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ABSTRACT: In this note we briefly comment on some aspects of stochastic

quantum mechanics. First we present a formal hut elementary deri~

vation, based on elassical principIes, of Schr~dinger's equation;

this s ugge'!>ts once more the ~tochastic (Markov ian) or igin of quant um

phenomena. We ~how [hat for stationary states without a nel flux

of maner, the partieles belonging to [he quantum ensemble distribute

themselves in such a way as to guarantee a Úclative) minimum value

for the total energy of the ensemble. Finally, we show explicidy

[hat the analogy between quantum mechanics and a classical fluid

described by the Navier-Stokes equations lacks of any profound
physical contenl .
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l. INTRODUCTION

de la Peña et al

The very natwe ol SchrOdingec's equation as 3n equation ol motian for
quamum particles has led tO several anempts oi interpreting it in Cerros oí partí-
ele uajectories. The {irse srep in chis direction is ..lue ro one ol the founders oí
quantum mechanics, L. de Broglie1• Several rheories have since beco developed.
00 che one haod, Bohm2 has .,hown chal che electron may be treated as a c1assi"
cal particle subjecr to 3n additional potential4B, which i5 itself a lune"cion oí
che amplitude.p¡ hence,YJ i5 assumed torepresenta real field. Do che orher
hand, Fényes3 and Weizel4 have auempted ro de mons tra te che possibility oí \mÍer-
standing SchrOdinger's theoey by postuladog che randomness ol che e lectroD's
trajecrories .. (This poine ol ,'iew is supported by the work of Moyal5 who has
shawn that, at least formally, quantum mechanics may be considered a special
kind of Markov process in phase space). The electromagnetic fieId would thus
necessarily contain a radiation component due to the stochastically moving
charged particles. The existence of this random field may alternatively be used
as a starting point, as done by Sokolov and Tumanov6, who have been able to
quantize the classical harmonic oscillator by adding to it a fluctuating force due
to such an elecuomagnetic vacuum. More recently, Marshall7 and Boyer8 have
shov.rn, using exclusively classicalarguments, that the mere existence of the
zero- point energy irnplies the quantization of the e lecuom agnetic fie Id. Severa 1
authors9•t5 have since then continued these investigations, in an attempt to es-
tablish a more conclusivc connection betwcen qw.ntum mechanics and the theory
of Markov processes. (We shall not mentian here a series of valuable works,
connected to ours through the use of formally similar procedures, but being of
no immediate interest for uso For references, the reader may resor[ to thecired
literature) •

From the work done up to now, it seems reasonable to conc lude thar
quantum mechanics is indeed a stochastic problem or at lcast, may bt: derivcd
from a classical ,heory of random motion. lIowever, this exuemely interesting
question is still in its beginnings and a great deal of work will be necessary to
obtain a dcfinite answer. At this stage, it seems desirable todiscuss the ideas
and postulates of the stochastic theory of quantum mechanics in a systematic
way, to which the present note intends to conrribute by discussing a few ele-
mentary but interesting aspects of it.

As was mentioned befare, Bohm2 has shown that the knowledge of
SchrOdinger's equation allows us to derive from it a classical description, while
severa 1 oeher nuthors9•15 have shown ehat the inverse procedure works even
bener. In particular, Santos 15 has derived SchrOdinger's equation from a
stochastic theory, through the use of a classical variational principle.ltowever,
in his derivatian the author rcsorts to sorne considerations out of the realm of
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mechanics; since ir seems {O us that his method oHers a ver y simple way o( ob.
taining SchrOdinger's equation (rom a classical stochastic theory, we present in
Sect.lI a similar (ormal derivation, though more straightforward, simpler and dea
void of conceptual difficulties. Incidentally, this derivation seems more cona
vincing and complete than that given in the first paper oE reference 13 and hence,
ma)' be considered an improved version oE it.

~taking use once more oC variational methods, we demonstrate in Sect. 111
that in a stationarybounded system the particles distribute themseIves in such a
way as to guarantee a minimum "alue for the energy -a wellaknown result in ordia
nary quantum mechanics. The present proof, although more compIex th~n the
usual one found in textbooks, seems interesting beca use use is made ooly oE the
"TIathemacical scruccure oE che kinecic encrgy cerm associated to the stochastic
mmion.

Some aspects oE the mathematical s trUCtu re of quantum mechanics have
led several authors16 to establish an analogy with classicaI fluid mechatlics,
which in oue opinion is onlyapparent. In SeC{. IV we show that if such an anaIo.
gy is conscructed, the corresponding "stress tensor" of quantum mechanics has
the wroog properties and hence is not a stress tensor.

II. DERIVATlON OF SCHRODINGER'S EQUATION

Consider a classical particle acted on by a stochastic background. We
postulate that the s)'stem may be approximately described in terms of a proba •.
bility distribution in configueation space, satisfying the diffusion equation

~~ = -'V'(pc)+V'V'p; (1)

here p may represent in general not only the inconditional discribution funetíon,
but also the transition frequt'ney distribution oE x(t). x being approximated bya
Wiener process17• In EC). (1), c represents the panicle's ve loc ity nnd D the difa
Eusion coeHicient, i.e., a measure of the dispersion of the parucle's dís"
place ment due to the stochastic background. Although somewhat more restrictive
than necessary, postulate (I) is sufficient for our purposes 1... We ma y ex.
press it in the form o( a continuity equation

dp +'V. (vp)
dt o. (2 )
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as long as

v=c_o'ílp
P
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holds. The [erro Dp"l'Vp represenrs (he diffusion velocityJ2, first introduced by
Einstcin18 as [he osmocic velocity in BrO'oVnian movement and is precisely che
stochastic velocity u defined in Que earlier workl4; hcnce,

c=v+u. (4 )

Feoro Eq .. (2) it foll<7NS [hat v represents a rlow oc current velocity; hence
we rrame it (he systematic velocity and ¡nreepcee Eq. (4) by sayiog tbar (he parci"
cle's ve locity has systematic (currem) and stochastic (diffusion) compOllents.

Consider now a volume e Iernen[ ¿3x containing a (otal muss mpJ
3
x,

where pis (he expecrcd mean number oí particles per unit volume. Froro Eq.(2)
ir follows char (he kinetic energy associated tO this volume element is
1/2 mpv2¿3tt; however, (his is nOI aH (he kinetic energy, since according to Eq.
(4) there muSt be also a contribution from the stochastic velocity u. In order tO
take this into account, we introduce a second postulate, proceeding in a similar,
but less resrrictive way as in reference (15): we Q$$umr that u conuibutes to

the total encrgy with a term given by

u = J !...mpu'a'x. (5)
2

In order to write this term in a more convenient form, we use the definition of u

tO obtain, for any finite system,

Jpu'a'x = -O'Jp'íl' 07p/p)a'X
(6)

= -OJ07' u)pa'x.

whence Eq. (5) transforms into

u = JpUa'x (7)
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wich

u = -lm [Au' + D(I + Al 17. u].
2

(8)
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SlOce according co Eq. (6), che rwo cerms containing che arbittary parameter A
cancel out.

Note that che kinetic energr associated to die u-motion does not depend
on the systematic velocity v; hence, ií x and vare considered as the independent
variables in our lagrangian.,.U becomes a funccion of che posicion coordinates
only, and we may therefore treat ie formally as a poten~ial energy termo The
stochascic problem has thus beeo reduced to an equivalenc classical problem
whose corresponding Hamilcon- jacobi equacion is:

where

aSo +
di _1 (l7s )' + v + 'u = O.

2m O

I7S=mv.
O

Writing dO'A-'nthis equacion is equivalent Co introducing a classical Hamiltoo's
principie, namely,

IJ 2 di J¿Jx £'p = exttemum,
1

w ith P sa tisfy ing Eq. (2) and w ¡th £, given by

where peo seands for the r.1assical lagrangian density. In this sense, So is che
Lagrange multiplier for che aboye variational problcm condieioned by Jp d 3x = 1.
lt is convenient co introduce a dimensionless function S, defined by

So = 2DmS

. .
Note thar we are not assuming v = r; this equality is valid only in the statisdcal sense.
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in cerros oC which

and

20m ~~ + 20'm(JS)' + V+ U

v=2O\7S.

o
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(9)

(10)

Feoro Eq. (9) we see chat ii j[ represents (he equivalent hamiltonian

,
(mv) + U + V,
2m

then

u = -20m ~,

and the cotal energy is therefore

E =JUpd'x = -20mJp}d'x.

(11 )

(12)

Ir has beco demonstrated in a numher ol ways that che system oC Eqs. (2)
and (9), to~ether with (he definitions oC u and v, yield SchrOdinger's equation if
A= 1 (see for insta~ce references 12 to 15). In che general case, foc arbitrary
A. U'C have 1.•

with

Vu = .!.-m(1- I-)(u' + 0\7- u).
2

(13 )

(14)

so chat in fael, foc A = 1 we obtain SchrOdinger's equation if 2Dm = -Ir (which is
ao experimental datum!). To obtain Eq. (13), we have combined Eqs. (2) and
(9) and imroduced

le..p=p'exp(iS) (15 )
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and its complex .conjugate.

Hence, we have sh(N.'n chat SchrOdinger's equation can in fact be derived
from a stochastic (Markovian) problem with the help of classical arguments, if
the stochastic contribution to the kinetic energy is explicitly taken into account.
In this alternative, forma 1derivation, two paramecers appear whose value must
be caken from experimenc, namely. D =-6/2m and A= l.

III. TIIE ENERGY AS AN EXTRDIUM

\t'e proceed [O consider che simple, buc imponanc case in which the net
velocity of flux vis Zero. In this case, according to Eq. (2), P does not vary
with time. From Eqs. (10) and (12) we conclude that S = € l/~ and therefore
Eq. (9) reduces ro:

-l mu2 - mD'V • u + V = € ,
2

(16)

where € represents the local value of che total energy per partic1e and i~
constant due to the stationary character of the problem. The total energy is
therefore

or, due to Eq. (6),

(17)

Since p has been normalized to uDity, the energy of the system E and the energy
per particle € coincide. E'q. (17) cogether with the continuity equation in inte-
gral forro

Jpd'x=l (18)

are equivalent to Eqs. (2) and (9) for the fluxless case.
At chis polnt, lec us study che consequences of assuming char the energy

acrains an extremum vaIue. We must solve the following conditioned variational
problem
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Jpdx = constant.
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(19)

(we \\'ork in one dimension foc simplicity). h is convenient [O introduce a neVo'

real function <p defined by

l<'1' =p , •

in rerms oí which we obrain, foc an}' f¡oite sysrem.

(20)

= -'- mV'p'¡ (dP)' =2mV'(d'l')'2 dx dx

and heDel ,

J '1" dx = 1

(21)

We shalI use a wcll ..known result oC che theoey oC che Srucm-Liouville
cquation19, namel}', char (he Euler-Lagrange equation Coc che condüioned vaci-
acional problem

a

is [he Stuem- Liouville equation

b
J ep2(x) h (x) dx = constant
a

(22)

d~ [{(X) ~: ] + [g(X) Hb(xj '1' = O. (23)
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The syscem oí Eqs. (21) is (he same as (hat oí Eqs. (22) íor
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¡(x) ff'
2m

h(x) 1 and g(x) - V(x) .

Subs(i(U(ing (hese values ioto Eq. (23) we arrive a( (he s(ationary SchrO:Jinger
equa (i<Xl

1;'

2m

,
~ + V(x) cp = - Acp,
dx'

(24 )

(he Lagrange multiplier being decermined by the íirst oí Eqs. (21) as the total
energy

d'cp + vcp] dx =J cp(- A) cpdx = - A.
dx'

This resuh allows us (o s(ate tha( (he particles oí any Hnite quamum-
mechanical ensemble withou( net flUx oí ma(ter are dis(ributed so as to guaran.
tee an extremal value (actua.lly a minimum írom stabili(y c<Xlsiderationsj íor
(he total energy oí (he sys(em. Hence, in conclusion. we may say chac (he
sca t¡onary SchrOd inger equ.,ltion is che Euler- Lagrange equation oí (he variation.
al ¡roble m associaced to a stu(ionary stochastic (Markovian) ensemble.

IV. COM~fENTS ON THE HYDRODYNA~f1CAL ANALOGY

As sta(ed in the introduction. (he formal similarity be(ween quantum me-
cMnics and classicalfluid mechanics has led several authors to imerpret the
equations s(udied in Sec(ion II as dcscribing an analog classical fluid 16. In
order to analyze (his interpn'(ation. we procced to derive the tentaüve Navicr.
S(okcs analog along liDes similar (O those of reference (16). Since we are par.
ticulady interested in (he quan(um-mechanical case CA = 1) we define

U (A = 1) = - .!.. rn (u' + 2/N • u) •
2

(25 )

4n is che po(entL..'l1 in(roduced by Boom in his causal interpreta(ion oí quantum
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mechanics2 and afterwards lnterprcced by sevcralauthors,13.16 as a cecm of ki-
nctic origin; ¡odced, we have seco before char % measures che contribution of
che u-morion to [he kinetic energy. Using Eq. (25), we may rewrite Eq. (2) and
(he gradient of Eq. (9) as follO'NS (we use tensorial notation foc simplicity):

These equations may be combined to yield

m ~(pv,) = - 0k71'k -po, Vdt' J l

w¡lh [he components of che tensor 7T.given by

71i1. = mpv¡ v,' - .!.- ~pa. u.
2 I 1

oc equiva lently,

(26)

(27)

(28)

(29)

since u is ¡rrotacional. 7T has beco formally identified with a flux density
tensor, and G" w¡lh [he corresponding stress tensor:

the dynamical viscosity 1] being

7J = .!.. fíp
4
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Since u is a velocity, one is indeed cempt:ed co identify a as a scress censor, as
defined in conneceion wich che mOrlon of a fluid with flux velociey v20:

(31)

Eq. (27) would chen be che corresponding momencum •.flow equacion

(32 )

However, several objections may be raised againsc chis interprecadon.
Firsdy, chere appears a concradiction relaced co che sign of che viscosity 7],

which is in general decermioed by the sigo of the paramecer A and therefort
varies according co che particular problem. For che (friccionlcss) case oí
quancum mechanics, 'A = 1 and chere would indeed be a viscosity, while íqr che
Smoluchowsky approximation co Brownian modon, A = - 1 (as has been showo
elsewhere1") and consequently chere would be no viscosity in che dissípative
Br()l,\'nian movemenc. These considerations suggesc introducíng a minus sign
inco che definition oí both '7'] and 0' .. in Eq. (30).

"In che second place, since che kinetÍc energy associaced to che transfer
oí mass is given by

(33 )

we obcaio from Eq. (27) and che continuity equation

(34 )

therefore,we conc1ude thac che sign oí aY/al ís notdefinite and hence a,.
does noc involve in general a de crease in mechanÍcal encegy, i.e., ie is noc'la
stress tensor associated to a viscosity. This is a consequence oí the de ..
pendence oí ajj on che derivatives of the stochasdc velocity u instead of those
01 <he flux velocity v (d. Eqs. 30and 31).
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In concludin~. we may S3}' chat che objccrions raised against che
stochasdc interpretation from [he poine of view of che hydrodynarnical analogy,16
do not apply to [he kind of [heory discussed in [he prescnr papee in which erx.'r~y

and momentum are in che average conscrved. ~torc precisel)', we may sa}' rhac
[he stochastic theoey ~xp/ain5 in a natural way che origin of rerros such as
Bohm's potencial.

REFERENCES

I. L. de Broglie, Compr, Rend, 183 (1926) 447; 18i (1927) 273; 185 (1927)
380,

2, D. Aohm, Phys. Re\'. B5 (1952) 166, 180. Scc also D. Bohm and J. P. Vigier.
Ph)'s, Rev. % (954) 208; D. Bohm, R. Sehiller and J. Tiomno, Supp!.
Nuovo Cim. 1 (1955) 48,67.

3, I. Fén)'es, Zeits. Php.132 (1952) B,
4. \1'. Weizel, Zeits. Phys. 134 (1953) 264; 135 (1953) 270; 136 (1954) .582,
5. J.E. \lo)'a1, Proc,Camb.Phi!.Soc.45 (1949) 99.
6. A.A.Sokolov ami V.S. Tumanov, Zh. Eksperim. i Teoe. Fiz. 30 (1956)

B02; (jETP 3 (1957) 958.)
7. T.W. \larshall, Proc. Rol" Soco (London) A276 (1%3) 475; Proc._Camb.

Phi!. Soco 610%5) 537; NuovoCim. 38 (1%5) 206,
B. T.II. Boyer, Phys. Re\'. 182-5 (1%9) 1374; 186-5 (1%9) 1304.
9. D. Kershaw, Phys. Rev.136B 0%4) 1850; fOf sorne commems 00 this

papef sec, L. de la Peña and R.M. Velasco, H..ev. Mex. Fis. 18 (1969) 397.
10. J.e. Aron, Prog. Theor. Ph)'s.33 (1965) 726.
11. G. della Riccia and N. Wiener, Jour. ~fath. Phys. 7 (1%6) 1372.
12. E. :-Iclson, Phys. Rev.150B (1%6) 1079. Se< also by ,he same au,hor:

"Dynamical Theories :lf BrCM.nlan ~lotion". Princeton University Press.
N.J.1967,

13. L. de la Peña-Auerbach, Phys. Lett. 24A (1967) 603; L. de la Peña A.
and L.S. García-Colín, Jour. \lalh. Phys. 9 (1968) 916,922 and
Rev, \Iex. Fis. 16 (1967) 221.

14. L. de la Peña-Auerhach, Phys. Lett. 27A 0%8) 594; Jour. \Ialh. Phys.
10 (969) 1620; L. de la Peña A. and A.~I. Cetto, Ph)'s. Lett. 29A,
(1969) 562; Rev .. lIex. Fis, 17 (968) 327; 18 (1969) 253, 323.

15. E. Santos. Nuovo Cim. 59B (969) 65; An. Real Soco Esp. FÍs. y Quím.
64 (1%8) 317.

16. See for instance, R.J. Harvey, Phys. Rev.152 (1966) 1115.
17. See for instance, N. U. Prabhu, "Stochastic Processes. Basic Theory

and its A pplications". ~lacMilI an eo. , N. Y. 1965.



Stocba3tic Qutnlum ,\t~chanic!j

18. A. Einstein, llInvestigations on the Theory of the Brc)V,'nian Movement",

Edired by R. Fü"h. nover Pub!' lne., 19%. I
19. See, foc instance, P. Morse and H. Feshbach, .~tethoos of Theoretical

Physics", ~kGraw-Hill Book Co., N. Y. 1953, Chapter 6.
20. See, for instance, L. Landauand E. Lifshitz, IIIlFluid Mechanics",

Pergamon Press, London 1959.

RESUMEN
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La presente nota contiene breves comentarios sobre a 19unos as pectos
de la reinterpretación estocástica de la mecánica cuántica. En la primera par-
te se presenta una deducción formal y elemental, apoyada en principios clási -
cos. de la ecuación de SchrOdinger; esta deducción sugiere una vez más la in-
terpretación estocástica (~tarkoviana) de los fenómen0S cuánticos. A continua-
ción se hace ver que. para estados estacionarios sin flujo neto de materia, las
panículas de 1 ensemble cuántico se distribuyen necesariamente de tal manera
que la energía total del mismo es mínima. Por último, se demuestra explícita-
mente que la analogía que ha sido propuesta entre la mecánica cuántica y un
fluido clásico descrito por las ecuaciones de Navier-Stokes, carece de conteni-

do fís ico profundo.




