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ABSTRACT: In this paper we develop an approximate relativistic formulation
of the stochastic theory of quantum mechanics for spinless
particles. The method used parallels as much as possible the
non-relativistic derivation, which assumes local equilibrium.
This last condition reflects itself in that the theory developed
is valid only for times greater than-/mc?.

I. INTRODUCTION

The purpose of this paperis to formulate the stochastic theory of
quantum mechanics in relativistic form. Our interest in this problem arises
mainly in connection with the study of particles with spin; however, we shall
restrict ourselves, for the time being, to the spinless case, deferring to a
forthcoming paper the problem of spin.

Some efforts have been made to define and treat the relativistic
stochastic process; nevertheless, a study of the pertinent literature seems

*
Work supported in part by Comisién Nacional de Energia Nuclear, México.



134 de la Pena=Auerbach

to indicate that actually there does not exist such a thing as the relativistic
generalization of stochastic theory, but that there are a number of open possi-
bilities, at least in principle. Fortunately,we may simplify the present
problem by the following considerations. In the non-relativistic case,
Schrodinger’s equation was deduced from a stochastic theory in configuration
space’; we also know that the theory is approximate and can be considered
valid only for time intervals larger than a certain minimum time, since the
formulation presupposes local equilibrium (this point has been discussed at
length in other works?). Therefore, when formulating the relativistic theory
in space-time, we may be sure that the description will be valid only after
local equilibrium has been attained, i.e., after a certain minimum time 7 has
elapsed. This restriction to space-time enormously simplifies our task,
because the essentially non-relativistic interactions may be adequately
treated as Markovian processes if only time intervals greater than 7 are con-
sidered (see, e.g.,refs.3 and 4); moreover, it seems that, for the time
being, this equilibrium approximation is sufficient for our purpose, since it
leads directly to the usual quantum mechanical theories. In fact, the rela-
tivistic theory developed within this approximation will automatically satis-
fy the uncertainty relationships. The characteristic time 7 may be esti-
mated from simple arguments, the result being =as one may foresee =

T ~ 4 /mc?; this result is a measure ot the limit ot applicability of the re k-
tivistic-quantum equations under conditions of local equilibrium.

II. THE FUNDAMENTAL RELATIVISTIC EQUATIONS

We begin our treatment by assuming that there exists a four-velocity
¢, , which may be decomposed into the sum of a systematic (v”) and a
stochastic (u#) component, just as in the non-relativistic case ; hence, we

write :
C. =4 F @ s (1)
o [T

The four-velocities v and u_ have, by definition, different be-
haviour under time reversal (we here adhere to our previous convention and
write TQ Q for any quantity Q, T being the time reversal operator);
action of T on x, is defined as follows*:

*
Throughout this paper we use the summation convention over repeated greek index-
es, with . =1,2,3,4 and ™ (x, ’:"0)'
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s

X =8, % )

where g v is diagonal with elements (1,1, 1, =1). We also postulate that
the velocities transform under T as follows:

(2 "]
gl = - v
s = =il

uy v
(3)
u[J. = g,u,l’) v
and hence
v = rl_(c -z )
B e Suy v
(4)

u =1 + <)
e ?I—’-g,uvcv'

We seek differential operators representing a generalization of both
the relativistic, non-stochastic d/ds and the stochastic, non-relativistic 0,
with the help of which we may -onstruct % and 4 fromx . With this aim,
let us assume that we may find a parameter s, to be called in this paper the
(ensemble) proper time, such that x may be considered a function of it:
x (s),and that for a given s (which fmplies given initial conditions):

a) there exists an interval 8s long enough for a particle to reach a
local equilibrium state, but at the same time small enough for

5";; = xu(s +8s) -x'u(s)

to be small and to contain information about the random environment acting
on the particle;

b) there exists a distribution of 8x , with the help of which it is
possible to define for any function Q pertaining to the ensemble, the mean
value of Q, which we write as E{Q};

c) s is such that in the non-relativistic limit, s = c?, ¢ being the

velocity of light in vacuum*.
L .

For a more complete discussion about the definition and construction of s, we refer
the reader to the literature, especially to Ref. (3).
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Now let us consider a (well-behaved) function f, depending on s only

through X, i we then write

2
< g +5x ) - SIS Il L _oJ
g5 B Uy H dmifte 3} = £ B E‘xzs"fz WSxﬂSxy"‘... ;

In the non-relativistic theory, the process of calculating the corresponding
expression in the limit 8s — 0 is considered permissible in spite of the as-
sumption of local equilibrium®. This is no longer the case in the relativistic
theory, because as soon as we go to this limit, some internal inconsistencies
appear, as will be shown below. Hence we must content ourselves with an
approximate expression, obtained by taking the limit as 8s tends toa certain
minimum called s = c7_, which measures the proper time the ensemble needs
toattain local equilibrium. Let us suppose, in accordance with assumptions
a) and b) above, that s_is small enough for the derivatives of f to be consider- -

ed constant over the interval 8s ; then we write

lng lim e E{f(x+8x)-f(x)}—caf+ ,u.v ;;vf+"'

8s g
(5)
with
Ox
¢ =c¢ lim E ke . (6)
& §s 2 s s
0
ox Ox
D' =¢ lim B.J £ Y (7)
B 5s ' s 20s
0
and so on.

We have thus obtained a covariant generalization of the total (mean)

derivative operator, namely,

B_ca +DFWB#V+... (8)

This operator is such that
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C#EDxP’

N (9)
c =0%
7 n

or taking into account Eqs. (4),

w c
(10)
u, =B
with the systematic and stochastic operators defined by
[a¥] o
9 =1(0-0)=-5
2
1n)

B =L(0+0)=4
2

respectively. Of particular interest for us is the case in which D’:p is pro-
portional to the metric tensor:

’ —
D,u,v - Dg,uv

(12)
since, if this condition is satisfied, the second order term in Eq. (8) re-
duces to Da‘y_aﬁ‘L when written in terms of the tensor

_ .
D,uv =10 by = DS#V 13)

L) 3 has precisely the form we are looking for in view of our direct inter-
est in the Klein-Gordon theory. Note thac Eq. (12) is valid only under the
condition s # 0, as can be seen by considering the non-relativistic approxi-
mation, in whxch we may identify s with c¢; since furthermore D = DS

with D =#%/2m , we obtain from Eqs. (7) and (13):
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D= czD ~ _c2’7”
a2
and hence,
A
r~2D e | (14)
c? €

T represents the time needed by the system to reach a state of local equilibrium
and hence represents the minimum time interval for the theory to have any
significant value. Eq. (14) indicates also that the localization of a rela-
tivistic particle cannot be better than the Compton wavelength A _ = #/mc
associated to the particle. These results are in complete agreement with
the points of view usually adopted in connection with relativistic equations
in quantum mechanics®, although the arguments leading to them are quite
different. From Eq. (14) we conclude, in particular, that the theory cannot
be applied to electrons for time intervals Afr £ £~ 10"2%sec and that for
nucleons, this limit reduces to 10" ?3sec. The same estimate has been
given before from similar, but non-relativistic considerations?.

In what follows we shall use the value of D'uv given by Eq. (13) and
thus write

19=c#aﬁ+paﬂa#+... . (15)

It appears convenient to write the equations in terms of four-momenta in-
stead of four-velocities; hence, if m is the particle’s rest mass, we define
the systematic and stochastic four-momenta p# and q, as

p'u = mv‘u
(16)
Ty = 0%,
so that according to Eq. (11),
= + e e »
mlgc p#‘a#

= P + ..
ml) q,9, % mDa#aﬂ _ (17)
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where we have used the property! D = D. Now let f/ represent the totalfour-
force acting on the particle. In the general case’, f may be decomposed
into the sum of two parts having different behaviour under f", namely,

(+) (=)
W=y TL o
(18a)
~(t) (1)
f =&k -

In order to establish the relationship between forces and accelerations, we
introduce two postulates corresponding to those used in the non-relativistic
theory. First, let us assume that the total force fp is related to the total ac-
celeration Dc# as follows:

I = miOcM , (19)

or, more explicitly,
(+)+(-)—D +0 g +0 4 +0 20a
ﬂ; ﬂt =Rl TR Oy T By S By (20a)

The T=transform of this equation is

(+) (7
f, ~f, =8.2+84,-84-82 . (20b)
This system of equations may be written in the simpler form:
(+)
+ =%
ELR# ELq# &x
(21)

Dg,+8p, =1

We now introduce a second dynamical postulate, which establishes that the
total force f# differs from the external four-force fo'u by a term of stochastic
origin:
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[y =l t @+ 8q, . 22)

Using the same arguments as in the non-relativistic case, we can see that the
relation expressed by Eq. (22) is the most general one compatible with the
theory and having the correct non-stochastic limit. As in the non-relativistic

case, A is a free parameter.
From Eq. (22) and its T=transform we readily obtain:

(+)

(+)
Ly = Sl ra+n B g,

(=) ( 23)
= =)
A
Introducing these results into Eqs. (21) we arrive at the fundamental
equations of the theory:
(+)
lgcp#- Klgsq# =,
- (24)
lgcq,u * B8, =y

There exists a simple alternative form of writing Eqs. (24) in the particular

case of interest for quantum mechanics®, i.e., A = 1. To show this, let us

introduce the following complex quantities
Ta# = p'u - zq,u’

) . (=)
7 ' 25)

— - 1
M op on

and write Eqs. (24) in terms of them and their complex conjugates (c.c.):
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A+3 A=1 g*R*_ A =1 (p* o _ 9
z qu#+ y DQE-T(D‘IFL*Q,E)—&

AF3 9 Rt s A=1 g p _A=1(0*P + 9 P*)= ;7 .
4 9 u q# M

These equations are considerably simplified when A assumes the quantum-me-
chanical value A =1 :

q
@q@u =/,
(26)
* ok q*
Dq Tﬁ =f# :

In what follows we shall restrict ourselves to this particular case. Since
(26) is a set of c.c. equations, we shall use only one of them, say the first
one, and consider it as the fundamental equation.

Let us now go over to the particular case of greatest interest, namely,
when fo,u corresponds to an external electromagnetic field. According to
previous results’ the corresponding forces must be written as:

(+)

= - 0DA+ % poA
foﬂ- mc .Iu'va c € K me pv v
( 27)
=) e e e
= - + .
fo,u. *”TCFuqu ?‘&sA,u ’?Eqvav“l,u.

Here F = apAv - 9,A stands for the electromagnetic tensor and the

Lorentz gauge @ A = 0 is imployed; Eqs. (27) represent the covariant form
of the three-forces previously obtained and have been derived by an analo-
gous procedure. Introducing them into the first one of Eqs. (26), we arrive

at

e -
Dq(fa# + ?A“) = QB#AV ) (28)

€
mc
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Il . THE KLEIN=GORDON AND CONTINUITY EQUATIONS.

The integration of Eq. (28) can be performed by translating into co=
variant language the arguments used in previous works’. We shall therefore
omit most of the intermediate steps in the derivation of the corresponding
“wave equation”.

When D and all higher order coefficients are constant, the commutator
of Dq and 0, is

[3,, mB,]=(3,P)73,. 29)

Hence, if we introduce a complex, dimensionless function w such that
B #EA

K ¢

=P w, (30)

we obtain with the help of Eq. (29) the following mathematical identity:
+e4)= 2 +1
10‘!(19# : A“) = F’v 3,4, mapw,

where

3 2
W=mﬁﬂw-iawaw+e A A .
q 7 v v 221:;;
c

Upon comparison with Eq. (28), we see that necessarily 'B#W = (0, and hence
W is a constant, so that

] e2 2 2
m) w=-4"'0 wod w+_ A A ==m'c (31)
q T R

is a first integral of Eq. (28). The value of the integration constant has
been fixed by demanding that Eq. (31) give the correct result in the non-
stochastic limit. This can be seen from the expansion of Eq. (31) to
second order:
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PR -i% 2 P =-m:c2
[ [T

which in the non-stochastic limit# = 2mD = 0 and Ta# o yields correctly
Pﬂpﬁt = =mic’.

When an approximation to second order is sufficient, Eq. (31) may be
given a simpler form if written in terms of another function Y, related to w by

w==ilnf, (32)

the result being
(-i53 = %A )2.,b+m2c2 =0 (33)
7

i.e., the Klein-Gordon equation. Note that only if condition (12) is ful-
filled, does our system lead to the Klein-Gordon term 9 9 . Furthermore
since in writing down Eq. (33) we have equated all higher=order coefficients
to zero, we may say that, from the point of view of this theory, the Kiein-
Gordon equation corresponds to a relativistic description of a Markov process
under local equilibrium.

We know from the non-relativistic theory! that Eq. (31), i.e., the
first integral of the fundamental equations, contains the energy and continui~
ty equations. Let us briefly review some of these questions in the rela=-
tivistic case. In the Markovian approximation, a separation of the real and
imaginary parts of Eq. (31) yields

20,9, + 53,8, = 0, (34a)
L L3
b0, ~9,4,-%3,9,==mc". (34b)

In the non-relativistic theory, the stochastic velocity v is related
to the density of particles by up = DVp ; hence, we write in covariantform:

.
g, 0= ?a“p (35)
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which substituted into Eq. (34a) gives:

9, (pp,) =0, (36)

l.e., a continuity equation for the four-current

]:u =py, . (37)

The scalar p may be interpreted as the density of particles in the frame in
which the volume element concerned is at rest. The relation between o and
W is readily established from the definitions given previously; in fact, we have
from Eqs. (25),(30),(32) and (35) that

g, ==mP, = - %3, (Umw) = ;Eaﬂ(zn YY) = ;5_3# Inp,

so that

P =‘1[’*¢” (38)

which is exactly the non-relativistic relation; however, it must be stressed
that, according to Eq. (36), the density associated to a conserved quantity
is not p but Jo = Pv,+ Eq. (36) is the usual continuity equation derived from
the Klein-Gordon equation; in fact, we have

P L = &

fu = [y, ¢ =y ] E‘/’ A, (39)
as may be easily established. But this continuity equation is alsoa rela-
tivistic version of the diffusion equation) as can be seen by using

pp =mc, =i, and Eq. (35) to rewrite Eq. /36) as follows:

B#(pc“) -DB“B#,O = 0. (40)

This result is a particular case of the continuity equation for a relativistic
Markov process under local equilibrium, previous ly derived by Hakim®. Its
mathematical structure (in particular, its hyperbolic form) reflects its ap-
proximate character; in fact, it appears convenient to consider it a degener-
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ate asymptotic form of the relativistic Fokker- Planck equation in y -space,
the approximation being valid only under local equilibrium.

Note that the assumption of local equilibrium already introduces into
the theory a time arrow, since 7 > 0; this practically compensates for the
loss of irreversibility implied by the use of a hyperbolic differential equation
instead of a parabolic equation, i.e., the non-relativistic diffusion equation.

The analysis of Eq. (34b), the introduction of operators associated
to the dynamical variables, etc. may be performed in analogy with the non-
relativistic case.
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RESUMEN

En este trabajo se desarrolla una formulacién relativista aproxima-
da de la teoria estocastica de la mecanica cudntica para particulas sin es-
pin. Se emplea un método similar al utilizado para construir la teoria no
relativista, lo que implica trabajar en la aproximacién de equilibrio local.

Se demuestra gue esta restriccion implica la validez de la t=oria sélo para
intervalos de tiempo mayores que #/mc?.





