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TIME DEPENDENT BEHAVIOUR OF A CLASSICAL MODEL FOR
REACTIONS INVOLVING ISOBARIC ANALOGUE STATES"
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ABSTRACT: In the present paper we study the time dependent behaviour of a
classical model for two-channel reactions involving isobaric
analogue states. It is first shown that the poles of the S-matrix
for the classical system are excluded from the upper half of the
first Riemann sheet of the wave-number plane. The influence
of the S-matrix poles in a time-dependent description of the
problem is investigated., It is found that the poles in the first
Riemann sheet give the usual exponentially decaying response
in time (resonance effect), plus a “diffraction in time” effect,
consisting of terms that also go to zero as t ~ oo, but as an in=
verse power of t. On the other hand, the poles in the second
Riemann sheet give rise only to diffraction in time effects. It
is made plausible, although it is not proved, that in the corre-
sponding quantum-mechanical problem, only the poles in the
lower half of the first sheet, that are in the fourth quadrant

above the bisector at 77/4, will behave as resonance states.

*Work supported by the Comisién Nacional de Energia Nuclear (México).
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I. INTRODUCTION

In a recent paper! the authors discussed a classical model for re-
actions involving isobaric analogue states. This model had all the proper-
ties associated with these reactions and it allowed us to understand in a
simple fashion a number of features of the physical problem, among them the
Robson enhancement factor? due to the isobaric analogue state.

We obtained in reference 1 the S-matrix of the nuclear reaction problem.
In this paper we shall discuss first the poles of the §-matrix showing that
they are excluded from the upper half of the first Riemann sheet of the wave-
number plane. We intend then to understand the physical significance of the
poles of the S-matrix on those parts of the Riemann surface where they are
allowed. This we achieve by discussing the time-de pendent behaviour of
the model which indicates that only the poles on the lower part of the first
sheet gives states decaying with time. At the concluding section of this
paper we shall discuss the significance of this result for the nuclear re-
action problem.

We start our discussion with the presentation of the classical model,
referring the reader to the previous paper! for all details.

The model (see Fig. 1) consists of a string capable of vibrating in
any direction perpendicular to its length. The string is embedded in a
rubber band and the displacements perpendicular and parallel to the rubber
band are denoted by

4 (%, 1), u (x,1£), (1.1)
x being the length along the string

0€ x4 . (1.2)

The string terminates at x = 0 on a mass connected to two springs perpene
dicular to each other, the direction of the first of which forms an angle a
with u (x,#). The displacements of the mass along the directions of the
springs are denoted by

w, (¢) and wz(t) - 1.3)

The equations of motion of our model are
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Fig. la Classical model for the external region of the two=channel nuclear problem,
when the two fragments are separated by a variable distance x . The model
consists of a string embedded in a massless elastic rubber band in the plane
of the figure and connected to a mass M at x = 0. The string can vibrate in
both directions perpendicular to its length.

w ()

uzl )]

Fig. 1b Classical model for the internal region of the two-channel nuclear problem.
Spring attachments of the mass M at the end of the string are shown, as well
as a cross section of the rubber band.
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(1.4b)

where vl(x, £); vz(x, t) are the displacements of the string along the di-
rections of the springs and they are related to " (%5 Dy uz(x, t) by

Ui(x, t) ul(x, t) cos a sin a
=o 4 0= 0(1-4C)

vz(x, £) uz(x, t) sina =cos a

In (1.4) we indicate by p and T the density and tension of the string, by M
the mass of the particle, by A, )\ and )s. the spring constants of the rubber
band and of the two springs to whlch the mass is connected. As the dis-

placement of the mass and the string at x = 0 must be identical we have
furthermore that

w (¢) =v (0, ¢t), w,(#) = v,(0, #) . (1.4d)

The R-matrix for the problem (1.4) defined by

u Qu /Ix
1 1 “fwt
=R (w?) y U (%, 0) = u (x) e ,c=1,2
“, auz /Ox
x=0 x=0
(1.5a)
was shown to have the form!
R @?*)= 0DO , (1.5b)

where D is a diagonal matrix
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d @?) 0
D= 3 (1.5¢)
0 dz(wz)
with
d@y= ™M™
= 2
(A /M) =@

We showed in reference 1 that the problem could be generalized by
connecting the mass M toa system of masses interconnected with springs.
This generalization allowed us to discuss reactions involving isobaric ana-
logue states in which we still have only one T -state but several T, -states.
The R-matrix in this case retains the form (1.5) with the same d (@?), but
with d, (?) taking the form

2
40=3 i 1.5d)

B E -l
i3

where E corresponds to the poles and ')/2 to the reduced widths for the R-
function of the T, -states. g .

The S-matrix for the problem (denoted by §) was also discussed in
reference 1 and it is related to the R-matrix in the usual fashion by

§=(-iRK) (+iRK), (1.6)

where K is the 2x 2 matrix of the momenta in the two channels
K= ; (1.7a)

with

k=@ = \|2 = A (1.7b,¢)
c c T
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The matrix (1.6) is not unitary but it is easily seen that

s=K'§K (1.8)

is unitary, and, in fact § is defined as rhe coefficient of the outgoing wave
when both the incoming and outgoing waves are normalized to unit flux in the
corresponding quantum mechanical problem.

Before proceeding to make use of the §-martrix (1.6) to discuss the
time-dependent behaviour of the scattering problem, we first show that the
poles of the §-matrix are excluded from the upper part of the first sheet of
the wave number plane.

Il . DISTRIBUTION OF POLES OF THE S-MATRIX

From the expression (1.6) for the §-matrix we see that its poles are
given by the equation

-1 f
det ik +R| =0. 2.1)

We shall investigate the distribution of these poles in the &k, complex plane
rather than in the frequency plane w = klc (c = v7/p). From (1.7b,c) we
see that

k, = \/kf - (\/T) 2.2)

and, as the determinant (2.1) is also a function of k&, the complex k2 plane
of Fig. 2 has two sheets connected by a cut from = VA /T to \/E\%-* . The
first sheet is characterized by the fact that for real kl 2V NST , k2 defined
by (2.2) is positive.

As w” appears in our R-mawix (see Eq. (1.5)) we shall in this
section use for it the notation

" = krete= B . (23)

We proceed now to show that the S-matrix has no poles in the upper
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part of the first sheet of the Riemann surface of the & -plane?.
From (2.2, 2.3) we see that

— ; 2
2k 2k, kw = (Ey/c }» (2.4)

k =
2x 2y

where k.. » E, are the real and kcy , E_ the imaginary parts of kc s Bylc=1;2).
The real and imaginary parts of £ cannot then change sign within each
quadrant, and in the upper half of the first sheet of the kl Riemann surface,
they have the signs indicated in Fig. 2.

k 1 plane

Fig.2 The complex wave number plane.
We shall now assume that equation (2.1) has a root in the upper half
of the first sheet of the & plane, outside the iraginary axis, and show that

this leads toa contradiction. If the root exists, then for that value of kl the
set of linear equations

GK +Ryx=0 @2.5)

has a solution where x is, in our problem, a two dimensional vector. This
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implies that

x"Rx = -ixTK -i Z 'x |
c= 1
2 =2 .
= Elxcl k|~ =ik + k) 2.6)

From (2.4) and (2.6) we conclude that

F Im(xTRx)==-2 T E |x I | I-zkz k (2.7)
P

cx cy’

where the right hand side is clearly negative in the upper half of the k plane,
excluding the imaginary axis.

If we have though for the R matrix the general Wigner form*

Vie?,

1 (E)= 2 _.f:‘.f.._f-fﬁ_ (2.8)
E -E
"
then
2 2
| =y, , =] DA RN
Eylm(xTRx)=Ey Im X __C__T = 3 5
E - 7
H 7 K (E#"Ex) +E}'

(2.9)

and so the left side of (2.7) is positive. Thus we have proved our theorem
that there are no poles of S(k ) in the upper part of the first sheet of the k
complex plane, except possnbly for the imaginary axis.

The theorem as it stands is also wue for the nuclear case. For the
mechanical model the theorem can be made stronger by using a causality
argument to eliminate poles in the upper imaginary axis also. If such poles
kl =ik with k> 0 real exist, then the problem admits a solution of the type

exp [k (ct=x)] (2.10)

which becomes c when ¢ = o, thus violating the possibility of a causal de-
scription of the type to be discussed in the next section.
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III. TIME-DEPENDENT BEHAVIOUR OF THE PROBLEM

As we indicated in the Introduction we intend to analyze the time-de-
pendent behaviour of our model so as to get some insight on the physical
significance of the poles of the §S-matrix in the different regions of the &_-
plane. For this purpose it suffices to discuss the time-dependent behaviour
when we assume that for # < 0 we have only incoming waves on an infinite
string, and that at # = 0 we connect, at x = (, the resonating system which
has a finite number of degrees of freedom. Denoting, as in reference 1, by
u_.+(x, 1) the displacement of the string in the c (= 1,2) direction when the
incoming vibration has the direction ¢’ (=1,2), we have

Bee'(x, 1< 0) = exp [-ikca x] exp [= iwt] Bcc' .

The initial conditions at ¢ = 0 for the classical problem described by
the equations of motion (1.4) are then

oot (x,0=0)=exp [=ik_1x]8__s (3.2a)
Qu__»
m_fc_ =~iwexp [=ik_ s x]8__s (3.2b)
t=o0
awCC’
w, ' (=0)=0, 5 =0, w1 (t)=vccv (0 1) 5

t=0

and the

v (x,t=0),(% /3
1=

0

being related to the

u_ 1 (x,8=0),(Ou_r(x, 1)/3r)

t=0
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of (3.2a,b) by the transformation (1.4c).
To solve the classical problem with the initial conditions (3.2), we
first take the Laplace transform of the equations of motion (1.4). Defining

o ' e -st = o -st
ucc.(x,s)=j0 U v (x, ) e %t w o (s) =j;, w, o (t)e Stds,

(3.3a',b")

and similarly for Z;Ca (x,s), the Laplace transformed equations become

dz?f ' =ik 1 x
€€ - klu g ==Ls-ivye ° & 4, (3.3a)
dx? ¥
with
5 % %
k=% w=] B 42 ] < |22} ,e= IT 6Gay
L e 2 c T T e
and
2 — a;;c'
(M2 F A Y 0 =T o s (3:3¢)
0
7 1 (0,5)= w1 (s) . (3.3d)
From the last two equations we have then, for the D-mawix (1.5¢),
= .
- A (/M) 0 1127’
1€ <2 +()\.1/M) Ox
= F = (3.4)
v 0 (T/M) L
2¢
b <4 -0 B 52+(}\2/M)__Bx 3

so that from (1.5) we can write equations (3.3) in the matrix form
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-ik x
2'& —_ — e 0
4 -K U=-_12_(s-1a)) -ik x ,c=|.._
dx’ ¢ 0 e 2 P
(3.5a)
U=0=Resh | 2L (3.5b)
x=0
where
= _ Kl 0
U, s)= Nz e, 9], K= (3.5¢,d)
0 «
2
The equation (3.5a) admits the particular solution
-tk x
\ e ! 0
y (3.6)
5 +iw 0 e ’kzx

Furthermore, the most general solution of the homogeneous part of the
equation (3.5a), which would be bounded when x = e , could be written in

the form

1 5 (3.7)

+1
5 tw 0

where § is a, so far, undetermined matrix. Writing then

-ik x - X
_ e 1 0 e 0 te
U= 1 + s
stiw 0 2

(3-8)

and introducing it in (3.5b), we obtain

- =]
S==-[1+R(-sHK] [1+iR(-sHK], (3.9)
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with K, K given by (3:5d) and (1.7) respectively.

The expression (3.9) for § holds not only for the problem (1.4), but
also for the more general case when d_(w) has the form (1.5d), in which case
R(-s?) is again given by (1.5b), but with D of tne general form (1.5¢,d).

The time-dependent matrix

U, )= lu_r (2,0, (3.10)

is then given by the integral

U,)=_L [ U(x,s)eSds, (3.11)

271 B

s plane

Fig.3 The complex s-plane and the Bromwich integration contour.
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over the Bromwich contour in the s plane indicated in Fig. 3. That contour
must be to the right of all singularities_of the function U(x,s).
As K, of (3.3b) appears in the § of (3.8), we have that U(x,s) has

branch points at
s =tic .>i =t4
T

and so we must introduce a cut between them, as marked in Fig. 3. Besides,

’ (3.12)

<=

we have the pole s = = iw also marked in the figure, as well as the poles of
the § matrix given by the equation

det|E-1+R(-52)‘=0- (3.13)

Clearly, equation (3.13) becomes identical to (2.1) if we puts = = iw, and
as w = ck , we see that, except for a change of scale, the planes kl and s
can be transformed into each other if we rotate the former by = 7_27 . We saw

though that equation (2.1) has noroots in the upper kl plane, which implies
that (3.13) has noroots in the right hand side of the s plane and so there are
no poles of U(x, s) there. The Bromwich contour can then be changed to
the one bordering the imaginary axis, but bypassing the cut and the pole
s = =iw,as shown also in Fig. 3.

We wish now to evaluate explicitly U(x, #) of (3.11). Todo this it
proves convenient to introduce a new complex variable defined by®

, % 2 2 %
L=(T/N) (K, ¥ Ky = (T/\) (i) - (_’E) # 3 (3.14a)
c T c
which implies that

) 4
L= (/N (k= k) (3.14b)

so that we get

_1 % -1 ! % -1
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The two sheets of the Riemann surface of s are then mapped on a
single plane {, with the cut corresponding to the circle of radius unity in the
{ plane. The first sheet of the plane is mapped on the outside, while the
second is mapped on the inside of the unit circle in the { plane.

From (3.15) we note that § becomes now a rational function of s
Furthermore we have that

2
1+ d
d = B (3.16a)
T L@
where
z= -1(1) o +[(9) -5] (3.16b)
A c c T
For positive real
L
@ > (A)"
€ T ’
z is negative imaginary with Iz l *1 &
The matrix U (x, ¢) of (3.11) takes then the form
f' -ik x 1
[ & 0 =fwt
U(X,t) = ik x e
- 1] e ZJ
[~ - ¥ x ]
2 1 0
L a+£") )
; -%_x
<1 8 L(L=2)(L+ 27! 0 e 2_J
S(L) exp[i_(k/p)z(é-- C")t] d (3.17)

where the first term on the right hand side is obtained by direct integration
when inroducing (3.8) into (3.11). The Bromwich contour is marked ir
Fig. 4 and Ky » K, are given in terms of { by (3.15). It 1s clear that if
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ct < x, we could close the Bromwich contour from the right and get a null

value for the integral. We proceed now to evaluate the integral when ¢t > x,
in which case we must close from the left.

Fig. 4 The complex {-plane and the Bromwich integration contour.

We note that we could expand

=lr= -
A+ IHILL=-n+=H] S =3¢-8)" A, (3.18a)

where

’ ; (3.18b)
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and gi are the poles of the expression on the left hand side which include

1

{;}=0,2z,-27", (3.19)

Plus poles of the mawix §({).

The latter poles are the roots of the equation (3.13), and are all to the
left of the Bromwich contour in Fig. 4.

We define now the basic time dependent solutions

50,807
NEACR L dl, c=1,2 (3-20a)
27 3 Z'-Z'c:'

where
i

’ 4 5
= (\/T) (ct=x), m, = (A/T) (2 e2=x%)",

§1i - C;’ ’ gz:’ - [Ct-x] g:' S /% ’ (32 0b,

ct+x C,d,e)

The Bromwich contour B is the contour B of Fig. 4, while B is B multi-
plied by the scale factor

[(ct-x)/(ct'l'x)]/z

From (3.17) and (3.18), and introducing at the appropriate point the
change of variable

' | ct=x g
{ - [Cm] 3

we immediately see that the components u_ + (x, #) of U(x, t) can be written
in the form

U, (x, 1)= gacic' u.(x,t, gi) + exp [=- z'(kcx + wh)] BCCI (3.21)
1
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It remains therefore only to evaluate explicitly the functions (3.20). For this
purpose we note that for ﬁi # (0, the Bromwich contours B can be deformed
into two small circles, one denoted by C of radius smaller than l gci‘ , sur=
rounding the essential singularity at ! = 0, and the other surrounding the pole
! .. The latter can be ¢ 'vated immediately and so we can write for

Ci
u(x,1t, Q‘.) the expression

uc(x, £, Cl) = €exp [nc(éci - ;;11)/2]

+ 1 g expln (,-0;)R)dL (3.22)
2703

To evaluate the last integral in (3.22), we consider the following ex-

pansion36

-1 e ”n o n,=-n
exp[n (L= )2)= 2 U+ 2 (=1L [, M), 6232)

m

(C-ccf)'1=-cc',.‘ 1-54_ =-<:c,-§ L\, (3.23b)

ct ci

where. J, (m.) are Bessel f-unctmns ot’."r;C . T-akmg the product of the two

functions (3.23) and carrying out the integration over the circle c, which we
may make as small as we wish, we see that only terms containing L"! sur-
6

vive”, so we get

w (et 0y = exp [0 (8= 27 2= 3 (=0.,) L, (n) (3.24)

We have then a closed expression for the basic functions albeit in the form
of an infinite series. We can express #u_(x, /, Ql.) in terms of known
functions if we recall the definition of the Lomel functions of two variables’

& p+2m
t

m
L, (¢ m) = 20(-1) - ]P”m(n)- (3.25)

m =
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The basic functions can then be written as

ulx 6,8y = exp ln (2= ) oo e
ci
i
- 3. Ne « T 1 ¥ ]O(nc} (3.26a)

1
z’t:'z'

The expression (3.26) gives the basic function for all C’. #0. For
C:. =0 we see immediately from (3.23) that the integral in (3.2 0) reduces to

u(x, 1, 00=] (1) . (3.26b)

If we inroduce (3 -26) into (3.21), we get the general time -de pendent
solution of our mechanical problem. It now remains to understand this so-
lution from a more physical point of view.

Let us consider separately the terms in the summation (3.21),
starting with the term associated with the pole {i =z . The residue of the
expression (3.18) at { = z is then just §(z), which is the negative of the
ordinary S-matrix (1.6). The contribution of this pole to the matrix U=, )
is then given by

l'(klx-mt) r
e 0 . vl(x, b z) 0 .
S|+ S
i(kzx ~wt)
3 0 e ) i 0 vz(x, £, %)

(3:27)
where, from (3.24),

1]
|
Mg

(—z).”]” [A/7) (ct=x)] ,
1

Y (%, 1, z)
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| -n
; ct=x " % 3 =2 2I/2
v, (x,t,2) == L -z ]”[(P\/T) ity i
”n

LN

ct T.%

(3.28a,b)

The first term in (3.27) is then just the stationary outgoing wave with the ap-
propriate matrix amplitude. The second term, is easily seen from (3.28) to
vanish for f = o, as ]z | > 1. It therefore represents the transient effect
that connects the initial condition at £ = 0, in which we have no outgoing

wave,(in fact, we have no outgoing wave until ¢ > ¥ ), to the stationary state

in which the outgoing wave is given by the first ferm in (3.27). These
wransient effects were given the name of diffraction in time and are closely
connected with the operation of the time-energy uncertainty relation?

The situation for the other poles can be discussed ina similar fashion.
Let us consider first all poles for which ‘ E,,‘ > 1 . Then the contribution of
these poles to the summation (3.21) can be put in the form

i(klix -mit)
e 0 v, (%, 1, L) 0

ik . =wt) £ i
21 L
0 e 0 v, (%, ¢, L;)

(3.29)
where Ai is given by (3.18) and v (x, 1, {,i)have the form (3.28a,b) with z
replaced by L., and

,wi_i?\% - _.}\‘/z -
k“—T_f(?) (Q:"Z;i)’ kzi—l(-f) (C;‘+§")

The first term in (3.29) represents decaying states in time, as . has a
negative imaginary part, in view of the fact that Ei with |Cl] > | is on the
left-hand side of the { plane outside of the unit circle. Again, because
'|C,'| > |, the terms v, (x, 1, Z,.) tend to zero when t — o, and they represent
diffraction in time effects in these decaying states.

For the poles l é,l < |, there is an expansion similar to (3.29), but
the v_(x, ¢, C,I.) do not tend to zero when ¢ —* o precisely because I El] < | .
We can though expand the plane waves in the first part of (3.29), in terms
of Bessel Eunctions using (3.30) and (3.23a). We then get an expansion in
terms of &, ! instead of L;,andas ll,: > |, this expansion will go to zero
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whent = o~ . Thus for poles within the unit circle, and this includes
1;1. =~-z"'and 0, we have just the behaviour associated with diffraction-in-
time effects.

As the left hand side of the { =plane outside of the unit circ le corre-
sponds to the lower part of the first sheet of the Rie mann surface for the
kl = or w-plane, we conclude that only the poles of the §-matrix in the lower
part of this first sheet give rise to the states decaying in time, that we usual-
ly associate with the resonances in nuclear reactions.

V. CONCLUSIONS

For the classical model described in the Introduction, we have first
shown that the poles of the§S-matrix are excluded from the upper half of the
first Riemann sheet of the wave number kland they have no restrictions in
the second sheet. The influence of these poles in a time-dependent de-
scription of the problem has been investigated. It was found that the poles
in the first Riemann sheet give the usual exponentially decaying response in
time (resonance effect), plus a diffraction in time effect, consisting of terms
that also go to zero as ¢ = o, but as an inverse power of £. On the other
hand, the poles in the second Riemann sheet give rise only to diffraction in
time effects.

The extension of the previous analysis to the quantum mechanical
case with two channels is not obvious. For this purpose one might be
guided by comparing the classical and quantum results for the one-channel
case. In this case we have only one Riemann surface for the variable &.
In the classical modelevery pole in the allowed lower region contributes a
term that decays exponentially with time. In the quantum mechanical case’
the only poles that have a resonance behaviour are those located in the 4th
quadrant above the bisector at 777/4. We could conclude by analogy, that
in the two-channel case discussed here, when we go to the quantum me-
chanical picture, (i.e., E = k?/2 rather than w = ck) only the poles in the
lower half of the first sheet that are in the fourth quadrant and above the bi-
sector at 777/4 , will behave as resonance states.
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RESUMEN

En el presente articulo se estudia el comportamiento temporal de un
modelo clasico que simula reacciones con dos canales, en las que intervie-
nen estados isobdricos analogos. Primero que nada se muestra que los po-
los de la matriz § para el sistema clasico estan excluidos del semiplano su-
perior de la primera hoja de Riemann del namero de onda. Enseguida se es-
tudia la influencia de los polos de § en una descripcién temporal del sistema.
Se encuentra que los polos en la primera hoja de Riemann dan lugar a un
transitorio que decae exponencialmente con el tiempo (que es la respuesta
usual de una resonancia), mas un efecto de “difraccion en el tiempo”, que
consiste de términos que también tienden a cero cuando f = =, pero como
una potencia inversa de f. Por otro lado, los polos en la segunda hoja de
Riemann sélo dan lugar a efectos de difraccion en el tiempo. No se demues-
tra, pero se hace plausible, que en el correspondiente problema cuantico so6-
lo los polos que estan en el cuarto cuadrante de la primera hoja y arriba de
la bisectriz a 777/4 , se comportan como estados resonantes.





