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ABSTRACT: The behavior of a system of magnetic dipoles in a magnetic field
is studied using Bloch’s phenomenological equations. It is found
that, if a rotating field is applied, the transient behavior of the
perpendicular component of the magnetization of the system is
given by the sum of a decaying exponential and a sinusoidal
function modulated by a decaying exponential. The theoretical
expression derived gives amplitudes, frequencies, decay times,

and phase in terms of parameters such as the relaxation times
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of the system. A convenient method is discussed whereby these

values could be experimentally determined.

I. INTRODUCTION

In this paper we will analyze a system of N, magnetic dipoles per unit
volume, each of which has a magnetic moment m and an intrinsic angular mo-
mentum | such that m = 7yl where 7 is the gyromagnetic ratio. Each dipole
is assumed to be located at a fixed point, and is allowed to perform small vi-
brations about this equilibrium position. Furthermore, the possible inter-
actions between the dipoles are taken into account. A specific magnetic field
is applied to this system, and the behavior of the system is studied.

It is well known! that if a magnetic field

H' =] o , H, = constant

is applied, the system eventually develops a magnetization

0
M = ;)4 ,M:(Nomz/SkTe)Ho,

where T, is the temperature of the system and & is Boltzmann’s constant.

An additional field is applied to the system rotating with a frequency
w in the plane perpendicular to H' of magnitude H, so that the total magnetic
field applied is

.H1 cos wt
H = = H, sin wt .

HO

We assume that the third component, Ho,has been applied for a sufficient time
to allow the system to reach an initial magnetization of M’ .

Bloch’s phenomenological equations? describe the behavior of the
magnetization of this system, that is,
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dMs/dt =Y(M xH)J t (M- MJ)/Tm (1)
M, ,/dt =7y MxH) - M )/T, &=
with
M
1
M=o | M., =M,
M3

and the meaning of the relaxation times T  and T is discussed in the litera-
ture>. Defining

0 YH, ’)/.H1 sin wt
A= =0, 0 YH cos wt :
= ’)’H1 sin wt - ’}le cos wt 0
0
N = 0 ,Sss-lf’Ts,amz—l/Tm,
-5 M
m
and
) 0 0
3
T=|(0 5 0 y
0 0 S

we can write eqs. (1) (2) in the matrix form

d(M)/dt =(A+ T)M+ N . (3)

If we now make a coordinate transformation®

to a rotating frame whose
frequency of rotation is the same as that of the field in the 1=2 plane, by

means of the matrix
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cos wt =sin wt 0

B = sin wt coswt 0 4
0 0 1
we obtain
d (BM)/dt = WBM + BN, BM|:=9 =M|:=0 = ]
since?®
dB/dt = = wDB ,
where W=C=-wD+ T
and _
0 1 0
p= [-1 0o o |,
0 0 o0
0 'yHO 0
C= |-7H, 0 vH ,

0 - YH, 0

A second coordinate transformation is now made to the frame of the
eigenvectors of W by means of a constant matrix Q such that

Q" 'wo =%
where
o 0 0
Z = 0 o* 0 s
0 0 o,

X . . .
7,0, g designating the eigenvalues of W.
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In general the eigenvalues of W are either three real numbers or one
real number and a pair of complex conjugates. It can be shown (App., Ref.5)
that the real eigenvalues and the real part of any complex ones cannot be
positive. This is a consequence of the fact that the coefficients of the third
degree equations for the real eigenvalues and the real part of the possible
complex eigenvalues are all positive.,

In this eigenvector frame eq. (3) can be written as

ds/dt=3S+P, S[,_ =0 'M'=S$ (4)

0

where

S=Q0"'BM and P=Q 'BN=0Q 'N.

We see that in this frame the system of differential equations (4) is
uncoupled, since X is a diagonal matrix. The solution is then

Z -l - ‘E
S=e ‘[so+z P-3"e ‘P]

where
i 0
b x = 1 n
e = 0 &t o -3 1.
& n=0 N!
0 0 e?®

Since two diagonal matrices commute, we can write
It il -1
S=e¢ S0 +¥ Pl -2 P.
This solution can be split into two parts, §, + §_, where

Lt =
S, =e [So +E P ] (time dependent)

and
-l

S ==X P (constant).
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Tt
The matrix e tends to zero with increasing time, since the real part

of the ¥ matrix is negative. Thus Sx eventually vanishes and we can obtain
the stationary solution by considering § ~ §_ and transforming back to the
laboratory frame. This solution is

Ms=[8M/(Ba’2+/82+8)] aﬂcoswz‘Fﬁsin wt

- af3sin wt+ B cos wt ,
1+a?
where
8= Sm/ss ;
a= (')r’h'o—a))/éS .
and B= ')’Hl/aS ’

which of course coincides with Bloch’s solution?.

We will be interested in analyzing the transient solution that has its
origin in the term Stﬁ,'7 . Hence we transform back to the rotating frame ob-
taining

DY wi =1
BM, = 0S,= Q¢ (Q Q)[SO+2 P]-

This we can write as

BM,=¢" 'V

where the vector V is given by the relation

ad
V=BM+W'BN=[-MB/(8a®+B°+&]| &
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since
, . al wl o4 .1 It a1 Wi
QSO=M =BM', QX P=Q3 Q BN=Ww BN,and Qe Q =e .
II. MATRIX ELEMENTS OF exp (Wt)
Our problem now is to find the matrix elements of exp (W¢). The par-
ticular case of T, = T can be taken care of immediately since
1 a 0
W=5 [|~a 1 B
0 -8 1
and defining X = a® + B? the matrix
-a -a »/E,B -a in B
1 . , -1 1 :
g =_=_ -fA i\ 0 v By = i -a =ik B
° v V2n

B B V2a 28 0

diagonalizes W, that is,

ik 0 0
Q0 WQ0=SSI+85 0 -iA 0 :ZO,
0 0 0
where I is the identity matrix.
Then
essz-&z‘lss: 0
IS ;
0 S t=iA8 ¢t
e = 0 e * ¥
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and

a? cos 53?\:4',32 aX\ sind A\t = af cos S Attaf
eWt= [QOeED‘Q;I/)\.z] - ah sin SSKI A cos 53?\.t B\ sin 53)\.1

-afBcos S ttaf - pPAsindAsr - B? cos Ss?x£+a2

In the general case a convenient way of determining the required matrix ele-
ments is® by writing

exp (W1) = f(W) = 1/2i) & %Z__'z_v iz’

where Z' = z'I, z' being a complex variable. Thus the matrix elements are
— ¥ I I '
fi;(W)y=1/Q2mi) § [(z') J;;(Z") dz

i
where the ]z,]. are the matrix elements of | = (Z'= W) . Defining the di-
mensionless matrices Z = Z'/Ss and W' = W/Ss , we have

(z-1)(z= 8)+B"  a(z-8) af3
Jes [1/83 det(Z-W'):I -a(z=98) (z=1)(z=8) P(z=1)
af - B(z=1) (z=1)? +a?
(5)

or ] =[1/8, det (Zz=W")] ;.
Using the formula®

n
1/@mi) § [p()/a)dz = X pa,)/q'(a,)

wh.ere a,, is one of the n poles of p(z)/q(z) and q'(z) = dgq(z)/dA, we can
write
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S Tt
3 s k" .
{2 2 F 57 (%)

i} E (6)
"4 (decz-w")]
dz

Z=Ik

where the z, are the zeros of the determinant, i.e., the eigenvalues of w'.
x
These are z =0/, ,z =0 /&, and z =UO/53.
From the definition of W, it is readily seen that

det(Z=-W"'y=(z=1) [(z=1)(z=8)+ B2 ] +a’ (2= )

so that

d(z) = d [dec(Z=W")] /dz = 2(z-1)(z=8) + (z=1)" + o + 3.

(7)

From egs. (5), (6), (7) we have the matrix elements fz'j:

2
g o= ;2 esszk: (zk—l)(zk-5)+ﬂ ,
H k=1 d(zk)
[ =% esszkr (zk-l)(zk-S) ’
22 k d(zk)

8.zt (2 —1)2+a2
f33 =2 e k i_—

k d(zk)

.zt oz, = 5)

21 ‘12 d(z,)
fo=f =S aB | ang
31 13 k d{zk)

5.z, ¢t Bz, =1)
% k
-[32=f23—2e3 :
k d(zk)
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1. ANALYSIS OF THE EIGENVALUE EQUATION

To find the explicit form of the z, that appear in the matrix elements
obtained in the preceding section we have to solve the following third degree
algebraic equation:

det(Z=W')=2%=-(2+8) 22 +(25+1+a?+B8%) z-(§+a®8+8%) = 0.
(8)

The discriminant R of this equation is

R = (a°/(12)°) [(Snz/az +8=B*/a* - 20 8%/a?)* - (B*/a®) (B /o* - 8)3]
)
where 1 = 5=1. Defining g as

g =-n/27 {2n°+92a*- g%} (10)

the roots z; of eq. (8) for R > 0 are
z = (=r+1+n/3) +iV3s,

(=r+1+7/3)=iv3s,

N
Il

and

N
Il

2rt1+7/3,

where

r = 172 [\S/-q/zh/R + \S/-q/2-\/E]

s=1/2 [V—q/2+\/R - \S(iq/z-/k |

For R < 0 the three roots are real and distinct, and we will call them }_1 .
z, and z,.
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We now want to determine the values of @, 3, and & that will make
R > 0. We consider R as a function of two variables, o andﬁz,and a para-
rameter 5. From eq. (9) we see that R is posltive when B%/a’ = 8 is nega-
tive. This means that, in a region of the o’ ,8 = plane contained between
the a? =axis and a line of slope 8, R is a positive quantity (see Fig. 1).Also,
when 8% = 8a? we have

= (a’/27)(n?/a? = 27)*

and we see that in this case R is always positive except when a? = 7]2/27
where R = 0.

It now remains to examine the region ,52 > ga?. We introduce a new
variable p, by means of [3 = 8pa 8p is then the slope of a line that goes

through the origin contained in the region that we want to analyze provided
that p > 1.
R can thus be written as

= (a5/27) {(n?/a* + 1= 8p> = 20p)* - G4p(p = 1)*} .

o ; 2 :
The expression in braces vanishes for two values of @, which we shall call
ai , along a line of given p. These values are

ol = /(8  +20p=1£8p % (p=1)'4) . (11)

; 2 2 2 ;
We notice that a_ > a, : If we choose a value of a that lies be-

tween a.’i and a.i_ , for example a?= ‘q’_/(sz + 20p - 1), we obtain that, for
this particular value of a’, R € 0. This means that:

1) for a® <o® <al,R<0, (12)
2) for a® <a?,a} >a’,R>0. (13)
It Fan be shown, furthermore, that ,6’2 8pa2 obeys the condition

ﬁ < 87m?/27; thus for 8% > 81?/27 we have R > U.
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To summarize, we have now shown that the values of a, and 52 that
lie outszde the wiangular region bounded by the lines ﬁ = 8a’ and
B = 87 ?/27 make R positive.

The expression

8n°/a? +8= B*/a* = 208%/a® = + (B/a) (B /a® - 8)4

, 2 ,
gives the two curves on the a’, 8% =plane on which R = 0. It can be shown
that

“]
df, /da’, > 0

which signifies that there are no extrema and secondly that the slopes of
those curves are posulve Noticing that when a’=0 (resonance)

[3+ =0, ﬁ =7 ?/4, we obtain the general shape of the R = 0 curves given
in Figure 1. Conditions (12) and (13) tell us, of course, that in the region

between these two curves and the 8° -axis, R < 0.

IV. TRANSIENT SOLUTION

For the particular case in which T, =T, from the formulae given at
the beginning of Section II it is easy to find that the third component of BM,
is

(BM,)3 =exp(W) V, = [MB*/(\* + 1)] [(1 +>\2 ’,\] cos (S A1+ )

(14)

where ¢ = arctan 1/A.
In the general case, from the formulae for the matrix elements f;';‘
given in Section II, we can write exp (W¢#) in the following form

S z ¢ S z ¢ S z ¢t
exp(Wt) =e 51 A(zl)/d(zl) 4 g = 2 A(z2)/d(2:2) te®3 A(z) /d(z3)

(15)
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where

(z=1)(z=8)+B% a(z-8) af

A(z) = -a(z=3) (z=1)(z=8) B(z=1)

a3 -B(z=1) (z=1)2 +a?

Then defining the vector K(z) = A(z) V/d(z) we can write
SLax: f Sz 8%
BM: =exp(Wt)V =e %! K(zl) te %2 K(zz) te s 3 K(zs) . (16)

; 5 * i * .
When R is positive z =z, and since K(z*) = K (z) we have, using the
definition z = z * ifl .

1

M= 1 K )+ K22 )] cos 8.2 ¢ +i[K (2 )= K" (2 )] sin 5.3
BM, = e 1 (zl) K (zl) cos S2:11: i (zl)— (zl) sin szlt

.x #
teS3 K(zs) ;
(17)
However

K(z) +K'(z)=2Re K(z)) and K(z)) = K'(z)) = i2 Im K (z)), thus

5.z ¢ S.z t
= 5 ~ = . ~ + L1 3 .
BM, =2e 1 [ Re K (z,) cos Sszlt lmK(zI) sin Sszlt] e K(z3)
(18)
The third component of this vector (BMI) , which coincides with the
third component of the transient solution (M,), since B represents a rotation
in the 1-2 plane, is then, making tan ¢ = =phase of {K (zl) }3 ,

S x ¢ 5. %7 ¢t
(BMI)_’, :(M.“‘)3 —e ¥ 3 {K(z3)}3+ Qe s%, ]{K(zl)}si COS(SSEII+¢).

(19)

265
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Eq. (19) can be written as

o t - "
(BMI)3=(MI)3=ae O +het cos(Ot+P) (20)
where
o'0=5323 : O‘=55.1:1 : U=8531 ;

a={K(z)}, = [- MB*/(3a® +B%+ 8)] [a’n=8(z,=1) =(z, = 1)*] /d(z),
%
b=2|{K@)},| = (2MB*/3a’ + B2+ )) [/ + ]17/]d(z) |

¢ ==rphase {K(zl)}3 =

= an”! {(f, Re {d(z)} +/ Im {d(z)})/(f Re {d(z)}=/, Im {d(zl)})

[ =aln+ (1-%)(n+ }‘:’1) +22,

and

/

! ‘821+221(1-‘£1) .

From eq. (20) it can be seen that Mt is written as the sum of three
terms. The first one is simply a decaying exponential of amplitude a and
characteristic time o , decaying because o is real and negative. The
second term is a cosine function of frequency o, phase ¢, and amplitude &
modulated by a decaying exponential of characteristic time o, decayingalso
because O is real and negative.

When R = 0 the frequency of the periodic function vanishes, and Mz
loses its periodic behavior. For R < 0 we know that there is also no peri-
odic behavior since the roots o = 53?1 , 0% = 53?2 B = 55?3 are real, dis-
tinct, and negative. We have in these two cases that Mr is just a linear
combination of decaying exponentials.

We notice that in the particular case of T, = T, the purely decaying
term is not present, and that the behavior is just a periodic function modu-
lated by a decaying exponential.
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V. NUMERICAL RESULTS

To compare the order of magnitude of the transient part of the solution
with that of the stationary part, it is convenient to calculate numerically the
values of the quantities (Ms)3 ,a, b, and ¢ for a given set of values of the
parameters Y, w, k, T, N , m and several values of the relaxation times T_,
T, and of the apphed f1elds H and H . The parameters were chosen as
’y = 1.7618 x 10 rad/gauss—sec @ = 5 9690x10 rad/sec k=1 3804><10
erg/°K, T, = 300°K,, N20 = 10‘5, m = 9.2732 x10"*! erg/gauss, T, and T,
were vaned between 10”° and 10~ seconds Ho from 2.7 to 3.9 kilogauss,
and H’1 from 10 to 40 gauss. Some results are shown in Tables I-X. The
following trends appear:

1. Table I shows that & does not appreciably depend on the relax-
ation times, the order of magnitude being in all cases 10° to 10*° Hz.

2. Tables II-1V show that o is approximately equal to 8, its de-
pendence on 55 and the applied fields being quite small.

3. Tables V=VII show that T is approximately equal to §_, its de-
pendence on §  and the applied fields being very small.

4. In Table VIII it is seen that coefficient b is esentially. independent
of the relaxation times, its value basically determined by the applied fields.

5. Table IX shows that coefficient @ has a noticeable dependence on
the applied fields and that its strong dependence on the relaxation times is
mainly through the quantity &, rather than §_ or -

6. A comparison of Tables VIII =X shows that @ and & are only a few
orders of magnitude smaller than (M.s)3

Thus the transient solution is seen to be either of the same order of
magnitude as the stationary solution or down to a few orders smaller and that
it decays with characteristic times approximately equal to the relaxation
times of the system, and that its frequency of oscillation is determined by
the applied fields, being of the order of magnitude of 10°Hz.
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Ho (Kgauss)

TABLE 1

-0 x10%rad/sec

Daltabuit and Rothman

Hl = 10 gauss H1 = 25 gauss .H1 = 40 gaus§
2.7 12.123 12.129 12.142
3.1 5.0776 5.0937 5.1233
3:5 1.9804 2.0212 2.0947
3.9 9.0215 9.0306 9.0473
all & ,8
m 3
TABLE 1I
H, (Kgauss) ~a, ¥ 10° rad /sec
H1 = 10 gauss H1 = 25 gauss H1 = 40 gauss
2.7 3.3479 3.3490 3.3185
3.1 3.3274 3.3135 3.2699
3-5 3.3036 3.1763 2.9572
3.9 3.3224 3.3240 3.3035

8, ==3333x105 Hz, §_=-=1.111x102Hz
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TABLE III
H, (Kgauss) -0, x 10°rad/sec
H1 = 10 gauss Hl = 25 gauss H1 = 40 gaussl
2:7 3.3283 3.3289 3.3295
3.1 3.3332 3.3249 3.3173
3.5 3.3257 3.2938 3.2377
3.9 3.3369 3.3308 3.3253
§ ==3.333x105Hz, 3  ==-2.500x10%Hz
TABLE IV
HO(Kgauss) :Ob x 10* rad/sec
h'1 = 10 gauss H1 = 25 gauss H1 = 40 gauss
2.7 4.9951 4.9951 4.9890
3.1 4.9676 5.0592 5.1690
3.5 5.0653 5.3537 5.8633
3.9 4.9707 4.9707 5.0134

= 4
8, ==5:000x10*Hz, 8

==1.250x10°Hz
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H0 (Kgauss)

TABLE V

O x10%rad/sec

Daltabuit and Rothman

Hi = 10 gauss Hl = 25 gauss H1 = 40 gauss
2.7 2.5025 2.5022 2.5019
3:1 2.5001 2.5041 2.5080
3.5 2.5038 2.5198 2.5478
3.9 2.4982 2.5013 2.5040

8, ==3333x105Hz, §_ = =2.500x10°Hzx
TABLE VI
H, (Kgauss) - x105rad/sec

Hl = 10 gauss H1 = 25 gauss H1 = 40 gauss
2.7 2.5008 2.4971 2.4934
3.1 2.4974 2.4924 2.4821
3.5 2.4917 2.4523 2.3862
3.9 2.4977 2.49806 2.4934

3, ==5.000x10*Hz, &, =~-2.500x10°Hz
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TABLE VII

-0 x 10*rad/sec

H1 = 10 gauss H1 = 25 gauss Hl = 40 gaussl
2.7 2.3526 3.3526 3.3136
3.1 3.3266 3.3120 3.3022
3.5 3.3233 3.2558 3.1492
3.9 3.3136 3.3810 3.3461

5, =<-1.250x10%Hz, 8, = =3.333x10%Hz
TABLE VIII
H_ (Kgauss) bx 10" ? erg/gauss

.H1 = 10 gauss H1'= 25 gauss H1 = 40 gauss
2.7 0.39 2.46 6-29
3.1 2.58 16.0 40.6
3.5 19.2 115. 274.
3.9 1.02 6.42 16-4

all §_, &

s
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TABLE IX
) H, (Kgauss) ‘ a| x107" erg/gauss
H1 = 10 gauss H1 = 25 gauss H1 = 40 gauss
247 0.39 2.46 6.29
3x 103 3.1 2.58 16.0 40.5
3.5 19.1 115. 274.
3.9 1.02 6.49 16.3
2.7 0.36 2:22 5.66
10 3.1 2.32 14.4 36.4
3.5 17.2 103. 243.
3.9 0.92 577 14.7
2.7 0.59 3.68 9.36
4x107" 3.1 3.86 23.6 58.0
3.5 28.1 153. 311.
3.9 1.54 9.57 24.1
27 325. 1060. 1435.
107% 3.1 1170. 1878. 1999.
3.5 2135. 2259. 2129.
3.9 744. 1895. 2303.

a is positive for § < 1, negative for § > 1

TABLE X
H, (Kgauss) (Ms)a x lo‘gerg/gauss
2.7 1.7-1.9
3.1 . 1.5=2.1
3.5 0.6=2.4
3.9 2.6=2.7

(characteristic values)
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VI. CONCLUSIONS

We have obtained the full solution of Bloch’s phenomenological
equations that describe the behavior of the magnetization of a system of Ny
dipoles per unit volume under the influence of a magnetic field that has two
parts; a constant one and a rotating one perpendicular to the first. The
dipoles are allowed to interact and to perform small vibrations around their
equilibrium positions. This full solution contains, of course, the stationary
solution given by Bloch?, but also contains a transient part!. This transient
part (eq. (20)) is composed of two terms: an exponentially decaying term,
and a cosine function modulated by a decreasing exponential.

The existence of the transient part could be used to obtain information
about the relaxation times of this system. If, for a given material, we set a
value of H0 near to resonance, in other words fixing a small value of a.2,and
commence with a reasonably high value of the magnitude of the rotating field
(a reasonably high value of ﬁz), we should observe a transient that has peri=-
odic behavior, since presumably this point is in the region where R > 0 (see
Fig. 1). We then decrease the value of H until we find the first value of H
for which this periodic behavior does not appear. These values of a? and 3
give a point which is now on the curve R = 0. This gives us the value of
,8_2 , from which we can obtain the value of &, from eq. (11). If we continue
reducing H_ we eventually will arrive at a point where the periodic transient
behavior reappears. This is the value ,Bi, from which we can obtain acheck
on the value of § previously obtained. If for all values of H the periodic
behavior persists we know that the chosen value of a? is too large, and we
must repeat the above procedure with a smaller value of o,
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3172/27

n2f4

2
Fig. 1. Sign of R in the az, B -plane. R <0 in the shaded region, R = 0
on the solid curves, and R > (0 elsewhere,
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RESUMEN

Se estudia el comportamiento de un sistema de dipolos magnéticos en

un campo magnético, usando las ecuaciones fenomenolégicas de Bloch. Se

encuentra que, si se aplica un campo rotativo, el comportamiento transitorio
de la componente perpendicular de la magnetizacion del sistema estda dado

por la suma de una exponencial decreciente y una funcién senoidal modulada
por una exponencial decreciente. La expresion tedrica que se obtiene pro-
porciona las amplitudes, frecuencias, tiempos de decaimiento y fase en tér-
minos de pardmetros como los tiempos de relajamiento del sistema. Se dis-
cute un método apropiado para determinar experimentalmente estos valores.





