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ABSTRACT: In [he ptesent papee we study the time dependent behaviour ~ a

classical model foe two-ehannel reactions involving isobaric

analogue' states. Ir is firse shown chat the poles oC the S.matrix

for (he classical system are excluded from the upper haH oC che

first Riemann sheet ol the wave- number planeo The influence

oE che S-matrix poles in a time-dependent description oE [he

problem is invescigated. It is found chat the- poles in che firse
Riemann sheet give che usual exponentially decaying response

in time (resonance effect) t plus a -diffraction in time" eUece,
consisting oC cerros [hat also go to zero as t - 00; but as an in .•
verse power of t. On the other hand, the poles in the second

Riemann sheet give cise only to diffraction in time effects. h
is made plausible, although it is not proved, that in the corre-

sponding 'luanwm.mechanical problem, only the poles in the
lower haH of the first sheet, that are in the fourth quadrant
above the bisector at 771/4. will beha\-'e as resonance states •

•Work supported by the Comisión Nacional de Energía Nuclear (México).
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l. INTRODUCTION

~1ello and .\foshinsky

In a recem papeel [he authors discussed a classical model foc re-
actions involving isobarÍc analogue seaees. This model had a11 che peoper-
des associated with [hese reactions and it allowed us to underscand in a
simple fashion a number of {eatures of che physical problem, among them (he
Robson enhancement factor2 due to che isobaric analogue seaee.

\Ve obtained in reference 1 che S-matcix of t~ nuclear reaction problem.
In this papet we shall diseuss first the poles of the S-maltix showing ,hat
chey are exeluded {roro che upper half of che [irse Riemann sheet of (he wave-
number plaue. We inrend chen to understand che physical significance of che
poles of che S-matrix on (hose paces of [he Rieroann surface where (hey are
alIowed. This we achieve by diseussing the time"dependent behaviour of
,he model whieh indieates that dnly the poles on the lower pan of ,he first
sheet gives states deeaying with time. At the eoneluJing seetion of this
papee we shaHdiseuss the signifieanee of this resule for the nuclear re.
aedon peoblem.

~'e start our diseussion with the presentation of (he elassical model,
referring the reader to the previous paperl for aH details.

The mndel (see Fig.1) eonsists of a slting eapable of vibtating in
any direction perpendicular to its length. The string is embedded in a
tubbet band and ,he dispIaeements petpendiculat and parallel 'o the rubbet
band ate denoted by

u (x, t),
1

x being the length along the string

"2(x,I), (1 .1 )

O~x<oo. (1.2 )

The string terminates at x ::; Oon a mass connected t'o two springs perpen"
dicular-to each other, the direedon ol the Hrst of which forms nn an81e a
with u (x, t). The dispI..:'\cemems oí the mass along the directions of the

1
s prings are denmed by

w (1) and w (1) •
1 2

The equations of motion of our model are

(1.3 )
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Fig. la Classical model foc (he externa1 region oE (he two-ehannel nuclear problem,

when che two ftagments are separated by a variable distance". The model

consists oE a seriog embedded in a mass less elasde rubber band in the plane

oC the figure and connected tO a mass M at x = O. The suing can vibrate in

both directions perpendicular to its length.

Al
-2-

/

w,l t)

",

Fig. lb Classical model (oc the internal region oE the two ...ehannel nuclear problem.
Spring attachments oC (he mass M at (he end 01 the string are shown, as well

as a cross section of [he rubber bando
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where v (x, t), v (x, t) are che displacements oí che s[rin~ along che di-I ,

recrions of rhe springs and rhey are relared ro u (x, I), u (x, 1) by
I 2

V,(X,I)

=0
U,(x,I)

0=

cos a sin a

• (1.4 c)

V
2
(X,I) u

2
(x,1) sin a -cos a

In (1.4) we indicare by p and 7 rhe density and rension of rhe srring, by M
rhe mass of rhe parricle, by A, A and A rhe spring constanes of rhe rubber

I ,
band and ofthe rwosprings towhich che mass is connected. As che dis-
placement of che mass and che string at x = O muse be ideotieaI we ha ve
furthermore [har

W
2
(1) = v, (O, 1) (1.4 d)

The R-marrix for rhe problem (1.4) defined by

u,
u,

x = O

Ou /ox,

x=o

• i c.Jl
, uc(x,t)=uc(x)~ , c=1,2

(1.5 a)

was shown [O have che form1

where D is a diagonal matrix

R(w')=ODO, (1.5b)
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d (",') O
1

D=
O d (",'),

with
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(l.5 e)

We showed in reference 1 ,ha, ,he problem could be llenera lized by
connecting the mass M to a system oí masses interconnected with springs.
This generalizadon allowed us to discuss reactions involving isobaric ana"
logue states in which we still have only one T>"state but several T< ..states.
The R-manix in rhis case re,aíns ,he form (1.5) wírh ,he same d (",') , bu'
wi,h d (",') taking ,he form 1,

,
d (w ) = !.
, ¡J.

(1.5 d)

where E eorresponds 'o ,he poles and 'Y 2'0 ,he redueed wid,hs for ,he R-

f
. ¡J. f ¡J.

unct100 o the T< "states.
The S-matrix for ,he problem (denored by S) was also diseussed in

referenee 1 and i, ís re1a,ed 'o ,he R-matrix in ,he usual fashion by

• -1
S = (1 - í RK) (1 + í RK) ,

where K is the 2 x 2 mateix oí the momenta in the two channe 15

(1.6)

k O
1

K = (1.7a)

O k,
with

e
k = úJ
1

(1.7b, e)
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The matrix (1.6) is no< unitary bUI il is easily seen Ihal

k A -1
S=K'SK

Mello and ~oshinsky

(1.8)

is unitary, and, in face S is defined as rhe coefficient oE th~ outgoing wave
when both che incoming and outgoing waves are normalized to unie flux in [he
corresponding quantum mechanical problem.

Before proceeding lo make use of Ihe S-matrix (1.6) lo diseuss Ihe
time-dependent behaviour oí [he scattering problem, we first show char [he
poles of the S-matrix are excluded from the upper par< of the first sheet of
[he wave number planeo

11. DISTRIBUTION OF POLES OF THE S-MATRIX

From the expression (1.6) for the S-matrix we see that its poles ale
given by the equation

- 1 .
det 11 iK + R il = O • (2.1 )

We shall investigate the distribution of these poles in the k. eomplex plane
rather than in the frequeney plane '" = k e (e = Ir/p). From (1.7b,e) we

1
see [har

(2.2 )

and, as the determinant (2.1) is alsoa funetion of k ,the eOjPlex \ plane
of Fig. 2 has two .heets eonneeted by a cut from - 3'A/r to A/r. The
first sheet is eharaeterized by the faet that for real k >/A/r, k defined

1 2
by (2.2) is pos itive,

As ",2 appears in our R-matrix (see Eq. (1.5» we shall in this
section use for ir [he notation

(2.3 )

We proceed now [O show [har che S-matrÍx has no poles in [he upper
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par' of ,he firs, shee, of ,he Riemann surface of ,he k -planeJ•
1

From (2.2,2.3) we see ,ha,

2k k =2k k = (Ey/e') ,
2% 2 Y 1x 1 y (2.4)
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where k ,E are ,he real and k ,E ,he imaginary parrs of k ,E,(e=1,2).ex x ey y e
The real and imaginary parts of k cannot then chan,Re si,Rn within each,
quadrant, and in the upper haH of the first sheet of the k Riemann surface,

1
,he y ha ve ,he s igns ind ica ,ed in F ig. 2 .

k.. < o

-~
T

k,. >0 k2X >0

.¡¡-
T

k Iplon.

Fig.2 The eomplex wave number planeo

We shall now assume ,ha, equarion (2.1) has a roo, in ,he upper half
of the first sheet of the k plane, outside the if"'aginary axis, and show that
this leads roa contradictlon. If rhe roor exists, rhen for that value of k the

1set of linear equations

-1
(iK +R)x=O (2.5)

has a solution where X is, in our problem, a twodimensional vector. This
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implies ,hat

Mello and Moshinsky

(-ik +k)
ex cy (2.6)

From (2.4) and (2.6) we conclude that

T 11211-22E 1m (x t Rx) = - 2 _ L x k k k
y P e e e ex cy

(2.7)

where the right hand s¡de is clearly negative in ,he upper half of ,he
exc lud íog (he imaginary ax is.

lf we ha ve though foc che R mauix che general Wigner form"

k plane,
1

Ree• (E) = L
IJ.

(2.8)

(hen

E 1m (x t Rx) = E 1m Ly y = S
I~'Y x l' E2e cp. e y

(E - E )2 + E 2
IJ. x Y

(2.9)
and so [he left side oí (2.7) is pOSlt1ve. Thus we ha ve proved Que theorem
thar ,here are no poles of S (k ) in the upper par< of ,he firs, shee, of ,he k

[ 1
complex plane, except possibly foc (he imaginary axis.

The cheorem as it stands is a150 true foc che nuclear case. For (he
mechanical rnodel (he theorem can be roade stronger by usin~ a causa lit y
argument to eliminare poles in che upper imaginary axis a150. If such poles
k = i K with K> O real exist, (hen che problem admits a solution oí (he eype
1

exp [K(cl-x)] (2.10)

which becomcs OQ when t - OC! , chus violatiog [he possibility oí a causal de.
scription of the type to be discussed in the next section.
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III. TlME-DEPENDENT BEIIAVIOUR OF TIIE PROBLDI
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As we indicated in the lntroduction we intend to analyzc the time-de-
pendent behaviour of our model so as to get sorne insight on the physical
significance of the poles of the S-matrix in the different regions of the k -

1
planeo For this purpo..••e it suffices co discuss the time-dependent behaviow
when we assume that for 1 ~ Owe have onl}' incoming waves on an infinite
scring, and that ac 1 = Owe connect, at x ;:: O, the resonating system which
has a finite number of degrees of freedom. Denoting, as in reference 1, by
uee' (x, 1) che displaccmcnt of the string in the e (= 1,2) direction when the
incoming vibration has the direction e'(= 1,2), we ha ve

ucc'(x,l~ O)=exp[-ik 'x] exp[-iwl]S '.c ce

The inhial conditions at 1 = O for the e lassica 1 problem described by
che equations of motion (1.4) are then

u ,( x, 1 = O) = ex p [- ik • x] S •ce c ce (3.2a)

(
ouee,) __ iw exp [- ik • x] S • (3.2b)
dI 1= O - e ce

(dlOwel
c
')wee.(t=O)=O, =0, w .(t)=v ,(0,1),cc ce

1 = o

and the

v .(x,I=O),(ov • ¡al) ,
ee ce t = O

be ing re laced co che

u • (x, 1 = O), (ou ,(x,I)¡aI)ce ce
t = O
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01 (3.2a,b) by the ttanslotmation (1.4e).
To solve che classical problem with che initial conditions (3.2), we

firsr cake che Lap1ace transform oí [he equations oC motion (1.4). Defining

_' 00 00

u .(x,s)=! IJ .(x,I),-"dl,W ,(s)=! w .(t),-stdl,ce ce ce ceO O
(3.3a',b')

and similarly foc ~c' (x, s), [he Laplace transformed equacions become

d2;; ,
ce

dx2
2-

- K u ,e ee

• ik I x
= - e (s - iw), e O.

r ee
(3.3 a)

with

K = s K2=[(~r+~r = [KI
2
+ ~r ' e = F (3.'"I e

and

(Ms 2+ A. ) (" ')ro , = T -=-=-- (3.3 e)
e ee Ox

O

Vee• (O, s) = w • (s) •ee (3.3 d)

Froro che lase two equations we have chen, foc che D.matrix (1.5 e),

v ,
le

v ,2e
.x = o

(r/M)
oí) ,

° le

s2 + (A. /M)
d;-

1

'O V;c'
(3.4)

° (r/M)

s 2 + (A./ M)
--ax-

,,=0

so th,,, Itom (l.5) we can wtite equations (3.3) in the matrix lorm
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where

The equation (3.5 a) admits the particulat solution

[

• ik x Je I O
1
. - ik "s + tW O ~ 2

167

. (3.5a)

(3.5b)

(3.5c.d)

(3.6)

Furthermore, the most general solution oí the homoJteneous part oí the
equation (3.Sa), which would be bounded when x - 00 ,could be written in
the form

• " xe I O
1 S

:; + iw • " x
O e 2

where S is a, so far, undetermined matrix. Writing then

(3.7)

u = 1
s + iw

fe. ik, x • i~ xJ + [e' ", x .: xJ S

loe2 O e2
(3.8)

l1nd inuoducing it in (3.5b), we obtain

- - -1
S = - [1 + R(_s2) K] [1 +iR(_s2) K], (3.9)
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wi[h K, K given by (3.5d) and (1.7) [espec[ively.
The exp[ession (3.9) fo[ S holds no[ only fo[ [he problem (l.4), bu[

also for [he more general case when d (w) has [he form (1.5d). in which case
R(_s2) is again given by (1.5b), bu[ ~irh D of [ne general form (1.5c,d).

The time-dependent matrix

U (",1) = 11 ucc' (",1) 11 ,

is chen given by [he integral

U(•.,I)=_l_J U( •. ,s)es'ds
211; IJ

I ,¡-¡::-,

B

(3.10)

(3.11 )

-I.JT
• plone

Fig.3 The complex .s.plane and [he Bromwich integrarion conteur.
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over che Bromw~ch concour in che s plane indicated in E.ig. 3. That contour
musr be ro rhe tighr 01 aH singu1ariries..EI rhe lunction U(x, 5)<-

As K, 01 (3.3b) appears in rhe S 01 (3.8), we have rhar U(x, 5) has

branch points at

5 = t icr- = t if '
and so we musc introduce a cuc betwcen chem, as marked in Fig. 3.
we lEve che pole s = - iúJ also marked in che figure, as well as the
the S matrix given by che equacion

- - 1
derlK +R(-5')I=o.

(3.12 )

Besides,
poles 01

(3.13 )

e learly. equarion (3.13) becomes idenrica Iro (2.1) il we pur 5 = - iw, and
as úJ = ck ,we see chat, excepc for a change of scale, che planes k and.s

r 7T r
can be cransformed into each other if we rmace the former by - - . We saw

2
chough chat equation (2.1) has no roots in [he upper k plane, which impliesr
,har (3.13) ~s no rooes in rhe righr hand side 01 rhe 5 p1ane and so rhere are
no poles of U(x, s) there. The Bromwich contour can then be changed to
the one bordering [he imaginar}' axis, but by¡:nssing the cut and the pole
s = - iw, as shown also in Fig. 3 .

We wish now 10 evaluare explicirly U(x,/) 01 (3.11). Todo rhis ir
proves convenient to introduce a new complex variable defined bys

which implies rhar

k
S -, = (TIA) 2 (K, - K, ) •

so that we get

(3.14a)

(3 .14b)

K =,
k

~ (AIT) 2( S + el) ,
2

K =r

k
~ (AIT) 2 (S _ e')
2

(3.15a,b)
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The [WQ sheets DE [he Riemann surface oI s are chen mapped 00 a
single plane ~,with che cut corresponding to che cuele aE radius unity in the
~ plane. The first shee, of the plane is mapp ed on the OUts ide, while the
second is mapped on ,he inside QÍ the unit cirele in the ~ planeo

From (3.15) we note that S becomes now a rational function of ~ •
Furrhermore we ha ve thar

where

ds
.$ + iúJ

(1 + ~ 2) d~=--------r(~-z)(~ + z"l)
(3 .16a)

Far positive real

(3 .16b)

w
c

% is negative imaginary with I z I > l.
The matrix U(x, t) of (3.11) takes then the form

(1 + ~ 2)

~(~-Z)(~+z"1
+ 1 J
2m B

u (x, t)
= [, 'i\x O J

"',k :JI:
2

O ,

[
""IX O]

" )( xO , 2

-iwt,

(3.17)

where [he firse rerm on (he right hand side is obtained by direc[ inte~ation
when inrroducing (3.8) into (3.U). The Bromwich conrour is marked ir
Fig.4 and K ,K are given in terms of ~ by (3.15). Ir 15 clear thar if1 2
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el < ", we could clase [he Bromwich contour from [he right and ge[ a nuH
value far [he integral. We proceed now [O evaluate the integral when el > x,
in which case we muse c lose from [he left.

-,-
/'

/
I
/
\

\ e plan.
\

'"
"- -...

I

B

Fig.4 The complex '''plane and the Bromwich integradon contour.

We note [hat we could expand

U.ISa)

where

(3.ISb)
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and ~. are [he poles of ch(, ('xpressiotl on [he left hand side which ¡neludeI

(3.19)

plus poles of [he mateix S(~).

The !a"e[ poles are ,he roo[s of rhe equa[ion (3.13), and are aH 'o [he
lefe of [he Bromwich contour in Fig. 4.

\l/e define no\\' [he basic time dependent solutions

where

u (x, 1, ~.)" _1_J
e , 217; B

e
(3.20a)

1 ~ 1
7] ~ (iI./T) (el-x), 7] ~ (iI./T) (e' I'-x')1 ,

J<

~.~C~.~ [CI-xJ2~.e~'¡T/p,
l' I 2' c/+x I

(3.20b,
c,d,e)

The Bromwich contour B
1

15 [he contour B of Fig. 4, while 8
2

IS B multi-
plied by [he seale fae[or

J<
[(el-x)/(CI+X)] 2

From (3.17) and (3.18), and inteoducing a[ ,he appropria,e poin< ,he
change of variable

( ~ [el-x] \,
el + x

we irnmediately see that [he componems ucc' (x, t) of U(x, t) can be Minen
in [he form

uee.(x,/)~ ~aeie' u (x,I,~.)+exp[-i(k x+ W/)]S ,
e t e ce (3.21 )
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It remains therefore only to evaluate explicitly the functions (3.20). For this
purpose we note that for S. f:. O, the Bromwich contours B can be deformed
into twosmallcircles, onetdenoted by e of radius smaller ~han Is .1, sur'"e.
rounding the essential sinRularity at ~ = O, and the other surrounding the pole
S .. The latter can be t 'wued irnmediate ly and so we can write lor
el

U (x, t, S,) the expressiolle •

• 1

u(x,I,~.)=exp[7](~ .-~ .)/2]e l e Ct el

+ (3.22 )

To eva!ua,e the last integral in (3.22), we consider ,he following ex.

pansions6

(3.23a)

• 1
= - ~ci

. I

= - ~ .el ~
m=O (¡~} (3.23b)

where J (7] ) are Besse! func,ions of 7] • Taking the produet of ,he two
n e e

functions (3.23) and carrying out the integration over the circle e, which we
may make as small as we wish, we see that only terms containing S-l sur'"
vive6, so we get

u (x, 1, ~.) = ex p [7] (~- ~ - 1) /2] -e' e
(3.24 )

\l'c have chen a closed express ion for the basic functions albeit in the form
ofan inf¡nice series. \Ve can express ti (x, t, {,.) in terms of knowne I

funetions if we recall the definition of the Lomel functions of two variables 7

~
'" m(- 1)

m = O
(3.25)
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The basic funccions can chen be wcirteo as

(3.26a)

The expression (3.26) gives rhe basic function for aH 'i '"O. For'i = O we see irnrnediarely frorn (3.23) that ,he integral in (3.20) reduces ro

(3.26b)

lf we introduce (3.26) into (3.21), we ger ,he general time-dependenr
soludon oE our mechanical problem. It now remains to understand chis so-
lurion from a more physical point oí view.

Ler us consider separatcly che Cerros in che surnmation (3.21),
starting with che terro associated w¡eh tQ£ pole ~i::; z. The residue DE (he
expressio.n (3.18) a" = % is ,hen jusr S(%), which is rhe negative of rhe
ordinary S -rnatrix (1.6). The contriburion of rhis pole 'o rhe rnatrix U (x, t)
is then given by

O v(x,I,%) OS 1
S+

i(k
2
x .wl)

• O V (x,I,%)
2

O

i(k x -"')
I•

(3.27)
where, frorn (3.24),
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V, ('-,1, z)
i [-z (CI_.-)1J_n] [(I\/T)1(C'I,_.-,)1]

n = 1 \~t+ X n
(3.28a,b)

Thc first term in (3.27) is (hen just the stationary outgoing wave with the ap-
propriate matrix amplitude. The seeond term, is easily seeo from (3.28) to
vanish for t -o IX'>, as Iz I > 1. lt therefore represents the transient effeet
that eonnectS the initial condition at t = O, in which we have no outgoing
wave,(in faet, we have no outgoing wave undl t > ~), to the stationarystate

C

in whieh the outgoing wave is given by rhe firsr term in (3.27). These
transient effects were given the name oí diffraetion in time and are closely
c onneeted with the operation of the time-energy uncerra inty re latioo ~

Thc situadon for the orher poles can be discussed in a similar fashion.
Let us consider firs< al! poles for which I~,I> l. Then ,he contribution of,
these poles tO the summation (3.21) can be put in the íorm

j(k .X -(il.t)
l' ,

V,(.-,I, ~i)• O O

A, + A,. ,
i(k , -",,1)

,
" ' ~i)O • O v

2
(x, t,

where A i is given by (3.18)
replaced by ~i' and

(3.29)

and v (.-, 1, ~,)have the form (3.28a,b) with z" , '

úJ (') 1 -1k , ; _i ;!- ~ (~,-~,)
1, e 2 T r ,

The £irst term in (3.29) represents decaying states in time, as w. has a,
negative imaginar)' part, in view oí rhe faet that ~,. with 1 ~i I > I is on the
left-hand side of the S pIane outside of the unit cirele. Agatn, because
;s.1 > 1, the terms v (x, t, S,) tend to zera when t -o IX'>, and they represent

, '"di£fraetion in time effects in these deeaying states.
For the poles 1~i 1< 1, there is an expansion similar ro (3.29), but

the vc(x, t, Si) do not tend to zero wheo t -o IX'> precise Ir beca use ISi I < \ .
\'(/e can rhough expand rhe plane waves in the first parr of (3.29), in terms
oí Bessel functions using (3.30) and (3.23a). We then get an expansion in
terms oí Sr~1 instead of Si ' and as 1S; 1 \ > 1, this expansion will go to zero



176 .\fello and .\1oshinsky

foe poles within rhe unir circ le, and chis ¡neludes
have jusI che behaviour associated with diffraction- in-

ThusWlll'fl t ....•<"o,J •

r. = -z.¡ and O we'::>, . ,

time effects.

As the leh hand s¡de of ,he {,-plane ou,side of the uni, ci,cle Corte.
sponds to rhe lower pare oE rhe Hrse sheet oí rhe Riemann surface for che
k - oc w-plane, wc conclude rhar only (he poles oí che S -matrix in rhe Iower1

paer oí chis firse sheet give cise to rhe s[ates decaying in time, chat we usual-
Iy associate with rhe resonances in nuclear reactions.

V. CO:-¡CLUSI0NS

For the classical m(xiel described in [he lntroduction, We ha ve £irse
shown tha, the poles of rheS.matrix are excluded from ,he upper half of the
{irse Rieroann sheet oí rhe wave number k and rhey have no reste ictions in

1
rhe seconr:l sheet. The influence oí [hese poles in a time-dependent de-
scription of rhe problem has been invescigaced. It was found chac che poles
in che firsc Riemann sheec give che usual exponemially decaying response in
cime (resonancc effecc), plus a diffraccion in time effecc, consisting of terros
chac also go co zero as t - 00, buc as an in verse power ot t. On che ocher
hand, che poles in che second Riemann sheec give rise onlr Codiffraccion in
time effeccs.

The extension of che previous analysis Co che quancum mechanical
ca.se with twochanneIs is not obvious. For chis purpose one mtghc be
guided by comparing the classÍcal and quancum results for che one-channel
case. In chis case we have only one Riemann surface for che variable k.
In the classical model every pole in che alJowed lower region concributes a
Cerm that decays exponemialIy with time. In the quantum mechanical cases
che onlr poles chat have a resonance behaviour are [hose locaced in che 4th
quadrant aboye the bisector at 77T/4. We could condude by analogy, thar
in the (Wo-channel case d iscussed here, when we go to che quantum me-
chanÍcal picture, (i.e., E = k2/2 tather than w = ck) only the poles in the
lowet half of the first sheet lhat are in the foucth quadtant and aboye the bi-
sector at 7iT/4, will behave as resonance states.
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RESUMEN

En el presente artículo se estudia e 1 comportamiento temporal de un
modelo clásico que simula reacciones con dos canales, en las que intervie-
nen estados isobáricos análogos. Primero que nada se muestra que los po-
los de la matriz S para el sistema clásico están excluidos del semiplano su-
perior de la primera hoja de Riemann del número de onda. Ense~uida se es-
tudia la influencia de los polos de S en una Jescrireión temporal del sistema.
Se encuentra que los polos en la primera hoja de Riemann dan lugar a un
transitorio que decae exponencialmente con el tiempo (que es la respuesta
usual de una resonancia), más un efecto de "difracción en e l tiempo", que
consiste de términos que también tienden a cero cuando t -o 00, pero como
una potencia inversa de t. Por otro lado, los polos en la segunda hoja de
Riem.'lnn sólo dan lugar a efectos de difracción en el tiempo. No se demues"
tra, pero se hace plausible, que en el correspondiente problema cuántico só-
lo los polos que están en el cuarto cuadrante de la primera hoja y arriba de
la bisectriz a 717/4, se comportan como estados resonantes.




