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ABSTRACT: In this papee we develop ao approximate re1ativistic formularion

oí (he stochastic theoey oE quantum mechanics foc spinless

panicles. The mechod used parallels as much as possible (he

non-relativistic derivation, which assumes local equilibrium.

This tasI condicion ceflects itself in thar (he theoey developed
is valid only foc times greater than15/mc2• .

l. INTRODUCTlON

The purpose of this papee is to formulate [he stochastic theoey of
quamum mechanics in re la tiv is tic formo Oue interese in this problem arises
maiol)' in connection with [he study of particles with spin; however, weshall
rescric( ourselves, for rhe rime being, (O (he spinless case, deferring ro a
forthcoming paper che problem of spin.

Sorne effor(s have been made (O define and rrear (he re1arivistic
srochastic process; nevertheless, a study oí (he perrinenr li(erarure seems

•
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write:

[o ¡ndieate chat acrual1y [hefe does not exis( such a chiog as th~ re1ati"isric
generalizadon oí srochastic theorr, but chat thefe are a number oí open possi-
bilities, at lease in principIe. Fortunately, we may s implify che present
problem by rhe following considerurions. In rhe non-rclacivisric case,
SchrCXJinger's equation was deduccd from a stochastic theoey in configuration
spacc1; we a150 koo\\' rhar rhe [heoey is approximate and can be considered
valid unir foc time intervals l.'lrger than a certain minimum time, since. (he
formularion presupposes local equilibriurn «(his puim has beco discussed at
length in other works2). Therefore, when formulating (he relativistictheory
in space-time, we may be sure rhar rhe description will be valid only aCrer
local equilibrium has been a((ained, i.c., aÍter a cerrain minimum rime'" has
ela.psed. This resrricrion ro space ...time enormously simplifies our rask,
beca use rhe essentialIy non-relativisric inreractions may be adequarely
rrcarcd as ~b.rkovian proccsses if only rime imervals greater than T are con ...
sidered (see, e.g., reís. 3 and 4); moreover, ir secms thar, for rhe time
being, this equilibrium approximation is sufficicm for our purpose, since it
leads directIy ro rhe usual quamum meehanical theorics. In faet, the rela-
tivisrie theorr developed wirhin rhis approximation will auromatically saris-
fr [he uncenaimy relationships. The characrerisric rime'" may be esti-
marcd from simple argumems, rhe resulr being -as one may foresee-
T •.•.••1J/mc2; this rcsult is a measurc ot the ltmn oi applieability of thc rela-
rivisrie-quan[um equations under eondirions of local equilibrium.

1I. TIIE FUNDA~tENTA L RE LATIVISTIC EQUA TIONS

\Ve bcgin our trearmen[ by assuming [har [herc cxists a four-vel<:lCiry
c¡..L' which mar be deeomposed imo [he sum oí a sysrematie (v¡..L) and a
srochasric (11 ) componenr, just as in [he non-relativis[ic case; henee, we¡J.

c=v+u
¡J. ¡J. ¡J.

(1)

The four-velociries f' and u have, by definirion, differenr be-
¡J. ¡J.

haviour under time re,'crsal (we here adhere [O our previous convenrionand. ~ .
write TQ = Q for any qua,miry Q, T bcing rhe time reversal operaror); rhe. .
aedon of T 00 x is defincd as folIows :¡J. .

-Throughout this paper we use the surnrnation convention over repeated greek index •.
e s, with J.1. = 1,2,3,4 ami x J.1. = (x, U;o) •
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where g is diagonal whh elements (1,1,1, -1). We also postulate that
JLv "

the ve loe ities uansform under T as fo11ows:

'"v -g v
JL ¡..Lv 11

(3)
'"U g u

JL l' v v

and hence

1 '"v = 2" (cJL - gJLV cv)JL

(4 )

.!- (c + g '"u = c
l' 2 l' I'V v

\tre seek Jifferential operators representing a generalization of both
the re1ativistic, non-stochastic d/ds and the stochastic, non-re1ativistic £J,
with the hclp of which we majO..:onstruct tJ and u from x • With this aim,

JL l' JL
let us assume that we may find a parameter oS, to be ca11ed in this paperthe
(ensemble) propcr time, such that x may be considered a function of ir:
x¡..L(s), and that for a given s (which implies given initial conditions):

a) there exists an intervalos long enough for a particle to reach a
local equilibrium Statc, but at the same time sma11 enough for

ox" = x (, + ó,) - x (,)
r l' l'

to be small and to contain inforrn.:'1tion about the random environment acting
on the partic le;

b) there exísts a distribution of ox ,with the help of which it is
possible todcfine for any funct¡on Q pert~ining to che ensemble, the mean
value of Q, which we wrÍle as 1! {Q};

e) s is such that in the non-re1acivistic limit, s = el, e being che
ve loe icy of lighc in vacuum* .
• For a more complete discussion about the definidon and consuuction of .~, we refer
the reader tú the literature, especialIy te Reí. (3).
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Now let us consider a (well-behaved) funcdon f. depending 00 .5 onlr
rhrough x ; we chen \uite

¡J.

-5-P.{f(x +Sx )-f(x)}S. ¡J. ¡J. ¡J.
,/ f

o., ox
¡J. v

Sx Sx + ••.. /
¡J. v (

In (he non-relativistic theocr. (he process of calculating [he corresponding
exprcssion in [he limic Ss - O is considered permissible in spite of [he as"
sumption of local equilibrium5• This is no longer (he case in (he relativistic
rheoer, because as 5000 as \Ve go to [his limit, sorne internal inconsistencies
appear, as will be shown below. Hence we must content ourselves wirh an
approximate express ion, obtaincd by taking che Iimit as 8s tends to a certain
mínimum called s = cT ,which measures [he peoper time che ensemble needso o
to attaio local equilibrium. Lec us suppose, in accordance wirh assumptions
a) and b) above, that So is sma 11enough for the derivatives of f to be consider--
ed constant over the interva 1 Ss ; then we write

with

{Jf,. {¡(x+Sx)-f(x)}=c O f+/)' 0
2

f+
P. P. p.v p.v

(5 )

e
¡J.

(6 )

(7)

and so on.
We have thus obtaincd a covariant generalizadon of the total (mean)

derivative operator, namely,

This opcrator 15 such that

[) = e O + D' 0
2

+ ...
p. p.. p..v p..v (8)
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e =fJx¡;. ¡;.

or raking inlO account Eqs. (4),

v=f)x
l' e ¡;.

u=f)x¡;. • ¡;.

with the systematic and stochastic operators defined by

~ ~
f)c = .1...(f)- f)) = - f)

2 e

(9)

(10)

(11 )
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f).,

respectively. Of particular interest for us
portional to the meuic tensor:

D' = Dg
¡.L 11 jJ. 11

is the case in which D' IS pro-
¡;.V

(12 )

since, if this condition is satisfied, the second order term in Eq. (8) re-
duces to Vd d when written in terms of the tensor¡;. ¡;.

(13 )

djJ.0.u has precisely the form we are looking for in view of our direct inter-
est in the Klein-Gordon theory. Note tha( Eq. (12) is valid only under the
condition 5

0
:1- 0, as can be seen by considering the non-re1ativistic approxi-

mation, in which we may identify.s with el; since furthermore Di; = DOi; ,
wi,h D =1J/2m,we obrain from Eqs. (7) and (13):
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aOOhence,

f) =c2f) •• '" 1 2_cT
2
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T '" 2f)

c2
=

c
(14 )

T represems [he tiroc needed by (he system [Q rcaeh a S(a(C of local equilibrium
and hcnce represents (he minimum time i.nterval foc the theoey to ha ve an}'
significant value. Eq. (14) indieates also thar (he localization oC a cela-
tivistic particle cannot be better (han [he Compron wavelength Ac = f.J/mc
associated to [he particle. These rcsults aTC in complete agreement wirh
(he poines oC view usually adopted in connection with relativistic equations
in quantum mechanics 6, a lthough (he a rguments lcad ing to thero are quite
d¡ffcrent. Feoro Eq. (14) we conclude, in particuL..'u, thar (he [heoer cannot
be applied to electrons foe time intccvals tJ.t:S t"'-' lO.2osec and thar foc
nuclcons, (his l¡mit reduces to lO-23sec. The samc estimare has beeo
gi\'eo before from similar, but noo.relativistic considerations2•

In what follows we shall use ,he value of [) given by Eq. (13) and
¡J.V

thus write

c()+f)()()+ •.•¡J.¡J. ¡J.¡J. (I 5)

lt appears convenient to write the cqlL::'ltions in terros of four-momcnta in-
stead of four-velocities; hencc, if In is the parcicle's rest mass, we define
the systemiltic and stochastic four-momenta p and q as¡J. ¡J.

p = mv¡J. ¡J.

(16)

q¡.L mu¡.L

so [hat at:cording to Eq. (11),

mfJ = p () + ...e ¡J.¡J.

mI) =q a + m[)() () +
.'\ f..L f..L f..L Ji.

(I7)
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where we have used the property1D = D. Now let / represent the toralfour-
force acting on (he particle. In the general case?, I may be decomposed

1'- •
into the sum of two parts having different behaviour under 1", namely,

(ISa )
(t)

=:t gp.vlll

In order to es(ablish the relationship between forces and accelera(ions, wc
introduce twO postulates corresponding to those used in (he non-re1ativistic
theory. Firs(, let us assume that [he [o[al force Ip. is related to the total ac-
ce leracion 1Jc as follows:

1'-

/ = mf)c ,
1'- 1'-

or, more explicitly,

(+) (-)
/ +/ =f)p+f)q+f)q+f)p.
p. p. cp. ~IJ. cp. 3¡.L

The T-[ransform o! this equation 1S

(+) (-)
f -/ = f) p + f) q - [)c q" - f). P" •p. p. CJ.L 3J.L ~ ,...

This sysccm of equations may be wrinen in che simpler form:

(19)

(2~)

(2ll> )

f)p +f)q
c IJ. ~ J.L

(+ )
=/

1'-

(21 )

We now introduce a second dynamicaI postulate, which escablishes that (he
(o(al force I differs from tre ex(ernal four-force I by a (erro of s(ocms(ic

1'- 01'-
origin:
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! =1 +(1 +t-.»):) q .~ O~ 5 ~
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(22 )

Using (he same arguments as in rhe non-relativistic case, we can see rhar [he
reIarioo expressed by Eq. (22) is [he mos[ general one compatible wich rhe
[heoe)' and having rhe corrcer non-stochastic l¡mic. As in rhe non-re l-ltivisdc
case, f... is a free para meter . .•.

Feoro Eq. (22) and ltS T- transform we readily obtain:

( + ) (+ )
+(I+>-')):)q!¡J. = !o¡J. • ¡J.

(23 )
(-) (-)

!¡J. = !o¡J.

Introducing (hese resuhs ioto Eqs. (21) wc arrive at [he fundamental

equations oí [he theoe}':

(24 )

There exists a simple alternative form oí writing Eqs. (24) in rhe particular
case oí imcres( Coc quantum mechanics1, Le., f... = l. To show (his, ler us
introduce rhe following complex quantities

f<J =p -iq
¡J. ¡J. ¡J.

(25)

and write Eqs. (24) In [Crros oí them and their complex conjugares (c.c.):



Stoc}xutic Theory and Qu:ntum ;\1rchanics 141

These equations are considerably simplified when A.assumes the quamum.me ..
chanical value A.= 1:

19 f'i = /
ql" 1"

(26)

In what íollows we shall restrict ourselves to this panicular case. Since
(26) is a set oí c.c. equa[ions, we shall use only one of them, say [he first
one, and consider it as the fundamemal equadon.

Let us now go over to the panicular case oí greatest imerest, namely,
when lo¡.J, corresponds to an external elecuomagnctic íield. According to
previous results7 the corre!::ponding íorces must be wriuen as:

(+)
f =.!-F P -:...!) A + ~ p () A
O ¡J.. me j.L v v e e ¡.J, me v ti ¡.J,

(27)

Bere F = 'O A - 'O A scands for che elecuomagnetic tensor and the
¡..Lv ¡..L v v ¡..L

Loremz gauge () A = O is imployed; Eqs. (27) represenl <he covariantform
of che three ..forc~sJLpreviously obtained and have been derived by an ana lo"
gous procedure. Imroducing them ¡mo ehe firse one of Eqs. (26), we arrive
al

!) (fiJ +:...A )=.!-f'i() A .
q ¡.J, e ¡..L me v JL v (28)
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III. THE KLEIN-GORDON AND CONTlNUlTY EQUA TlONS.

The in'egra'ion of Eq. (28) can be performed by translating in,o co-
variant language che argumenes used in previous works 7. We shall therefore
omit mose oí che intermediare steps in (he derivadon DE che corresponding
.wave equation".

When D and aH higher arder coefficienrs are constant, che commutator
of .9q and el¡., is

[o, , m.9 ] = ca, P ) o .
~ q ~I' ¡J.

(29)

Hence, if we introduce a complex, dimensionless funce¡on W such char

P + ~A = lío w,
11- e J1. p.

(3 O)

we ob,ain wi,h ,he help of Eq. (29) ,he following ma,hematical identi,y:

.9 (fCJ + ~A ) = ~ !él O A +.!- O W,
q p. e J1. me v P. v m J.L

where

2 2
W = mfJ.9 w - ~ O w O w + _'_ A A

q 2vII 2vv2c

Upon comparison wi,h Eq. (28), we
W is a constant, so char

see ~hat necessarily 'O W = O, and hence
l'

(31 )

is a firse integral DE Eq. (28). The value of che integracion constant has
been fixed by demanding ,ha, Eq. (31) give ,he corree' resul, in ,he non-
stochastic limite This can be seeo from che expansion oE Eq. (31) to
sec ond o rdee:
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, ,
==-mc
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which in lhe non-slochastie limil1í = 2mD - Oand fiJ - P yields eorreetly
" p. p.

Pp.Pp. = - m e •
When an approximalion lo seeond order is sufficienl, Eq. (31) may be

given a simpler form i£ written in terms of another iunction l.jJ, related to w by

lhe resull be ing

w = - i1ntjJ ,

,
(- if>o - ~A ) tjJ + m'e'tjJ = O

p. e p.

(32)

(33 )

i.e.,lhe Klein-Gordon equalion. Note lhal only if eondition (12) is ful-
filled, does our system lead to the Klein-Gordon term Cl 'O t/J. Furthermore
sinee in wriling down Eq. (33) we have equaled al! hight;-~rdereoefficieOls
to zero, we may say that, from the point of view of this rheory, the Kiein-
Gordon equacion corresponds to a relativisdc descripdon of a Markov process
under local equilibrium.

We know from lhe non-re 1alivistie lheory' lhal E q. (31), i. e. , lhe
first integral o£ the fundamental equations, contain;; the energy and continui-
tyequations. Let us bciefly review sorne of these questions in the cela-
tivistic case. In [he Mackovian approximation, a separation of che real a~d
imaginary parts of Eq. (31) yields

2p q + /jo P"p.p. p'r
O, (34a)

.,. , ,
pp -qq -150 q =-me.p. p. p. p. p. p.

(34 b)

In the non-relativistic theory, the s[ochastic velocity v is related
to the density of particles by up == V\Jp; hence, we write in covariantform:

(35 )
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which subslituled ioto Eq. (34a) giveS:

Le., a continuity equation [oc (he four-current
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(36)

(37)

The scalar p may be interpreted as che density DE parrie les in [he [rarne in
which the volume element concerned is a[ resto The relation between p and
t.J; is readily established from che definitions given previously; in faer, we have
from Eqs. (25),(30),(32) and (35) lhal

'" -fj. 15q = - 1m ,~ = - ti"O (1m w) = -"O (In tjJ tjJ) = -"O In p ,
1" 1" 1" 21" 21"

s o [har

(38)

which is exacdy [he non-celativisric celarían; however, ir must be srcessed
[har, according [O Eq. (36), (he densiry associated to a conserved quantity
is 110[ p bU[ jo = pVo• Eq. (36) is [he usual conrinuity equation derived from
che Klein ...Gordon equarion; in faer, we have

. '] .j = iV [tjJ"O tjJ - tjJ "O tjJ - .!-tjJ A tjJ.
J.L J.L J.L me J.L (39)

as may be easily esrabl;shed. But chis continuity equation is alsoa rela-
tivistic version ol the diffusion equation: as can be seen by using
P = mc -q and Eq. (35) 'o rewri,e Eq. :36) as lollows:1" 1" 1"

"O (pc ) - v"O a p = O.
j.J. j.J. j.J. ¡.J. (4 O)

This result is a particular case ol the cootinuity equation lor a re Iativistic
Mukov process under local equilibrium, previously derived by Hakim3• Its
mathematical structure (in particular, its hyperbolic form) reflects its ap"
proximate character; in lact, ir appears convenient to consider ir a dcgener-
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ate asymptotic form of the relatlvistlc Fokker- Planck equation in ¡..L-space,
the approximation being valid unly under local equilibrium.

Note that the assumption of local equilibrium aIready introduces into
the the ory a time arrow, s ince T > O; this practica lIy comp ensates fo r the
loss of i rreversibility implicd by the use of a hyperbolic differential equation
instead of a parabolic equation, i. e., the non-relativistic diffusion equation.

The analysis of Eq. (34b), the introductiun of operators associated
to the dynamical variables, etc. may be performed in analogy with the non-
rclativistic case.
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RESUMEN

En este trabajo se desarrolla una formulación relativista aproxima-
da de la teoría estocástica de la mecánica cuántica para partículas sin es-
pín. Se emplea un métooo similar al utilizado para construir la teoría no
relativista 1 lo que implica trabajar en la aproximación de equilibrio local.
Se demuestra que esta restricción implica la validez de la teoría sólo para
intervalos de tiempo mayores que IJ/mc2•




