that in
the limit @ = 1 we in fact understand the phenomenon of “colliding poles™.

‘-1

% a

Fig. 6. The locus ot points where the field is vertical in the case of 3 equally

spaced wires with the same charge density.

Passing now to the case of three equally-spaced wires of equal
charges, the points along which the field is verticalare given by Eq. (2.14)
for n = 3. Explicitly, we have (see Fig. 6)
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x [3y* + 6x?y? + (22 =x2) 3x? =x])] =0, (3.6)

from which one immediately sees that a possible solution is x = 0, corre-
sponding to the vertical line passing through wire 2 of Fig. 6 and which is a
solution obvious from symmetry considerations. A simple analysis of Eq.
(3.6) shows in addition the following: a) the locialso cross the x-axis at

x =1 x4 and & 13/‘/_ b) the slope of the solution becomes zero at

%= \/—_/fo and at each of these points y takes the double value

+ x /(2 f), c) there are no real solutions for i /\/_é X< x /\/— These
results are all graphed in Fig. 6. The fact that the loc1 cross the x- ax1s at each
wire is obvious on considering that in a vicinity sufficiently near to a wire,
the effect of neighbouring wires may be neglected so that the field is approxi-
mately radial, as in the single-wire case of Fig. 3; hence, from each wire
there is always a line of force emerging vertically and this result is clearly
independent of the number of wires, their charges and separations.
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Fig. 7. A graphical solution of Eq. (3.7) giving the points on the x-axis where the

field vanishes.

Another result which is independent of these latter conditions is the
fact that there is one and only one solution crossing the x-axis betweentwo
adjacent wires, as can be seen from Eq. (2.14) with y = 0 and » arbitrary:

” 7'7\
> = 0 3.7)
A=1 X=Xy
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Fig. 8. The locus of points where the field is vertical and directed downwards for the case of 3,5 and 7 wires. The

numbers on the loci indicate the magnitude of the electric field at that point and the arr
The length of the arrows is not significative.
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rection of the complex quantity g; of Eq. (2.18).
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whose left-hand side evidently has negative-definite slope and is graphed in
Fig. 7. where the crosses indicate the solutions for y = 0,excluding of course,
those at x = X5 s that cannot be contained in Eq. (3.7). Furthermore, it is
clear in general that a line of force to the left of the leftemost wire or, to the
right of the right-most wire, will never become vertical since in those two
regions the electric field contributions will always point away from the (posi-
tively-charged) wires. Moreover, the lines of force emerging from either ex-
treme wire will deviate from radial lines sooner, the larger the total charge
density of the other wires. Thus, the locus of points where the field is verti-
cal becomes more and more localized around the extreme wire if we add more
and more wires, all in complete analogy with the weaker-charged, right wire
behaviour in the two-wire case discussed before. For a wire not on either
extreme it is difficult to make precise predictions regarding the shape of the
neighboring electric field without actually solving (e.g., numerically) the e-
lectrostatic equation (2.12).

Numerical calculations were carried out for n equally-spaced and-
charged wires, Ty = 1/4 and ]x-)\"x)\'_l ‘ =D =1, fors =2,3,4,5,6; T+
Since T, corresponds to 1_‘??/4, we have F)? = 1. The odd-number cases ap-
pear in Fig. 8 and the even number ones in Fig. 9. As mentioned before, it
is in fact apparent from Figs. 8 and 9 that the extreme lobes become more
localized, around their respective wire, as n increases. Therefore, if one is
concerned with an R-matrix having a large number of poles, the real part of
the S-matrix poles not too removed from the extremes will tend to line up with
the R-matrix poles at these extremes so that, at least as far as extremes are
concerned, we may have the same pole-density for both R-and S-matrices if
the number of poles is large. If one defines an overall density as the sum of
all the separations divided by the number of separations, this overall density
will also be the same in the limit of a large number of R-matrix poles. This
is analogous to Wigner’s result discussed in Sec.1. From Figs. 8and 9one
also observes the fact that, for fixed n, the lobes expand as one moves away
from an extreme wire. Further, we note that as n increases, the lobe associ=
ated with a given wire becomes wider, but the width app roaches the limit
given by the half-distance between two successive wires, as can be directly

seen from Eq. (3.7), for n = >, Th = Ty e = AD :

TT cot ¥ =0 (3.8)

which is solved for



104 Mello and de I.lann

b o >
™ " m |
2}
o~

2
2

j
RAAS

oTst

TL ] T F
n)
i
o~ o~ o~
l ! [
"’.D
o
I
ml ™ ™|
] \ )
- - e b
o= LI 4
B kR R kA TR
= - .

Fig. 9. The locus of points where the field is vertical and directed downwards for the case of 2,4 and 6 wires. The
numbers on the locus for m = 2 indicate the magnitude of the electric field at that point.
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D; m=0,1,2:000 - (3.9)

It is also apparent from Figs. 8and 9 that as » increases, a given
lobe becomes deeper; in fact, as n = = from Eq. (2.14) one deduces that
the depth of a given lobe becomes infinite so that in this limit a lobe de-
generates into two vertical lines.

This is in agreement with Moldauer’s infinite picket-fence model in
which as " /p goes from 0 to 2 /77, the S-marrix pole directly underneach
and R-marwrix pole (wire) moves vertically away from the latter to = % and
reappears at = > but dis placed a horizontal distance D /2, so that as T-'O/D
is further increased beyond 2/7, the S-matrix pole moves vertically upward
appraaching the real axis as ['%/p — o, (Ref. 2, Eqs. (16d) and (16e).

Also shown in Figs. 8and 9 are some values of the electric field indi-
cated on the loci of points where the field is vertical and directed downwards.
The points with lel =1 represent, in the energy plane, the §-matrix poles
corresponding to the R-matrix wich P{’ =land D =1. For an R-matrix with
lﬂ)\o/l) =1/2 and 2 say, the corresponding S-matrix poles would be the poiats
in Fig. 8 given by | €| = 2 and 1/1 respectively. Evidently as [;°/D = 0for
the R-matrix, then the §-matrix poles approach the position of the wires
(case of extreme ly narrow and well-separated resonances. As 1—'7\0/!) is
increased, all the §-matrix poles move away from the respective wires, along
the corresponding loci. For n odd the central pole moves away to = = as
r')?/D — > while all the others approach the real axis again, on the side of
the lobe opposite to the wire. For n even (Fig. 9), the S-matrix poles associ-
ated with all but the two central wires behave similarly to the odd-wire case;
as IRO/D is increased the two central S-matrix poles collide and then repel
each other, as in the two wire case discussed before, so that only one of
these two poles returns to the x-axis.

The fact that lobes deepen as one moves from wire to wire toward the
center, as seene.g., in Fig. 8, explains qualitatively the increase in §-
mawrix pole-widths as one goes from either extreme to the center. To be
more precise, consider a given value of Ie[ in Fig. 8 and follow it from any
extreme lobe towards the center: this illustrates a result of Moldauer with
the finite picket-fence model (Ref. 4, Fig.1). . .

Finally we make some observations regarding the S-mat'ux residues
using Eq. (2.19). Since 6*(2:) is a meromorphic function,and in fact l?y Eq.
(2.9) is a Wigner R-function, the derivative d€ /dz will be the same in any
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direction at every point not on a wire. To calculate the derivatjve required
in Eq. (2.19) it will be convenient to choose the direction defined by the
tangent to the lobe at z = z, . Define a vector Az in this direction and .
pointing away from the corresponding wire. It is then easy to verify that g%
is a vector perpendicular to the lobe at z = z, and pointing 90° counter-
clockwise to Az : these are shown as arrows in Fig. 8 for several points on
the lobes, i.e., for the S-mauix poles associated with several I'°/D values.
Take for example a lobe in Fig. 8. As ["°/D varies from 0 to >, then g

rotates in the complex-plane, from a real positive value to a real negative
value, passing through a purely imaginary value at the bottom of the lobe.
But for the central pole of Fig. 8 the residue is always real and positive.
As mentioned before, a given lobe deepens as n increases until eventually
it degenerates into two vertical branch lines; hence the pole on the left

branch has always in this limit a real, positive g,? but for the right branch
it is again real but negative, this being in agreement with Moldauer’s ex-
plicit result for the infinite picket-fence (Ref. 2, Eq. 16c).

IV. CONCLUSIONS

We have seen that the problem of finding the S-matrix poles for a
given n-level R-matrix in the single-channel case is equivalent to con-
structing an electrostatic system of n charged infinitely long wires and
looking, in the x-y plane perpendicular to the wires, for those points where
the electric field is in the =y direction and has magnitude unity. One can
deduce in a simple intuitive way some properties of the poles when one
goes from the extremes to the center of the distribution of poles, both as a

function of the R-matrix parameters and the number 7 of poles.
The residues of the S-matrix turn out to be related to the derivative of

the electric field and some properties are also derived in a simple intuitive

fashion.
The previous properties coincide with the numerical results obtained

by Moldauer in finite and infinite picket-fences by diagonalizing c omplex sym-

metric matrices.
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RESUMEN

Un andlisis cuantitativo de los polos y residuos de la matriz § en
términos de una matriz R dada se puede llevar a cabo diagonalizando una
matriz simétrica compleja.

En el presente trabajo se desarrolla una analogia electrostatica del
problema de un solo canal, consistente en un conjunto de alambres cargados,
paralelos, e infinitamente largos; de la intuicién que se tiene del comporta-
miento del campo eléctrico se puede obtener una idea cualitativa de algunas
de las propiedades de los parametros de la matriz § en funcidn de los de Ia
matriz R, para el caso de un solo canal.





