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ABSTRACT: The group U(3) x U(3) has recently become of importance in ele-
mentary particle physics. The relevant irreducible represen-
tations of this group are labeled by four non-negative integer
numbers [b: b’z ] U);b; ], and its physically significant basis
states are classified by a chain of groups u,(3) D U,(z)) u,(l).
It is known that this classification scheme involves a “multi-
plicity problem”, but when b: = () this problem does not arise.
In this paper we determine the matrix elements of the gener=

ators of U(3) x U(3) with respect to the previously mentioned
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basis states, restricting ourselves to those irreducible represen=
. . ' . . - .
tations with »' = 0. We also give a brief discussion of the re=

presentation coefficients of U(3) x U(3).

1. INTRODUCTION

The problem we want to discuss in this paper is the generalization to
n= 3 of another problem, corresponding to n = 2, which is considered nowa-
days a standard topic in atomic spectroscopy !, namely: the determination of
the matrix elements (ME) of the generators of a group SU(2) x SU(2) with re=
spect to a basis that diagonalizes the Casimir operator of a definite SU(2)
subgroup. If we denote the generators of SU(2) xSU(2) by ]E;) , s=1,2;

g =1,2,3; obeying the commutation relations

then the Sl (2) subgroup is that one with generators J = ]q(“ + ];2) , and
the problem consists in the evaluations of the ME

& 3 .3 U ()| 2 i >
A1 m []q l/lrzfm .

where jl j2 are the labels of the irreducible representation (IR) of
SU(2) xSU(2), and jm are the labels of the IR of the subgroups sHi@2ys5.R(2)..
This problem was originally solved in 1931 by Guttinger and Paulil!, who
used in their analysis only the commutation rules of the generators ](‘”. The
same problem, at present, can be trivially solved by using the powerful tech-
niques of the Algebra of SU(2) irreducible tensor operators, i.e. use of
Wigner-Eckart theorem and Racah coefficients of SU(2).

In our generalization to the case n = 3, i.e. the case of the group
SU(3) xSU(3), we have not attempted an analysis similar to that of Guttinger
and Pauli; on the other hand we cannot fully apply the techniques of the alge-
bra of tensor operators in this case, as the necessary Racah coefficients of
SU(3) are not available at the present time. So we based our analysis on a
combined use of the Wigner-Eckart theorem and use of the explicit expressions.
of the U(3) x U(3) basis states, which already have appeared in the litera-

ture? .
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Our main motivation in undertaking this problem was the fact that the
group U(3) x U(3) plays an important role in the recent applications of higher
symmetry schemes to elementary particle physics!. It thus seems to be a
relevant problem to explore the general properties of this group, such as the
bases for its I R, the ME of its generators with respect to these bases, the
representation coefficients, the Clebsch-Gordan coefficients of the group and
so forth. To our knowledge, the only of the aforementioned properties which
has been studied in some detail is the first one. Moshinsky? has given the
explicit expressions of basis states belonging to an IR,of U(3) x U(3) and
having the highest weight in a L (3) subgroup, this being the classification
of physical interest’. From the states of reference 2, and the lowering
operators of the unitary group® , we can construct the complete basis for an
IR of U(3) xU(3). In this paper we make use of the basis states of reference
2 in order to evaluate the ME of the generators of U(3) x U(3) with respect to
them. As far as we can tell, these ME formerly had been explicitly determined
only for some particular IR of U(3) x U(3) or for particular IR of the U (3)
subgroup. Our own analysis is also somewhat restricted owing to our desire
of avoiding the “multiplicity problem” that will be mentioned three paragraphs
below; nevertheless it goes further than the previous attempts**5. We also
give in this paper a brief discussion of the representation coefficients of
U(3) xU(3).

The generators of U(3) x U(3) are 18 operators M :; m,v=1,2,3
obeying the commutation rules

'

[ [
[MV’MV,] =Mv SV! _vasv-
o M KM K K

1] 1 '
[N",Nvf]=NV Svf—NVISV
7R bou 7"

|
=]

(M2, N%1] = (1)

The Mz are the generators of the first U(3) group, and the N: are those of

the second one. An IR of U(3) x U(3) will be labeles by the indices

[h S [b b '] with the 5] being non-negauve integers obeying h 2 b > 0;
/g > 0 i.e., each partltton [IJ b, '] specifies a Young pattern of two

rows. As a matter of fact the most general IR of U(3) is labeled by a Young

pattern with 3 rows?; however, we are mostly interested on IR of SU(3), all

of which are equivalent to IR of U(3) with only two rows. In the notation
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commonly used in elementary particle physics® and IR of SU(3) xSU(3) would
be denoted by [)\,u] [A''], the connection with our notation being:
)\—b —b TR }\'-b -b‘,,u. =b'

The rows of an IR of U(3) x U(3) can%e classified in several ways;
we shall mention two of them. In the first classification scheme one gives
the 6 indices specifying the canonical subgroups U(2)D U(1) of each U(3)
group; i.e., one is classifying the rows of the IR according to the canonical
chain of groups

UB)xUB)D U(2)xU(2)D U(1) xU(1) .

The basis states of an IR of U(3) x U(3) in this classification scheme are
simply the product of the Gelfand basis states2'® associated with each U(3)
group, and are denoted as

I’ ! 1 I
.b1 ,bz 0 b3 ’b4 ’0

7; 4, a, 4, RN IR R A SRR M
r r
1 3
(2)
The operators M M, N1 Ni and the quadratic Casimir operator of each

U(2) subgroup, are dlagonal with respect to the basis states (2).

Now, for the physical applications' we rather need a different set of
basis states, with respect to which all the Casimir operators of a chain of
groups L(3)> W(2)D U(1) are diagonal, the group WL(3) having as gener-
ators

v
C =Ml + NV p,v=123 (3a)

It is then natural to define

K" = MY = NV ;

L= MY - NV v =1,23 (3b)

v
and consider C and K” as generators of U(3) x U(3); according to (1)
they satisfy the commutation rules

[C:,CZf]= VS!-LJfS (4a)
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) r i
[C;; K:;*) N K:: 5:: - K:! 3: (4b)
[Kz . K:;:] = C: SZ: - C:: 8: (4¢)

The physical states mentioned above, thus correspond to a classification
scheme by means of the chain of groups

U3)xU(3)D U3)o W@d U,

and they will be denoted as

850 117, 1 = rg L e
ERNIUN S PO A = [[p/B/) V(b b)Yy, bbby g a,7,>

(5)
In ref. (2) the problem of construction of the states (5) has been solved; it
is shown there that the identity bl it b * b + b4 = b1+ b2+ b_holds, s
we have only 5 independent indices to label the rows of the IR of U(3) xU(})
in this classification scheme. The sixth index needed to complete the
classification, namely ¥ , has been exhibited in the notation of the states
(5); v serves to distinguish between equivalent IR of the lL(3) subgroup
when these appear more than once; this is the “multiplicity problem”. Again
from reference (2), it is known that when 5 " =0 there is no need for the
mdex v;i.e. noIR (b b b ) of U(3) is c:mtalned more than once in the IR
(5! ] [b 0] of U(3) xu2(33 In this paper we restrict our analysis tothese
parncular IR of U(3) x U(3); our basis states will be denoted as

10 ' .
“Zbl bz ] fbs O] ! b1b2 b3 ’ q1q2r1> 6)

and as the indices [»'h"] [bs' 0] will always be the same in all states, we
shall frequently keep them in mind and write our U(3) x U(3) states simply
as lb b s 4,9 r1 -

Even though in ref. (2) a method has been presented to deal with the
“multiplicity problem”, we make the restriction indicated in (6) in order to
keep the problem within manageable proportions, as its complexity greatly
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increases when one considers b; # 0. There are two former determinations
of the ME of the generators of U(3) xU(3) known to us*'5. In ref. (4)
S.K. Bose has solved the problem in the special case b1 b bs s b; =0,
and in ref. (5) A. Bincer has described a method to perform the calculation in
the general case (b’ # 0). The approach of ref. (5) is based, as ours is, on
the use of the Wigner-Eckart theorem’ applied to the tensor of K*, but the
reduced ME of K~ were explicitly determined by Bincer only for some special
IR of U(3) of interest in current algebra theory; namely the case when, in the
notation of equation (19) of our paper, (b b b ) and/or (b b b ) is an octet
representation of u(3)

The ME of the generators C of (3a) with respect to the states (6)
are, of course, well known®. The remammg task is the evaluation of the
ME of the K of (3b) with respect to the states (6). This will be done in
Section 3, atter the ME of an auxiliary tensor operator have been evaluated
in Section 2. In Section 4 we make some considerations about the represen-
tation coefficients of U(3) x U(3).

2. MATRIX ELEMENTS OF THE CREATION OPERATOR A:L

We shall adopt the notation of ref. (2). The generators of U(3) x U(3)

will be realized in terms of a set of creation and annihilation operators a;s .

4= v u
a'us , aks . “,s=1,2,3, obeying the usual commutation rules of boson

operators?. The explicit form of the generators (3a,b) is
v 3 +
C = 3 a* o (7a)
B gy B
L AT v + v2 + vy _ Y + v3
K =a a’'+a _a"?=-a" a"=C =24 4 b
m B K2 ©3 K K3 (78)

The states (6) are given in terms of some determinants in creation operators
acting on the ground state l 0 > . The determinants that appear are

s _ _+ st 4 + + o 123 _ bk 3
A,u = a#S,A#vz s = 8,58, B, = 5_:'.& €k 919, 9%, (8

E:‘;’k being the completely antisymmetric tensor. In particular, the state (G)
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having the highest weight in the IR (b b b ) of the U(3) subgroup is’
/ ] ' . —
| (55 [k, 0); bbb bbb >=

h
—N(bbb>(A) B (30 TR V0 R

17238

- + —_ LG L
N b b) = (b= b, +2)!(b, = b +1)!(b b2+1)z(1,1-52+1)g ?

By * DUk * 11 IB) = B)B = b+ 1)UB,= b )Nb = b+ 1)I(B) = )18~ B! )1

(9b)
All the other states of the IR of Wl(3) can be generated from this one by means
; v . s
of some functions of the generators CP called lowering operators®. From
the fact that the exponent of each variable in the polynomial (9a) must be non-
negauve we find that the IR (b b b ) of W(3) contained in the IR
[b b ] [b 0] of U3) x U(3) are those which satisfy b 1 2 bz >h'>2h 20;

2 3
b + b¥b =b'+b'% b’
1. 2 "8 1 2 3
Our next step will be the evaluation of the ME of the creation operator
A::. with respect to the states (6):

<b b b }Erla lbbb,qqr . (10)

(Notice that we are using now the abbreviated notation for the U(3) x U(3)
states*, We shall evaluate (10) by means of the Wigner- Eckart the orem’
U,(S) From the explicit expression of the Gelfand states? we find that A
m =12, 3 are the components of a U,(3) irreducible tensor

in

b b b ]

T 1 23
qqf

*As a matter of fact, the U(3) x U(3) labels of the bra-state in (10) arc
[b b ]{b '+1,0]; however this change in bs is irrelevant for the calculation as

from (9) the index b occurs explicitly nowhere,
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with indices b =1, b =h =0; i.e. a triplet in the language of elementary
particles, the de:alled classmcauon being

3_T[1oo] A3=T[100] AS=T[100]. (11)

1 101 Y=g 100 r =5 000

In order to be able to apply the Wigner-Eckart theorem we must know
the U (3) Clebsch-Gordan coefficients (CGC)
b b

bbb 100
1 2

=< .
. €5 bbba,qlq

t-ﬁ
)
=

(12)
where on the right hand side the first term is the reduced CGC or isoscalar
factor, and the second term is the ordinary §U(2) CGC in the notation
<] m j,m I;m > . We give in Table I the reduced CGC that appear in (12).
ThlS table Was constructed by setting b = 1 in the closed algebraic ex-
pression for the L (3) reduced CGC

<}"'1'192’93. v 4 950 bl ql )b1b2b3’ q1q2>

calculated by Moshinsky®. The ME in (10) can thus be written, according
to the Wigner-Eckart theorem”’ , as

—_——— == = [100]
bbb,qlqr|T1~ 1Ibb  9,9,7, >
bbby 100 bbb :
= " ——— 100
= 9,49, 5 4, 0 1, 4, <bh b b T ]”blbzb >
r f” r
1 1 1
(13)

[1007]

the last factor being the reduced ME of the tensor T -
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___ From the Clebsch-Gordan series of 1/ (3) we know that the IR

(IJ1 b2 bs) in (10) can be either (b1+ 1, b2 bs) or (bl . b2+ 1, ) or (b1 bz = b3+ 1).

100

We have then to evaluate 3 reduced ME of the tensor T . In the appendix
we give the details of the determination of these reduced ME and quote now
the results:

%
(b +3)(h = b/ +2)(h = h'+1)
(b, =b +3)(b =b,+2)

[100]
<b+1, b | T ||blbzb3>=[

(14a)

)
%

] ' A
(b2+ 2)(192- b2 + l)(b1 - bz)
(bl - bZ )(bZ - b3+2)

[100]
<b ,h+1,b|T ]!b1b2b3>=|:

(14b)
|/
b +1)h'=b )b '=-h +1
<b1b2,b3+1”T[1m]t|b1b2b3>-_-l:(s ) (5) = By) (5= By )]
(b =b*1)(b,= b))
(14¢)

With these formulas, plus Table I and a table of §IL(2) CGC we can evalu-
ate all the ME in (10).

3. MATRIX ELEMENTS OF K:

We shall consider two separate cases for the ME of KV with respect
to the U(3) x U(3) basis states (6), namely: ME diagonal in (]‘;1 bz b:s) and
ME non-diagonal in (bl b2 ba) . The analysis in the latter case will be done
using the Wigner-Eckart theorem, but in the first case we shall follow a more
direct analysis. We prefer not to use the Wigner-Eckart approach in the first
case because of the involved nature of the 2 reduced ME of that case.

a) ME diagonal in (.b1 b2 bs)'

In this case we first determine explicitly the ME

< r 3 >
bbb, qla)r |K3|blb2b3,qlq2r1 . (15)
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From the commutation relations (4b) we have:

3 3

Kz_szs KJCZ, K =C K, KsCl,

taking the ME of these identities with respect to the same states as in (15)
and introducing a complete set of intermediate states between a C and a K,
we deduce the ME of K and K in terms of the ME in (15) plus the known?®

ME of the .(3) generators C We obtain, for instance, using equation (16)

below, and recalling that the “ME of a C are diagonal in (b1 b2 bs)

<k bb,q'alr!|K;|b b b v 4, 4,7 > =<bbb , qlqr IC |5 b

r >
172%3? 1725 3’q1q21

1 2

7 vt g3 bt
x[<b1b2:3,qqr|K |b1b2b3,qqr>—<b bb,q;qgrlIKslb1b2b3,qlq2f1>].

+
Then the ME of K and K follow from the. hermiticity properties K (K:)

and K (Ks) . As for the ME of the K#, M,V =1,2 they can be ob-
tamed by an analogous method using the commutators

3 3
ECI,Kj] =KT and[C#,K;‘}=Kﬁ-Ki;,&=l,2.

Thus we see that the essential step is the evaluation of the ME in
3 3. 3%
(15). This can easily be done, as from (7b) we have K: = Cs- ZAs As

3
and e know from the last section the ME of A . It is found that the ME
of K have the value
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< [ ] 3 _
blebiﬂ’ql q2 rl |K3|b1b2b3’qlq2rl> _5 L :8 2 2’ 8!'1?1' %

(b1 - q2+ L) (b, = ql) (b1+ 2) (b, = bz' + 1)(}:1 - bl')

x b1+ b2+b3 -y
(bl- bz)('b1 - 53‘1' ].)(;b1 - b3+ 2)(;‘31 - bz-i- 1)

@, = bt )b, =g ) Bt 1) (b= b )b/~ b +1)
(b, = b, ¥ 1)(h = b +2)(b - k)b, =b F 1)

’ ¢
5 1, b+ 2)(q,= b 1) (b= b+ 1)(b/= b +2) b,

(16)
(b1 - b3+ 2)(}:1 - b3+ 3’,)(&:2 - ba+ 1)(b2- bs+ 2))
b) ME non-diagonal in (b1 b bs)' Ceio]
The classification of the K,‘i as U(3) irreducible tensors Tq i has

: ; 1 5k N
been given by Kuriyan et al'®. Except for an overall multiplicative factor

they found that

s, [210] s, [210] 2 [210]
Kl - T212 y Ky = T211 2 Kl - T202
1 [210] 2 [210] 1 [210]
Ka = TIOO 2 Ks =T T101 ? Kz = Tzoo
17
gt 1 T[lxl]__lT[zlo]+ 1 T[zmj (17)

1 \/3— 111 \/6— 111 ‘/2— 201
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p 28 7 . .
We thus see that the K are a mixture of a singlet and an octet operators, in
the language of elementary particles. As

(1] 1 2 3. 1 2 3
3T, =K +K;tK;'=C +C -C,

with

3
C,= > ALA : §=1,2.3 (18)

s 5 ’ A
and the states (6) are eigenstates? of C_ with eigenvalue b_ , then the
Em] . - :
tensor T is diagonal with respect to the states (6) with eigenvalue

L@/ +b!-8)).

/3‘. ) [210]
It remains only to evaluate the ME of the octet operator T .

shall do this by means of the Wigner-Eckart theorem:

We

< . ¥ o T
blbzbs,qlqz,21{),q1q2)blbzb3,qlq2>x

1, - 1 bk i Boeaiao it | 1T L ST
“<;(‘11 7)1, E(ql’fqz).;(ql q,)s 1, 5(qu‘rqz)li(q1 g,)7, E(ql*'qz) x

— — — . [210]
<
x<h b b|T e b, 5,>
(19)
where, on the right hand side we have : the reduced lL(3) CGC (or isoscalar
factor), the ordinary SU(2) CGC and the reduced ME of the tensor T (210]

As we are now interested in those ME non-diagonal in lL(3), we know ! that

the IR (b b, b,) in (19) can be ‘any of the six IR

+
b t1,5,%1,b), (b1, b ,bF1), (b, b1l b*1),

(20)
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and as each one of these appears at most once in the Clebsch-Gordan series,
there is no need for multiplicity labels? in (19). The reduced CGC of (19)
are of a special type, tables of which are available in the literature 19711,

In l:thoa ]APPEndix we briefly explain how the 6 reduced ME of the octet
210
tensor T' are evaluated, and we give now the results:

[210]
<b1+1,b2-1,b3||T I 5, 5, 5 >

o, (b, +3)(h,* 1) (b, - bl' + 1)(b1'- b+ 1)(b, - bz' +2)(b, - bz') ,
(b, =b,t2)(b, = b+ 3)(b, = b +3)(h,= b))

(21a)
<h-1,5+1,5 T2V b 55>
1 e i 1 2 3
! ’ ’ I !/2
., I:(b1+2)(bz+2)(bl—bl)(bl -b V(b =b*1)(b,= b+ 1)] ,
(b, =b,=1)(h = b,)(b = b +1)(b = b +2)

(21b)

<h+1, b2,b3-1||T[21°3||b1;;2;;3>

' ! |/2
e [bs (b +3)(b, = b/ +3)( -_bg' F2j(h b b 1Y =b ¥ 2)]
(b =b +2)(b =h +3)(b ~h+4)(b ~h+2)

(21c)
[210]| S
<h=-1,b ,h+1|T |b b b,

L

' ' ’ r_ 2
\ [(b1+ 2) (bt 1) (b =BV (b = b + 1) (B = b)(b/= b+ 1)] ,
(b = k) (b, =b) (b = b ¥ 1) (b, = b))

(21d)

[210]

& 55>

<b1b2+1,b3-1”T by b,

L

I} ] ' 2
- [(b2+ 2) b (b =b,)b/ = b +2)(b,~b t1)(b) =b* 1)] ,
(B, = b3k =B ¥ 3) (k=B F2)(B, =B F )

(21e)
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<h b -1, b+1”T[1]”blb2b3>

N

1 ! ' l_
(b2+ 1)(?)3'*‘ 1)(.‘31 - b2+ 1)(!)1 - b3+ 1)(};2- .792)(‘!72 bs)
(bl- b2+ 2)(Ea1 - b3+ 1)(b2 = ba— 1)(152 - bs)

(21f)

Combining (19) and (21) together with the tables of references 10 or 11, we
obtain the ME of K: non-diagonal in (bl b2 b:s) :

4. REPRESENTATION COEFFICIENTS OF U(3) x U(3)

The representation coefficients (R C) of the group

b b
SU(3): 10[,’ ,2],

1
ql q2 By q1q2 n

can be expressed in terms of the familiar R C of SU(2): lQ m' (@, B,%); an

explicit expressnon of this fact has been given by one of the present
authors 2 in the form

[k, 5,1 by h

L
peeesYy) = Z b [(q-qﬂ)(q"-q'*l)]Z(T-cﬂll
’ I r 1 3 - 2
44,9, o=0 i 1 L

D
[ (b th 'q-q)._qu-b +7¥y l(fJ g -0),_(:5 th ~o=7; 1 (g,=b, +7), {q sk +m]

[ T, -q),_(q =T ]”"‘? =o), 'Ih”’-cf T); 'lq o Tk fq'-l- «'—.'y‘:]
1 2

|
. LO/Z(ql 4,)

(a,B ,7%)
rl-"z(ql** 4,),0+ T=h=h+ "z(qtﬂ‘ gy L4 7d
“(q!-q))

. DZ 1 2 ,ﬁ ,,)/2)
O’+7'-.bl-b2+ (q +q),r—-/(q +q) 2 2
B‘/zrr-o)

(& B m.)
+g=h =bh+ %0+ bt ' B = ke e 2 2 2
q,t4e, b1 bz (0 + 1), g, +a, b, h,* %(o + T)
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The R C of the group SU(3) x SU(3) would be simply a product of two RC of
SU(3) if the basis states of the IR of SU(3) xSU(3) were classified as in (2)
Now, of course, we are rather interested in the RC of SU(3) xSU(3) when the
basis states of the IR are classified as in (6). One way to obtain the latter
RC is to transform from the basis in (6) to that in (2)(with " = 0); the
transformation brackets between these 2 bases are, as is well known, are the
CGC

whose isoscalar factors were algebraically determined by Moshinsky®. Hence
the R C of SU(3) xSU(3) in a basis classified by U(3) are

0 [k, k1[4, 0]

q

(u,v) =

2'1;b1b2b3q1q2r1

(23)
where u, v stand for the 8 parameters of each SU(3) group, respectively.
A formula similar to (23) is valid for the ME of the operator
exp (ia K;) with respect to the states (6); in that case the product of two
D on the right hand side of (23) is replaced by

¢ "+h'=p'=g'=g'+g)]s _ — O e B B
exp [za(b1+b2 b3 &= iy qs)JB 5, 5 ;
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RESUMEN

El grupo U(3) x U(3) recientemente ha adquirido gran importancia en
la fisica de las particulas elementales.  Las representaciones irreducibles
relevantes de este grupo estan caracterizadas por cuatro nimeros enteros no
negativos [h'h'][h'h'] , vy sus estados basicos con significado fisico se
clasifican por medio de una cadena de grupos Wiy UW2)> U(1). Es sabi-
do que este esquema de clasificacion involucra un “problema de multiplici-
dad”, pero cuando b: = 0 este problema no se presenta. En este trabajo de-
terminamos los elementos de matriz de los generadores del grupo U(3) x U(3)
con respecto a los estados basicos mencionados arriba, restringiéndonos a
representaciones irreducibles con b; = (0. También damos una breve discu-
sion de los coeficientes de representacion de U(3) x U(3).
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APPENDIX

We shall describe in this appendix the method by which the reduced
ME given in (14) and (21) were determined.
First, in the notation of (9ab) we have*

B N(b b b

A bbb ;bbb >= ©i5%) |b +1, 5

1 1 2 3 I 21 N(b"'l,bb) 1 ! 2
1 2 3

?

byih t1,bb+1>

(A.1)
from here we deduce the ME

3
©<h+1,bb; b+l bz,b1+1|A1|bIb2b3 ;bbb >

and through the use of (13) we obtain the value of the reduced ME given in
(14a). Next, we have from (9a,b):

3+
A b, b+1,b b b +1,b > =
2 1 7] 3 1 2 1

_ Ny, byt 1,h)

Nk b, b))

b =b'+1)|b b b bbb >
2 2 179 .3 1 2 1

3

)

h=b' 12b'-bh 13 h-b't1 1. 123
1. 2" 2”73
(Azz) (Am) A15 (829

123

_ 1,h'=h -1 .
bSN(bl,b2+1,b3)(A1)1 2 (A 3 o>,

(A.2)

But from the explicit form of the lowering operators® we have

2
b,bh+1,b=1;bbb>=__1  C|b,b+1,b-1:0 ,b+1,b>:
i* g 3 27 317320 =, Igttgy” sl
' Vb = h.¥2 '

2
applying C3 on the state on the right hand side as given by (9a) and using
the identity

*The remark in the footnote of page 283 applies to this appendix.
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Alz AIS -

12 13
of (A.2) is equal to

12 1,123
B ¥ A1A:23 , we find that the second term on the right hand side

bJN(}Jl » bt 1, bs)

- \bl,b2+1,bs-1;b1b2bl>
Vb = bt 2N, bt 1, b= 1)

[
b (b= b+t )N , bt 1, b)
(b = b +2) N(b b b.)

123

| b ks h b b> . (A.3)

From (A.2) and (A.3) we deduce the ME

3
<b ¥l bbbt b |&, bbb, s bbb >
and again through eq. (13) we obtain the reduced ME given in (14b). Finally

we have from (9a)

e N(blbz,b +1)

3 o
(b 1) | b b s bbb >,

A | bbb t1;b b b >=
3 1943 LA - T |
N(b‘bzbs)
(A.4)
this permits us to calculate the ME
b b b+1:b b |8 55 b nbb>
Wty 11,218 T 3Ty 2
and through eq. (13) we obtain the reduced ME given in (14c).
As tor the reduced ME of the tensor T [210] ,again their evaluation

depends on the complete determination of some particular ME conveniently

chosen. From formulas (17) we have

LS
V2 2
[111]

and it was shown in the text that the tensor T is diagonal with re=-
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spect to the states (G) with eigenvalue _1 (b ; +h'=h')y. Furthermore,
e 2 3
3 3 3, .3.% ) _/3 [210] | .
Ks = Cs - 2A3 (Aa) , so the determination of the ME of T111 is essentially
8 BH
equivalent to the calculation of the ME of A (Aa) , and this latter problem

can be easily solved using the results of section 2. In this way we can de-
termine explicitly the ME

S o1, b o1, bbb sLh 0T bbb Bl b
11’2-’3’1’2 g | 111 1 %278 DT LA

[210]
- h - = : - -1>
k=1, b1, b sh=Lb,b=1|T ~|bbb ;b =1,b,b=1>,

(

210 ]
<b1+1’b2’bs-1;b1b2b1|Tm |b1b2b3;b1b2b1>’

[210]

<b1-1,b2,b3+1;bl-l,bz,bl-l|Tm

. ™ -1>
b kb 5 b L.k o B E¥,
TRy e TTTTIEY
1% 72 T s >T17271 ! T i27a>" 17271 ?

<hb b=l b415h 1,0 T bbb b b-10>
1L¥%g  TETaT TR 2 T SN Y 1Ty PTG T

from which, through the use of eq. (19) we deduce successively the reduced
ME given in (21a,b,c,d, e, f).



296 A ' Chacén and Colén

TABLE 1

Reduced Clebsch=Gordan Coefficients

. P T _'_>
<}"1132]3'3"1'1‘1'2 ylg )btbzbs’ q1q2

N

(g, byt )b, = 4t D@~ b+ D

<h b b 1) b +1,b b, g1, 4,> =
192 s I ) T 1 1, (b1-b2+ 1)(b1-b3+2)(q1-q2+2)

N

(g,= b ¥ V(b= )b =g+ D
(b =B ¥ Db, = b ¥ D) (g, = 1))

<blb2b3! filqz ;11)b1+ 1, bzy b31 ql! q2+ I =

® >4
(b= gt Vg DG -g) |
3,73, D0, =57 G, 7.32)

< : + + > =
bbb, qlqz,ll) b .k, Lk, q; L, q,

(b~ a, (@~ b~ b+ D |7
L(ql- 7,) (b, =k ¥ (b= bt 1)

< : + }1> =
b1b2bs’q1qz'll)b1’bz 1,.?33,:11,172 1

o

(g=b* Db =a)@=F)
<h b b ,qq;l)b b btl g+l q>=" (g, =% " MV, " &y
Ty R Ul G 1 Saes 1 2 (q-q+2)(b-—+—4b+2)(b-},+1)

S

(g,- bt Db, = 2, Db~ )
<h b b, g4Ik b bt g, q 1> =" ! &~ 9, 1
(ql-q)(b-b+2)(b-b+1)

|
%

(b -a,t 2)(h, = q,* 1)
(bl- b2+ 1)(}31- b3+ 2)

I

2 :
b1b2b3’ qiqz’ 10) b1+ 1’b2 ’bs’ q1q2>

(g, ~b,)(b,~q,*1)
(b= b, )(b,= b+ 1)

< - + -3
blbz bs v 4,9, 10) bl,b2 l,b3 . 4,49,

(q,= bt 1)(g,= b))

<h b b ; ;10b,b,b+1, > =
17278 q1q2 ) £%52 T8 q1q2 (b1_b3+2)(b -b3+ 13
2






