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ABSTRACT: In this note we briefly comment on some aspects of stochastic
quantum mechanics. First we present a formal but elementary deri-
vation, based on classical principles, of Schrodinger’s equation;
this suggests once more the stochastic (Markovian) origin of quantum
phenomena. We show that for stationary states without a net flux
of matter, the particles belonging to the quantum ensemble distribute
themselves in such a way as to guarantee a (i’clative) minimum value
for the total energy of the ensemble. Finally, we show explicitly
that the analogy between quantum mechanics and a classical fluid

described by the Navier-Stokes equations lacks of any profound
physical content,
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I. INTRODUCTION

The very nature of Schrodinger’s equation as an equation of motion for
quantum particles has led to several attempts of interpreting it in terms of parti-
cle trajectories. The first step in this direction is due to one of the founders of
quantum mechanics, L. de Broglie! . Several theories have since been developed.
On the one hand, Bohm? has shown that the electron may be treated as a classi-
cal particle subject to an additional potential QSB , which is itself a function of
the amplitude ' ; hence, | is assumed to represent a real field. On the other
hand, Fényes® and Weizel* have attempted to demonstrate the possibility of under-
standing Schrodinger’s theory by postulating the randomness of the electron’s
trajectories. (This point of view is supported by the work of Moyal® who has
shown that, at least formally, quantum mechanics may be considered a special
kind of Markov process in phase space). The electromagnetic field would thus
necessarily contain a radiation component due to the stochastically moving
charged particles. The existence of this random field may alternatively be used
as a starting point, as done by Sokolov and Tumanov®, who have been able to
quantize the classical harmonic oscillator by adding to it a fluctuating force due
to such an electromagnetic vacuum. More recently, Marshall” and Boyer® have
shown, using exclusively classical arguments, that the mere existence of the
zero-point energy implies the quantization of the electromagnetic field. Several
authors®~!% have since then continued these investigations, in an attempt to es=
tablish a more conclusive connection between quantum mechanics and the theory
of Markov processes. (We shall not mention here a series of valuable works,
connected to ours through the use of formally similar procedures, but being of
no immediate interest for us. For references, the reader may resort to the cited
literature).

From the work done up to now, it seems reasonable to conclude thar
quantum mechanics is indeed a stochastic problem or at least, may be derived
from a classical cheory of random motion. However, this extremely interesting
question is still in its beginnings and a great deal of work will be necessary to
obtain a definite answer. At this stage, it seems desirable to discuss the ideas
and postulates of the stochastic theory of quantum mechanics in a systematic
way, to which the present note intends to contribute by discussing a few ele-
-mentary but interesting aspects of it.

As was mentioned before, Bohm? has shown that the knowledge of
Schrodinger’s equation allows us to derive from it a classical description, while
several other authors ®~!° have shown that the inverse procedure works even
better. In particular, Santos'® has derived Schrodinger’s equation from a
stochastic theory, through the use of a classical variational principle.However,
in his derivation the author resorts to some considerations out of the realm of
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mechanics; since it seems to us that his method offers a very simple way of ob-
taining Schrodinger’s equation from a classical stochastic theory, we present in
Sect. I a similar formal derivation, though more straightforward, simpler and de-
void of conceptual difficulties. Incidentally, this derivation seems more con-
vincing and complete than that given in the first paper of reference 13 and hence,
may be considered an improved version of it.

Making use once more of variational methods, we demonstrate in Sect. III
that in a stationarybounded system the particles distribute themselves in such a
way as to guarantee a minimum value for the energy =a well-known result in ordi-
nary quantum mechanics. The present proof, although more complex than the
usual one found in textbooks, seems interesting because use is made only of the
mathematical structure of the kinetic energy term associated to the stochastic
motion.

Some aspects of the mathematical structure of quantum mechanics have
led several authors!® to establish an analogy with classical fluid mechaunics,
which in our opinion is only apparent. In Sect. IV we show that if such an analo-
gy is constructed, the corresponding “stress tensor” of quantum mechanics has
the wrong properties and hence is not a stress tensor.

IlI. DERIVATION OF SCHRODINGER’S EQUATION

Consider a classical particle acted on by a stochastic background. We
postulate that the system may be approximately described in terms of a proba-
bility distribution in configuration space, satisfying the diffusion equation

%:-v-(pc)wvzp; )

here 0 may represent in general not only the inconditional distribution function,
but also the transition frequency distribution of x (), x being approximated bya
Wiener process!’. In Eq. (1), c represents the particle’s velocity and D the dif-
fusion coefficient, i.e., a measure of the dispersion of the particle’s dis-
placement due to the stochastic background. Although somewhat more restrictive
than necessary, postulate (1) is sufficient for our purposes!4, We may ex-
press it in the form of a continuity equation

9P +v. =0 2
L4V wp) =0, @)
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as long as

v=c-p_£ 3)

=4 . . ’ —_

holds. The term Dp"'Vp represents the diffusion velocity'?, first introduced by
. . l . . - - .

Einstein'® as the osmotic velocity in Brownian movement and is precisely the

stochastic velocity v defined in our earlier work!: hence,

c=vtu. (4)

From Eq. (2) it follows that v represents a flow or current velocity; hence
we name it the systematic velocity and interpret Eq. (4) by saying that the parti=-
cle’s velocity has systematic (current) and stochastic (diffusion) c omponents.

Consider now a volume element d3x containing a total mass mpdax =
where p is the expected mean number of particles per unit volume. From Eq.(2)
it follows that the kinetic energy associated to this volume element is
1/2 mp v?d’x ; however, this is not all the kinetic energy, since according to Eq.
(4) there must be alsoa contribution from the stochastic velocity u. In order to
take this into account, we introduce a second postulate, proceeding in a similar,
but less restmictive way as in reference (15): we assume that v contributes to
the total energy with a term given by

U=f;_mpuzd3x. (5)

In order to write this term in a more convenient form, we use the definition of v
to obtain, for any finite system,

Jpuid’s = =D [pV - Vp/p)d*x
(6)
=-p[(V+uv)pd’x,

whence Eq. (5) transforms into

U= I,Oru,d *x O]
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with
U==Llm[Ae?+DA+N\) Vo], (8)
2

since according to Eq. (6), the two terms containing the arbitrary parameter A
cancel out.

Note that the kinetic energy associated to the u-motion does not depend
on the systematic velocity v; hence, if x and v are considered as the independent
variables in our lagrangian*,-u becomes a function of the position coordinates
only, and we may therefore treat it formally as a potential energy term. The
stochastic problem has thus been reduced to an equivalent classical problem
whose corresponding Hamilton- Jacobi equation is:

3s
O+ 1 @wsy+v+l=o0,
ot 2m 9

where

VSO =mv.

Writing down this equation is equivalent to introducing a classical Hamilton's
principle, namely,

3
_J; 4 dtj’dsx L£p = exvemum,
1
with p satisfying Eq. (2) and with L given by
C=L+U

where pEO stands for the classical lagrangian density. In this sense, §_is the
Lagrange multiplier for the above variational problem conditioned by f,o d3g=],
It is convenient to introduce a dimensionless function § , defined by

So = 2DmS§

* -
Note that we are not assuming v = r; this equality is valid only in the statistical sense.
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in terms of which

2Dm .g%+2D2mNS)2+V+U=O (9)

and

v =2DVs. (10)

From Eq. (9) we see that if § represents the equivalent hamiltonian

H=(’"_"i+u+v, 11)
2m
then
H==20m 08, 12
ok 3 g

and the total energy is therefore

E =fﬂpd3x ==-20m[p _g.idax ;i
t

It has been demonstrated in a number of ways that the system of Eqs. (2)
and (9), together with the definitions of vand v, yield Schrodinger’s equation if

A=1 (see for instance references 12 to 15). In the general case, for arbitrary

A, we havel*

2iDm % = 2DV VY)Y, (13)

with

V,=Llma-nw+0V-u), (14)
2

so that in fact, for A = 1 we obtain Schrodinger’s equation if 2Dm =# (which is
an experimental datum!). To obtain Eq. (13), we have combined Eqs. (2) and
(9) and introduced

t/}=p|/2 exp (5) (15)
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and its complex «conjugate.

Hence, we have shown that Schrodinger’s equation can in fact be derived
from a stochastic (Markovian) problem with the help of classical arguments, if
the stochastic contribution to the kinetic energy is explicitly taken into account.
In this alternative, formal derivation, two parameters appear whose value must
be taken from experiment, namely, D =#/2m and A\ =1 .

IIl. THE ENERGY AS AN EXTREMUM
We proceed to consider the simple, but important case in which the net
velocity of flux v is zero. In this case, according to Eq. (2), o does not vary

with time. From Egs. (10) and (12) we conclude that § = € ¢/# and therefore
Eq. (9) reduces to:

-l_muz-mDV'u+V=e’ 16)
2

where € represents the local value of the total energy per particle and is
constant due to the stationary character of the problem. The total energy is

E =f€,0d3x f[fo [-l_muz-mDV' v+ V]d"’x
2

or, due to Eq. (6),
Ei/;J Lm?+y|dis. (L.7)
2

Since p has been normalized to unity, the energy of the system E and the energy
per particle € coincide. Eq. (17) together with the continuity equation in inte-
gral form

therefore

Jpd®x =1 (18)

are equivalent to Eqs. (2) and (9) for the fluxless case.

At this point, let us study the consequences of assuming that the energy
attains an extremum value. We must solve the following conditioned variational
problem
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fp [1_ mu® + V(x)] dx = extremum
2
(19)

fpdx = constant ,

(we work in one dimension for simplicity). It is convenient to introduce a new

real function ¢ defined by
1
e=p*%, (20)

in terms of which we obtain, for any finite system,
2 2
1{4p) =2mp?[22

2 _ 1 9 i
= = mD s ool
a4 dx dx

and hencc,

2 2
f[i d_cp + chz]dx = F = extremum

2m \dx
(21)

fcpzdxxl

We shall use a well-known result of the theory of the Sturm-Liouville

, namely, that the Euler-Lagrange equation for the conditioned vari-

equation'?

ational problem

2
[f(x) a9 -g(x) (pz:l dx = extremum
dx
(22)

b
I (Pz(x) b (x) dx = constant
a

is the Sturm-Liouville equation

i[f(x)ﬂ]+[g(x)+hb(x}]cp=0. (23)
dx dx
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The system of Egs. (21) is the same as that of Eqs. (22) for

#
f(x) =", b(x)=1and g(x) ==V(x).
2m

Substituting these values into Eq. (23) we arrive at the stationary Schrodinger
equation

5 d’g

+ V(x)cpz-:\cp, (24)
2m dx2

the Lagrange mulciplier being determined by the first of Eqs. (21) as the total
energy

7 ;2
B=lo -2 8 9@ +yo|de=[p(=\)pdx==A\.
m o gyt

This result allows us to state that the particles of any finite quantum-
mechanical ensemble without net flux of matter are distributed so as to guaran-
tee an extremal value (actually a minimum from stability considerationsy for
the total energy of the system. Hence, in conclusion, we may say that the
stationary Schrodinger equation is the Euler-L agrange equation of the variation-
al problem associated toa stationary stochastic (Markovian) ensemble.

IV. COMMENTS ON THE HYDRODYNAMICAL ANALOGY

As stated in the introduction, the formal similarity between quantum me-
chanics and classical fluid mechanics has led several authors to interpret the
equations studied in Section II as describing an analog classical fluid'®. In
order to analyze this interpretation, we procced to derive the tentative Navier-
Stokes analog along lines similar to those of reference (16). Since we are par-
ticularly interested in the quantum-mechanical case (A = 1) we define

¢B=U(?\=1)=-;_m(u2+2Dv'u). (25)

qSB is the potential introduced by Bohm in his causal interpretation of quantum
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mechanics? and afterwards interpreted by several authors 13*1¢ as a term of ki-

netic origin; indeed, we have seen before that qu measures the contribution of

the v=-motion to the kinetic energy. Using Eq. (25), we may rewrite Eq. (2) and
the gradient of Eq. (9) as follows (we use tensorial notation for simplicity):

dv;
m §T+m(vk3k)vi= -aE[Qt)B‘]' v]
(26)
9
_atﬁ + ak(Pﬂk) =0.
These equations may be combined to yield
m 4 (pu) = =3, 7, ~pd.V 27)
37 Y 2 Vin " Py
with the components of the tensor 7. given by
= =¥
M = mpv v, = #p9, u; (28)
or equivalently,
77'.?. =mpv, u]. -CT,-?.
(29)
= 11
0y = 4_-5’,0(3,. u; + '8]. u,)

since v is irrotational. 7 has been formally identified with a flux density
tensor, and o with the corresponding stress tensor;

0y = 7;(3,.::]. + B’. ), (30)

the dynamical viscosity 7) being
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Since v is a velocity, one is indeed tempted to identify o as a stress tensor, as
defined in connection with the motion of a fluid with flux velocity v??:

o = 77(3,.111. + 3}. v,) . (31)
Eq. (27) would then be the corresponding momentum-flow equation
mo [+ 0,9, Vv, ==, m, =p2,V (32)
o bk b L N T =P

However, several objections may be raised against this interpretation.
Firstly, there appears a contradiction related to the sign of the viscosity 7,
which is in general determined by the sign of the parameter A and therefore
varies according to the particular problem. For the (frictionless) case of
quantum mechanics, A = 1 and there would indeed be a viscosity, while for the
Smoluchowsky approximation to Brownian motion, A = = 1 (as has been shown
elsewhere*) and conse quently there would be no viscosity in the dissipative
Brownian movement. These considerations suggest introducing a minus sign
into the definition of both <) and oy in Eq. (30).

In the second place, since the kinetic energy associated to the transfer

T =f;_ mpv'd’x (33)

we obtain from Eq. (27) and the continuity equation

of mass is given by

oT _ 3
.,at_--_’f a".].(at.uj-l-aju'.)d x

(34)
= - '”Tﬁfp('a'.u’. + 3]. u;.)(a,. v; + 31.03.)4'3::;

therefore, we conclude that the sign of 3T /0t is not definite and hence 9,
does not involve in general a decrease in mechanical energy, i.e., it is not a
stress tensor associated to a viscosity. This is 2 consequence of the de-
pendence of o, on the derivatives of the stochastic velocity v instead of those
of the flux velocity v ( c¢f. Eqs. 30 and 31).
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In concluding, we may say that the objections raised against the

stochastic interpretation from the point of view of the hydrodynamical analogy,'®
do not apply to the kind of theory discussed in the present paper in which energy

and momentum are in the average conserved. More precisely, we may say that

the stochastic theory explains in a natural way the origin of terms such as

Bohm’s potential.
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RESUMEN

La presente nota contiene breves comentarios sobre algunos aspectos
de la reinterpretacién estocastica de la mecanica cuantica. En la primera par-
te se presenta una deduccién formaly elemental, apoyada en principios clasi -
cos, de la ecuacién de Schrodinger; esta deduccién sugiere una vez mas la in-
terpretacion estocastica (Markoviana) de los fenémenos cudnticos. A continua-
cién se hace ver que, para estados estacionarios sin flujo neto de materia, las
particulas del ensemble cudntico se distribuyen necesariamente de tal manera
que la energia total del mismo es minima. Por altimo, se demuestra explicita-=
mente que la analogia que ha sido propuesta ente la mecénica cuantica y un
fluido clasico descrito por las ecuaciones de Navier-Stokes, carece de conteni-
do fisico profundo.





