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ABSTRACT: A quantitative analysis ol the poles and residues ol the S.

matrix in terms 01 a gh'en R. matru can be carried OUtby di.

agonalizing a complex symm~tric matrix. In the present paper
we develop an electrostatic analogue lor the one channel

problern, consisting oí a sct ol parallel inlinitely.long charged

wues; from the intuitive behaviour of the electric licld one can

gain a simple qualitative insight on sorne ol the properties of

the S-matrix pararneters in terms 01 those ol the R-matrix,for
the single-channel casco

INTRODUCTION

A detailed study oí the S"matrix para~ters which appear in a gener"
al resonance-pole expansion (Mittag-Leffler expansion) usually involves
the difficulty oí explicitly enforcing unicarity of the S-matrix. 00 the other
hand, (he well-known1 R-matrix formalisUl, lO terms oí which the S-ma(rix

• \t'ork supported by the Comisión Nacional de Energía -Nuclear, ~fé.(ico.



90
Mello and de Llano

may be wriuen, expressly guarantees ,Jnüarity: [he maio advantage of chis
formalism is (hen char ane may parametrize (he S .•matrix through proposed
mcxlels foc (he R-macrix without ever violating probabilit)' flux conservadon.

In rece nt years Molda uer has proposed very simple R .•ma te ix mode ls
whereby he has beeo able to scudy general properties of che ensuing S-matrix
poles and residues. In particular, he has proposed2 an R-maccix consisting
of an inf¡oiee number of equidistant poles with ¡deodeal residues ("infinite
picket-fence") which turos out to have an exact, analytic solution. Also he
has considered several cases of a "finÍte picket-fence" model (with and
without a smooch background (erro) which can be solved numerically, and
furthermore he has studied more realistic models with specific distribution
properties for the poles and residues.

Qur purpose here will be to give an electrostatic analogue of the
problem which allows one to visualize, graphically and in a qualitative way,
sorne S-matrix properties resulting from a given R. ma trix mode 1 fo r the
s ingle -c hanne 1 case.

11. ELECTROSTATlC ANALOGUE OF THE RELATlON
BETWEEN R- AND S- MATRICES.

In the one.channel case, the cclation bct';l.'cen the U'igner R-matrix,

for n levcls,

n
R= L

," = 1

(2.1 )

and the S-marrix, foc a given partial-wave, IS

s = exp
o •

[(2i(q,-w)] 1-R(L )

1-RLo
(2.2 )

The reduced-widths 'Y~ and the R-matrix poles EA are real. The q~ntities
q, and úJ refer respecrively ro hard-sphere and Coulomb ,phase-shtf¡s;,
LO == L _ B, with L = J> + i P be ing the logar ithmic deri,:,a tive of the outgomg
wave eva luated at the channel-radius a and B the boundary.condition for
the logarithmic derivative of the R-matrix wave functions ~t radius a. The
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functions ~ and P are real; P is the pcnetrability. The S ..matrix as given by
Eq. (2.2) is manifestly unitar}' for real values of E for arbitrar}' bU( real
values of the R ..matrix parameters 'Y~ and E,,'

For a given set of R ..matrix parameters, the problem of finding the
corresponding S-matrix poles is equivalent to finding the complex energies

f.
E. -i_'
• 2

(2 .3a)

which satisfy

(2 .3b)or
o1 - RL ; O

n LO y2
::s ";[.

"=1 C'. E,,- c.

Clearly, the roots 2,. of this equation are complex beca use LO is complex.
The linear, fractional transformation Eq. (2.2) has been studied by

Wigner3 for the spec ial case

1; a R + b
1 1

a R + b
2 2

(2.4)

with real coefficients a and b; he finds that the imegrated cross.section
a(E) can be written in terms of the real function I in such a way that when
I has poles, CT(E) has maxima. The poles oí lare real and are the solutioos
oí

a R + b2 2 O or - b /a "a2 2 (2.5)

which can be solved graphicalIy as s~own in Fig. 1 for the special case of
n = 4 levels. We see that, with the exception of the £irst pole, there is
always a poJe of I between two successive poles of R. Therefore the aver-
age distance of a sample of n poles oí R not including the first one wilIbe the
same, for n big enough. as the average disrance of the corresponding 71 poles
oí l.

Now, the problem of finding the S-matrix poles is more general than
this since olle must deal wirh Eqs. (2.2) and (2.3) which involve cornpl.x
quanrities so that a simple graphical solution, like that oí F ig. 1, is no
longer possible. There exists, however, a simple electrostaric problem
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Fig.1. Graphlcal solutlon for [he poles oí / (Eq. 2.4).

The dms indicare [he solutions aod a= - b la .2 2
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E

which can give valuable insights in [he ?chaviour of [he S-ITk'ltrix poles and
residues. Consider a ser of n infinitely long wires which, in a given cae-
resiao coordinare system, lie in [he plane )' -: Oand are a11 parallel [O (he
z-axis; (he x-y plane projection is shown in Fig. 2 where (he wire positions

are given by x,,(A.= 1,2, ... , n); assume chat (he wires have positive uní-
form charge per unir length 'T).... The electric f¡cId €(r) at an arbitrary point

r = (x, y) is then given by

€ (r) = (2.6)

To express vectors in (he complex (x,y)-plane, associatc

r - z = x + iy ,
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Fig. 2. Th~ projection 00 che xy.plane oE (he electrostatic analogue oE che R.$

matrix problem. The xy. plane corresponds to (he complex energy plane

in [he R"matrix problem; [he dots at x = x). correspond to che poles EA

of R and are the projection of infinitely long wires perpendicular ro (he

page and with ehargc ""." per unir length.

so tha t

(2.7)

where rP" is ,he angle shown in Fig. 2. Hence, Eq. (2.6) becomes ,he
complex function

n
~ (%) = ~

" =

(2.8)
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(2.9)

•so rhar - € (z) is an R-function3• If we associate che x-y plane w irh che
complex energy plane, rhen from (he electric field oí (he elecrrostatic problem
jUS( described, we can deduce (he R-function whose poles Eis are associ-
ated wirh rhe '<i.. s oí rhe electfostatic problem and it'i residues wirh - 2'TA•

As (he prime objective is tO obtain [he S-matrix poles and residues,
we are interested in (he complex roots E. oí Eq. (2.3b) in which LUis, '
strictly speaking, a funceion oí che complex energy 2; however, we shall ex-
pece chis dependence tO be w~ak ií rhe y~j 's are much smaller6 than (he
E':s span an energy ¡nterval much smaller than theie average disrance from
threshold. Undee (his assumption we shall neglect ir in whar follows and LO
will be taken as a given constant vector in (he complex planeo .\loreover,
choosing for convenience (he logarithmic derivative boundary condition B

equal to é>, we have

LO", él + iP - B

so tha( (he equa(ion to be solved becomes

iP , (2.10)

(2.11 )

(2.12 )

NO\\-' suppose (hat we conStrUC( an electrostatic problem by associating the
x,,'s Wilh lhe E,,'s of (2.11) and T" Wilh f"O/4. The problem of solving
Eq. (2.11) ean lhen be wriltcn as

é (z) = - i (2.13)

and this is equiva lene tO p10tting the e 1ectrostatic fie Id produced by (he n
wires and selecting on1y (hose points where the fie1d lS vrrtica/, dirrctrd
d(JwtltJ)ards and of Ul1;t magl1itudr. This is evidently fulfilled 011/)' in (he
lower ..half of (he x)'''plane and lS cquivalen( to (he familiar result (hat (he
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S-ma[rix has poIes onIy in [he Iower-half energy planeo The Iocus of poin[s
in [he xy-plane where [he fieId is vercical is obcained froro Eq. (2.6) wich zero,
horizontal componen[ of €(r) i.e.,

n

"_ T),.
l. = 1

x - Xi-

(x_x),.)2+y'
o. (2.14)

As regards [he rrsidurs of [he S-ma[rix, Eq. (2.2) becomes, for
Lo = 'PI ,

,;(</>-",)
S = r W,

w = 1 + iPR
1 - iPR

(2.15a)

(2.15b)

and, [O conform [O [he usual nma[ion of [he li[era[ure, we define [he quand-
[ies

2
g i = lim [( 2 - 2.) w(2)]

2 ~ 2. I
I

w ich 2. a pol(: of S, i.e. ,
I

1-iPR(2.)'7 O.
I

Now, [he limic in Eq. (2.16) is easily evaluated and gives

g: = -2/ [d;;] 2= 2
I

(2.16 )

(2.1 7)

(2 .18)

or,as PR was associated "'¡lh - E' [Eqs. (2.11), (2.12) and (2.13)] ,"'e
have
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2
g¡ = 2/ [

d €*]
dr % = .z .•
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(2.19)

where % i is the point in the xy plane corresponding to the pole Ei in the

energy plane.
Ir is probably evident [har the "electrostade" approach to solving for

theS-manix poles and residues, fraro a given R-matrix of n levels, would nO[

be as prt. •.:tical. from a calculational standpoint. as thar, c.Jt ... used bv
Moldauer'" based on diagonalizing a complex, syrnmetric nx n matrix

1
, a

method first introduced by Wigner. But ir will become cIcar that the electro.
stadc analogL~ provides certain qualitative fcatures of the S-matrix which
are rnuddled in che matrix-diagonalization methexi.

11I. A PPLlCA TIONS

~he simplest possible example is the trivial case oí a single wrre
(ane R-macrix level:) in which, of course, [he electric field lines emerge
[adially, Fig. 3, and [he only soludon (Le., ,he singkS-murix pole)musl
lie on the downward, vertica 1 line of fo rce (lower ha lf- plane) a t the point

where (he fie id magnitude is unity

1

Fig.3. The radial electric field of a single wire. The thick line is the locus of
points where the field is vertical and directed downwards. The S.matrix

pole should be on the point of this line where che magnitude of the elecHic

field is unity.
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Us ing nomtion (2 .3a) one gets lor the s ingle pole 01 S

(3.1 )

(3.2)

(3.3 )
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i.e., ,he S-mauix width r coincides with rhe rO defined in Eq. (2.12) in
terros 01 R-mauix quantities. Finally, applying Eq. (2.19) lor the poletesi-
due one gers

2 Ogj = r ,
in accordance wirh rhe well ..known single-Ievel (Breir-Wigner) resonance
formula resulr.

Fig.4. The eIecuic fie1d (drawn only for y < O) for (Wo wires wi(h (he same charge
densi(y. Again (he ('hick lines are (he locus of poin(s where (he fieId is

venical and direc(ed downwards.

For Iwo wires wirh ~qual chaTg~ d~nsit;~s T [he lines ol force are
[hose shown in Fig. 4, where [he [hick curves are [he locus o( poinrs where
[he field is verrical and direcred downwards. le is clear from [he figure
[ha[ [he S-marrix solutions wiII be exclusively in [he lower-ha1f plane and
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[har (he real pan oE che two S-matrix poles will always líe between (he two
R-rrra.tcix poles (which DE Course coincide with (he wires); beca use of symme'"
tey w1th respect to (he central vertical, [he S-matcix poles will be reflections
oE ane anocher relative to chat vertical. For very small values Di rO (very
small eharge densities), field magnitudes of unity are realizable only at a
very small discance from each wire and, as rO is increased, [he rwo solutions
wiU move awaY,from (he wires along (he semi-circurnference until chey
.collide" at (he point A. Ar chis poinr che electric f¡eId has (he magnitude

2r la = rO/2a

so char (he collision occurs when

rO = 2a , (3.4)

,hal is, when lhe "R-maltix widlh" ro, as defined by Eq. (2.12), becomes
equal to (he distance between (he (wo R-marcix poles. As ro (oc, charges)
is further increased, the soIutions will move along the direccions where the
electric field d~cT~a5~s umil the points with I El = 1 are rea.:hed: this is
satisfied by Iening the poles rnove away frorn A along the vertical thick line,
one towards the point O and the other toward - DO, .as these are points where
the field obviously vanishes. This behaviour agrees with the results found
by McVoyS and others 00 "colliding S-matrix poles". At ao arbirrary point
Q(x,y) 00 the serni--cucurnference of Fig. 4, it is easy to verify that the
fie Id magnilude is s imply

2rly = rO/2y,

so rhar fOI a fixed rO lhe S-mallix poles will OCCUIal y = rO 12 and hence

r - rO- , (3.5 )

showiog that for the two-level case with ~o = r;O, [he s- and R-mauix
widths coincide also.

\Ve noo ~eneralize the previous two-wire example to differentcnuge
densiries: ~ ::::0 aT1 ' say, with a > O so that r;o :=: a~O (sioce .we ~lwa~'s
ha,"'e T" - r" /,~\. This corresponds to a two-l,evel R-maulX wuh dlffer-
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Fig.5. The locus of points where the field is vt:uical and directed downwards,for

the case of two wires with different charge densities: "2"" a."'l • Notice

how in the limit a - 1, the locus tends to the semicircumference plus verti-
cal lille of Fig. 4.

ene redueed widrhs 'Y~. Finding ,he locus of poin,s along whieh.,he electric
field is vertical implies solving Eq. (2.14) for n = 2 and in Fig. 5 are plotted
,he diHerent loci for a = I.O!, 1.04, 1.22 and 4. Thus one clearly sees how
as a - 1, che loe i a pproaeh rhe se mi-c ire le -and - verriea l-line s olution' oE F ig.
4 and as a- 00 the solution approaehed is rhe single-wire soludon of Fig.3
foc rhe lefr wue and a soludon rhar shrinks ro a poinr for rhe righr wire.
From an eleclrostaric srandpoim, rhe behaviour shown in Fig. 5 is inluiliv~-
ly rransparenr sinec, as rhe charge on rhe lefr wire increases, rhe lines of
force emanating from ÍtJwill deviare from perfecr radial lines, due ro che re-
pulsion provided by rhe righr wire, larlh~r away from rhe wire as compared
ro rhe case of equal charges (Fig. 4); the poinrs where rhe field becomes
vertical are chus removed farther from the circle of Fig. 4. By concras[,for
[he weaker-charged right wire the deflection of [he elecrric field occurs
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clO$er ro [he wire so [har [he locus ai poines where [he f¡cId is vertical wiU
be more localized around [his wire chan for [he stlonger-charged lefr wire. lt
is immedia'e Iy eviden' ,ha, ,he eo«esponding S-matrix poles will a/ways have
projections on che real axis between che two R-mauix poles (wires) regardless
of ,he ,ela,ive vaIues rO/ro; a of ,he ,wo R-matrix wid,hs sinee ,he

2 1
electric fiek! never becomes vertical for values oE x outside che spacing oE
che two wires. Again, we observe char tor small r"o 's che two S-matra poles
will respectively He in the vicinüies oí che R-matrix poles and thar as r¡.,o '5
are increased chey will move away from the wires along che curves so thar in
(he limie a- 1 we in face unclerstand che phenomenon oE .colliding poles".

y

T T

J, cO

T

1, 1

Fig.6. The locus ol points where che field is venical in the case oE 3 equal1y

spaced wues with the same charge density.

Passing nO'NtO the case of tbree equally.spaced wires oí equal
eharges, ,he poin,s along whieh ,he field is ve«ieal a,e given by Eq. (2.14)
fo, n ; 3. Explieidy, we have (see Fig. 6)
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{rom which one immedia(ely sees (ha( a possible soludon is x = O, corre-
sponding to the vertical line ¡:nssing through wire 2 oC Fig. 6 and which is a
soludon obvious from symmetry consideradons. A simple analysis of Eq.
(3.6) shows inaddition the following: a) the locialsocross che x-axis ae
x =:t x, and:t x,/./3, b) che slope of the solueion becomes zeeo at
x = :tY'i7i2x and at each of these poines)' takes the double value
:t x,/(213), c') thete ate no teal solutions fot - x /./3.( x..( x //;;. These, ,
results are aH graphed in Fig. 6. The fact that the loc i cross the x-axis at each
wire is obvious on considering that in a vi"cinity sufficiently near to a w ire,
the effect of neighbouring wires may be neglected so that the f¡eld is approxi-
mately radial, as in the single-wire case of Fig. 3; hence, froro each wire
there is always a line of force emerging verticaHy and this result is clearly
independent of (he number oí wires, their charges and separations.

Fig.7. A graphical solution of Eq. (3.7) giving (he points on the x-axis where (he

field \'anishes.

Anothcr result which IS independent of thcse latter conditions is the
fact that there is one and only one soludon crossing the x-axis bctween(wo
adjacent wires, as can be seen trom Eq. (2.14) with)' = Oand n arbitrary:

~ T"- ---":lx-x,,
0, (3.7)
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Fill.8. The locll$ 01 poin!' ••.befe the field j, vertical and directea a01Oln'l ••• rd, ler rho: case 01 3.5 and 7 wiru. Tbt
nUIt\MU on rhe loci indicare rhe IMgnit¡¡d,e ol rhe electric fidd at that poin!.nd ,he uro'" indicare ,he di.

rection 01 the comple" quanlit)' g~ 01 Eq. (2.18). The lenllth of ,he artows is not ,ignificadve.
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whose left",hand side evidently has negadve"'definite slope and is graphed in
Fig. 7. where the crosses indicate the solurions for y = O,excluding ofcourse,
those ar x = x", ' that cannot be contained in Eq. (3.7). Furchermore, ir is
clear in general chac a hne of force to che lefe of che lefc"'most wire or, ca the
right of the righr-most wire, will n~v~r become verrical sincc in rhose two
regions the elecrric field contributions will always point away from the (posi-
dvely-charged) wires. ~Ioreover, rhe lines of force emerging from ~ither ex-
treme wire will deviate from radial lines sooner, rhe larger the cotal charge
dens ity of the olh~T w ires. Thus, rhe locus of poinrs where che fie Id is verd-
cal becomes more and more localized around the excreme wire if we add more
and more wires, a11 in complete analogy wich che weaker-charged, right wire
behaviour in rhe two-wire case discussed before. For a wire nor on eirhcr
extreme ir is difficult ro make precise predictions regarding the shape of rhe
neighboring elecrric field without acrually solving (e.g., numerica11y) the e-
lectrostat;c equation (2.12).

Numerical calculacions were carried our for n equally-spaced and-
charged w ires, T" = 1 /4 anod ! x '" - x ,,'_ 1 I == D = 1, fo r 11 = 2,3,4,5,6, 7.
Since T", corresponds ro r\/4, we have r",O= l. The odd-number cases ap-
pear in Fig. 8 and the even number ones in Fig. 9. As memioned before, ir
is in facr apparent froro Figs. 8 ami 9 thar the extreme lobes become more
localized, around their respective wire, as 11 increases. Thcrefore, if one is
concerned wirh an R-matrlx having a large numher of poles, rhe real pan of
the S-marrix poles nor roo removed from rhe extremes will tend to ¡ine up with
the R-marrix poles ar rhese extremes so thar, at least as far as extremes are
concerned, we may have lbe sam~ pol~-d~nsit)' for both R-and S-matrices if
rhe number of poles is large. If one defines an ov~rall density as rhe sum of
a11 rhe separarions divided by the 1Jumb~r of separations, chis overall density
will also be the same in rhe limit of a large number of R-matcix poles. This
is analogous to Wigner's result discussed in Seco 1. From Figs. 8 and 90ne
also observes rhe faet char, for fi.xcd n, rhe lobes ~xpand as one movesaway
froro an extreme wire. Furrher. we note that as 11 increases, the lobe associ-
ared with a gir'~l1 wiT~ becomes wid~[, bur the width approaches the limit
given by the half-distance berwcen two success ive wires, as can be directly
secn from Eq. (3.7). for 11 ••.• <Xl T" = T, x" = 'AV:

which IS solvcd foc

7/T

n
cm n

o (3.8)
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Fi¡¡o 9. Th~ locus of poiou ••.hue che field i" vertical ud direc;ted down ••••rd.for the C.Se' af 2,4.nd 6 •. ¡res. The
numbo.-n on che locus lor " :: 2 indiclllt che mallnilooe ol the tiecuic lield u chu poinl.
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m:;:; 0,1,2, ... (3.9)
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It is alsoapparent from Figs. Band 9 that as 11 inereases, a giV~11

lob~ becomes d~~p~r; in fact, as 11 -.. Oo;l lrom Eq. (2.14) one deduces that
the depth oE a given lobe becomes ¡nfinite so that in this limit a lobe de-
generates into two vertical lines.

This is in agreement with Moldauer's infinÍte picket"'lence model in
which as ro /0 g""s from o 'o 2/17, ,he S-matrix pole directly undernca,h
and R-:natrix pole (wire) moves tl~rJica//)' away from the latter to _ 00 and
rcappears at - /loO but displac~d a horizontal distance 0/2, so thar as rD/D
is furchcr increased beyond 2/1T, the S"'matrix pole moves vertically upward
a pprmc h ing ,he rea l ax is as ro / () - N. (Re f. 2, Eqs. (l6d) and (1(Je) .

AIsoshown in Figs. Band 9are sorne values ol the electric lield ¡ndi-
cated 00 (he loei ol points where [he field is vertical and directed downwards ..
The points with lE 1= 1 represent, in the energy plane, the S-matrix poles
corresponding to the R"'ma(rix wÍth r"O:;:; 1and O ;: l. For an R-m.'ltri.x with
1"',..% ~ 1/2 and 2 say, ,he corresponding S-matrix poles would be ,he poinrs
in Fig. 8 given by I El ~ 2 and 1/1 respec,ively. Evidelltly as r;O/[) - Ofor
the R"'nwHrix, then the S-matrix poles approach the pos ition ol the w ires
(case ofextremelynarrowandweU-separated resonances. As rADIO is
increased, all rhe S"'matrix poles rnove au'a)' from the respective wircs, along
the corrcsponding loci. For 11 oJd the central pole moves away to _ Oo;l as
r~/D -..00 while aH the others approach the real axi~ again, on the side of
the Jobe opposite to the wire. For 11 even (Fig. 9), the S-m.itrÍx poles associ.
ated with alI but the two central wires behave similarl)' to the>odd"'wire case;
as r"O ID is increascd the two central S-matrÍx paJes collide and [hen repel
each other. as in [he two wÍre case discussed befare. so [hat onl)' one of
[hese two poles returns [O [he x-axis.

The fact [ha[ lobes deepen as one moves from wire to wÍre toward the
center, as seen e.g., in Fig. 8, explains qualitatively rhe itlcr,as~ in S.
matrix polc.widths as one goes from either extreme [O [he center. To be
more precise, consider agiven valueol I€l in Fig. 8and follow i[lroman}'
extreme lohe [owards che center: [his illustrates a result of ~1oldaucr with
,he finire picke[-fellce model (Ref. 4, Fig. 1).

Finally we make sorne o':J:,ierva[ions regarding the S.ma[rÍx r~sidu~.s
using Eq .. (2.19). Sincc E*(Z) is a meromorph~c function,and in fact ~y Eq.
(2.9) is a Wigner R-function, ,he Jerivative de Idz w ill be the same In any
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direction at every point nor on a wire. To calculare (he derivative required
in Eq. (2.19) it will be eonveniem tochoose lhe direction defined by lhe
tangent to (he lobe at z = r .. Define a vector 6.% in (his direction and

. . '
pOlOtlng afiJa)' from (he corresponding wire. lt is then easy to verify thar g~
is a vector perpendicular to the lobe at z = Xi and pointing 90° counter-
clock\vise to 6%: (hese are shown as arrows in Fíg. 8 foc several poines on
(he lobes, i.c., foc (he S-marrix poles associated with several rOlo values.
Take foc example a lobe in Fíg. 8. As rO /0 vades from Oto 00, then g~

cmates in (he complex.plane, from a real positive value [O a real negative
value, passing through a purely imaginary "alue at the bonoro oí the lobeo
But foc the central pole oí Fíg. 8 (he residue is always real and positive.
As mentioned before, a given lobe deepens as n increases until eventually
ir degenerates ioto two vertical branch lines; hence the pole on the left

branch has always in this lirnir a real, pos itive g, bU[ for the right branch
ir is again real but n~gativ~, this being in agreement with Moldauer's ex-
plicil result for the infinite pickel-fence (Re!. 2, Eq.16c,.

IV. CONCLUSIONS

\Ve have seen that the problem of finding the S-matrix poles for a
given n-leve l R - roatrix in the s ingle. channe l case is equiva lem to c 00-
srructing an elecuostatic system of n charged infinite Iy long w ires and
looking, in the x.y plane perpendicular to the wires, for those points where
[he elecrric field is in [he -y direction and has magnirude unity. One can
deduce in a simple intuitive way sorne properties of the poles when one
gocs from the extremes to the center of the distriburion of poles, both as a
function of the R-matrix parameters and the number n of poles.

The residues of the S-matrix tucn out to be related ro the derivative of
the electric field and sorne propcrties are also derived in a simple intuitive

fashion.
The previous properties coincide with the nurnerical results obtained

by Moldaucr in finhe and infinite picket-fences by diagonalizingcomplex syrn-
metrie matrices.



Analogue o{ the R- and $- Matrices

REFERENCES

107

1. A.M. Line and R.G. Thomas, Rev.Mod. Phys. 30, 257 (1958).
2. P.A. Moldauer, Phys.Rev.157, 907 (1967).
3. E. P. Wigner, Ann. Math. 53, 36 (1951).
4. P.A. Moldauer, Phys.Rev. 171, 1164 (1968).
5. K.W. ~kVoy, cFundamentals in Nuclear Theory" Lectures presented at

an lnternational Course, Trieste, Published by International Atomic
Energy Agency, Vienna, 1967.

6. K.W.McVoy,Nucl.Phys.A115,481 (1968).

RESUMEN

Un análisis cuantitativo de los polos y residuos de la matriz S en
términos de una matriz R dada se puede llevar a cabo diagonalizando una
matriz simétrica compleja.

En el presente trabajo se desarrolla una analogía electrostática del
problema de un solo canal, consistente en un conjunto de alambres cargados,
paralelos, e infinitamente largos; de la intuición que se tiene del comporta.
miento del campo eléctrico se puede obtener una idea cualitativa de algunas
de las propiedades de los parámetros de la matriz S en función de los de la
matriz R, para elcasode un solo canal.




