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ABSTRACT:

In this paper we discuss a variational analysis, for the square-

well potential problem with a repulsive soft core, using harmonic=

oscillator trial wave functions. We show that the core has a re-

latively small effect on the approximation except when its radius
compares with that of the well. The dependence of the approxi-

mation on the number of quanta and the frequency of the oscil-
lator is also discussed.
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I. INTRODUCTION

The two-body nuclear interactions proposed recently! have a common
feature: the presence of repulsive soft cores. In a number of calculations
these potentials are taken as the input in a varjational analysis of the ground
state of light nuclei with some trial function. Naturally, this function is
chosen in such a way that a minimum of penetration into the core occurs. In
the extreme case of a hard core no penetration at all is allowed. Frequently,
the trial function does not show such properties, in which case simulation of
it can be attained by introducing short-range correlation factors of the
Jastrow? type.

The harmonic-oscillator functions do penetrate in the core so it is
reasonable to analyze the validity of using a finite linear combination of un-
correlated harmonic-oscillator states in a variational analysis of a hamilto-
nian with repulsive-core interaction (the variational parameters here being
the frequency of the oscillator and the coefficients in the linear combination).

With this objective in mind we consider the problem of a pseudo-
deuteron, i.e., a deuteron interacting through square potentials,and calculate
the ground-state energy using oscillator functions of up to 20 quanta. Drastic
variations of the potential parameters are made only for the height of the core.

The mathematical treatment of the problem is presented in the next
section while comparison with the exact results is made in section III.
Nevertheless, we anticipate here the main information contained in the nu-
merical results: the presence of a repulsive core does not affect the validi-
ty of the approximation very much, unless the range of the well approaches
the radius of the core.

II. GROUND STATE OF THE PSEUDO=DEUTERON

The hamiltonian we have to deal with, in relative coordinates, is
given by

H = _21_ p2 + ¥ir)y, /1 = reduced mass (2.1)
)

which will be put in a convenient dimensionless form. In order todo this
we divide (2.1) by some energy, which arbitrarily will be chosen to be_the

L
electron mass mc? (= 0.511 MeV),and express r and p in units of \/%-/,uw
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and V4w , respectively. In this way the hamiltonian (2.1) becomes

' 2 '
H'= B _ 1 ¢y +vir'Vyle) (2.2)
mC2 2
with ¢ =% 2.3)
mc2
and yu 2 24
,(.mez

The prime indicates that the corresponding variables are dimensionless.

v, -

Fig. 1. The pseudo=deuteron
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The potential in (2.2) is defined by

LA 0L r {(ro
Vii?h= -V, ra<r'<r! @.5)
0 rl<rf

a. The Exact Solution

The hamiltonian (2.2) now defines an eigenvalue problem whose exact
solution is given, for / = 0, by

2
(4 sinh (k) r") 0<r'< ), k; =ZP_[VO+|E|]Z
%2 €
2
u(r') = <Bsin(k1'r')+Dcos(kl'r') r$\<r'$r1', kl' =2_F2£,[v1-le]]%
5
2
Fexp(=4'r") Ayt -, W =gy
g .52 €
(2.6)

The boundary conditions on the solution lead to the energy spectrum
from which we can obtain the exact ground-state energy, which comes out
from the “lowest” solution of the transcendental equation

Rk coth (k! r') [cot (kl'rl') ~cot (k)]
a ! ’ 2 [ L
kokz coth (koro) [cot(,{-.1 n ) cot (ero) +1]
2
+ k! [cot(k:r(;)-cot(k:rl')]

-k'k: [cor(k;rl') cot(k;rc:)'* 1] = 0, (2+7)

which was solved numerically.
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b. The Variational Analysis

Now we assume that the solution (2.6) is unknown and proceed to de-
termine it through a variational analysis of the hamiltonian (2.2 )with harmonic=-
oscillator functions.

As we shall be concerned only with oscillators of angular momentum
I = 0 the following short hand notation will be used

’n00>s n>= R”O(r') (2.8)

and the proposed expansion of the trial function has the form

|
2N

Yr'y= 3= anln >, N even, 2.9)

n=20

where N is the maximum number of quanta. The definition of R, (r') used
here is given in reference 3.

As it is well known, the variational principle, with the normalization
condition (assuming the a’s real)

Zal=1 (2.10)
leads to the secular equation

det‘<n'|H'ln>-E'5"'n|=0, 0~$n,n\<;—N. 2411y

Thus, the only problem left is to calculate the matrix elements of H' with
respect to harmonic-oscillator states. Part of this program has already

been done* :

Ly |P'21n> = (2?1"'%)8"!”‘{" |n(ﬂ+é_)3nr”_1 + J(n+1)(n+;_)5nt”+l

(2.12)
On the other hand, by introducing the B=coefficients defined and tabulated
in Ref. 3 , the matrix elements of V' can be put in terms of Talmi integrals
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in the following way

n'+n

<a'|vi|n>= 3 B(n' 0,70, p) 1, , (2.13)
p=0

where

-] ' 2

L =__% ¥ r'2P+2V (r'ye ™™ dr'. (2.14)

C(p+3) °
2

Through a direct calculation we get for I | the value

Y-viy(d

I = :

2 t ’ 3 ’ '2 s
= [(Vo ty )w(?,r0 r1 )J 2.15)

where y¥(a, x) is an incomplete gamma function, as defined in Ref. 5.
For other values of p the following recursion relation holds

'? "
Iy =1 o281 LI (V'+V‘)f'2p+1e.rﬂ _V'r‘zp"-le-'l
P pe1 _T 4 . ] )
VT2

\'

P 1

(2.16)

With the help of eqs. (2.12), (2.13), (2.15) and (2.16) we determine
the matrix elements of the hamiltonian (2.2).
In the next section we discuss the results obtained after diagonal-

izing H' with different number of quanta, and changing the frequency of the
oscillator and the potential parameters.

III . RESULTS AND CONCLUSIONS

In all cases we discuss here, V| was taken as 80 MeV and the value
of the oscillator parameter € was chor.en to be that which gives the best
energy as compared with the exact solution, in the 20-quanta approximation.
This value of € was rather insensitive to the height of the core as shall be
discussed below.
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Fig. 2.

Variation of the approximate ground-state energy (EA) with the heignt \/0
of the core. The number of quanta N is equal to 20.

In Fig. 2 we see the dependence of the ground-state energy on the
height of the core. Two values of the core radius and three well ranges are

considered, as shown in the figure. One notices that the energy is practi-

cally inde pendent of the core height, which varies from =80 (no core) up to
1500 MeV. For instance, in the case of r = 1.8 fm and ¥, - 0.3 fm the e-
nergy decreases at most about 30% of the value at =80 MeV in the whole

range of variation of V.- Now, if we increase the core radius, then the de-
pendence on Vo will be more notorius.
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Fig. 3. Convergence of the approximate ground-state energy (E4) as function of

the number of quanta N. Ee

is the exact energy.
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We proceed now to compare the approximate and exact solutions when
in the former we vary the number of quanta or the parameter €.

In Fig. 3 we plot the ratio of the approximate to the exact binding e-
nergies as a function of the number of quanta. As before, we choose the €
that gives the best approximation at 20 quanta. The r, is fixed at 0.3 fm and
r, at 3.3 fm. Two curves are shown, one for V = 0 and the other (dashed)
for V= 1500 MeV. The approximation is of course poorer for the latter
than for the former,but, from 8 quanta on, there is almost no difference.

In Fig. 4 we do the same for r - 0.44 fmand r =1.8 fm. Because
the radius of the core is now larger than before as compared with the range
of the well, the binding energy for V,=1500 MeV approaches much more
slowly its exact value as we 1ncrease the number of quanta N.

We shall now discuss the role of € in the analysis. First we consider
the case when the range of the well is large compared to that of the core,
specifically in Figs. 5 and 6, 7 = 0.44 fm, r, =33 fm,and V = 80 MeV. In
Fig. 5 we take V,= 0and graph the ratio of the approximate to the exact
binding energies as function of €. Two curves are drawn corresponding to
the values N = 0and N =20. For N = 0 the € that gives the optimum
value for the energy is well defined. For N = 20 there is a wide range of
€’s that give almost the same value of the binding energy which is veryclose
to the exact value. This should be expected because when N = = the vari-
ational approach should give the exact binding energy independently of the
frequency of the oscillator.

In Fig. 6 we make a corresponding analysis for V, = 1500 MeV and
the results are similar. We note though, that for 0 quantum the optimum e-
nergy is farther away from the exact value when V,= 1500 MeV than in the
case for V,=0, and, furthermore, the region for optimum approximation
when N = 20 is narrower in Fig. 6 than in Fig. 5. Both results are expected
from physical considerations.

It is interesting to discuss also the validity of the variational pro-
cedure where the range r, of the core is closer to the value of the range A
of the well. In Fig. 7 we consider the case r,= 0.44 fm, r = 1.8 fm,

= 80 MeV as before, but we take a core of 1500 Mev. We show the ap-
proximate,binding energy as a function of € for N = 0,8 and 20. For N =0
we see that we almost get no binding even in the best case. For N = 8 we
get 77 % of the binding energy for a definite value of €. Onlyfor 20 quanta
we approach to 96% of the exact value within a relatively narrow range of
the €’s. Similar results to those discussed above were obtained with a
deeper well (V1 =270 MeV).
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Fig. 5. The approximate groundestate energy (E, ) as function of the oscillator

parameter € compared with the exact energy (Ee)'
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Fig. 7. The approximate ground-state energy (EA) as function of the oscillator

parameter € compared with the exact energy (E_).
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In conclusion, the validity of the approximations in which we used un-
correlated harmonic-oscillator states is not affected by the presence of a re-
pulsive core in the problem, unless the range of the well starts to approach
the radius of the repulsive core. Also, when we increase the number of quanta,
we approach the exact binding energy better and better over a wider range of
frequencies of the harmonic-oscillator trial wave functions.
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RESUMEN

Se discute un andlisis variacional utilizando, como funcién de ensayo,
una combinacién lineal de funciones de oscilador arménico para el problema
de un pozo cuadrado, de profundidad fija, con un carozo repulsivo blando, cu-
ya altura varia desde =80 hasta 1500 MeV.

Los calculos numéricos fuerou realizados hasta 20 cuantos en la apro-~
ximacion. Se muestra que el carozo tiene un efecto relativamente pequeiio en
la aproximacion, excepto cuando su radio es comparable al del pozo.

Se discuten, también, los resultados de la aproximacion, comparados
con el exacto, cuando se varian la frecuencia del oscilador y el nimero maxi-
mo de cuantos.





