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SUM RULES FOR THE MOSHINSKY BRACKETS"
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ABSTRACT: In this note we derive sum rules and symmetry relations for the gener-,
alized Moshinsky transformation coefficients. A number of relations

valid only for the ordinary Moshinsky brackets are also derived.

INTRODUCTION

The harmonic-oscillator transformation brackets '*? have proved to be ex-
tremely useful in nuclear theory®. Lately, use has been made of them, as well
as of their generalization introduced by Gal* | to construct translationally invari-
ant states of three and four particles®*%*7*8 and to calculate binding energies®
and electric form factors®*? of the triton and the a=particle. In the course of
these investigations we have found some symmetry properties of the generalized
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Moshinsky brackets and sum rules for the usual transformation brackets which can
be proved in a simple manner and, up to our knowledge, have not been reported be-
fore.

The generalized Moshinsky brackets®,

<nglgmyly, Nn t nl, A> = <ab| 2> M

which arise when one considers particles of different masses, are used to
express the two-particle harmonic-oscillator states, when given in terms of the
coordinates X, 0 X, in terms of similar states in the coordinates x, and x, , re-
lated to the previous vectors by a rotation through an angle %[3 in the following
form

X cos 483 -sin 38\ /x
= . (2)

X, sin %3 cos 43 X,

In (1) the pairs ./, are the single-particle harmonic-oscillator quantum
numbers and A is the total orbital angular momentum. The usual Moshinsky
brackets, providing the transformation coefficients from center-of-well to center-
of-mass and relative coordinates, correspond to the special value 8 = % 77 (equal
mass oscillators); we use for them the same notation as in (1), but suppressing
the index 3. The following closed expression has been obtained* for the brackets
(1) in terms of those corresponding to B =% 7, which have been tabulated 2

<abl12 >

. 8p .8 y
i = b=t b;=2 }dexp['/giﬁ(gd-gc)]<cdlab ><cdl|12 >

g
(=750 52 zdexp [%iB(gy-g)] <abled><12|cd >
C

(3)

where

gy= 2”:'+lz' ,

These coefficients have the following properties. First, as elements of a
unitary transformation, they fulfill the following orthogonality relation.
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Fait _
aib <ab|12>B <ab|1'?2 >ﬁ =58.1,8,1, (4)

where

5

11 n.n

8.!.55! fl’
7 I

which can also be derived from their explicit form (3).

that the generalized coefficients are real, so that (4) ca
ing way

< > € Iars: = ' P
aZb ab|12 " ab|1' 2 p 8, 1521'2 (5a)

Similarly, one gets
‘4 r
E<abllz>ﬁ<a 5" |12 >B=5a.aab.b . (5b)

From the expression (3) we have derived in a direct way
symmetry relations which turn out to be a generalization of
relations valid for the Moshinsky brackets 1°

the following
the corresponding

I,

<abl12> =(-1) <ab|21> (Ga)
s "
N

== " <baliz> (6b)
I+

=(-1)!' “ <pal21 > (6c)
141,

=(=1) 2 <12|ab >4 (6d)

' +lb .
=(=1)2 ? <a|12 > 4 (6e)
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Second, it can be proved
n be written in the follow-
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Notice that in (6d) the values but not the physical meaning of the bra and ket
quantum numbers have been interchanged and that in both (6¢) and (6d) the angle
[ remains the same.

The symmetry relations (6) can be proved straightforwardly using the previ-
ously derived relations ' for the special case B = % and the “energy condition”
for the brackets, which implies that

g1+g2=g,,+gb=gc+gd- (7

One can now obtain from the orthonormality and symmetry relations alarge
number of sum rules, some of them valid for 3 arbitrary, others valid only for the
special case 8 =%7.

Using Egs. (3) and (5) one can prove directly that

Z <11'|22'>, <22']33'>, ... <kk'|1172 =
11'22’..kk' ‘81 '62 ‘Bk

—_— ) -
= E cos [ (e, g,)B, B, 5] (8)
where the quantum numbers 1,1 a8 3 s, B " vary over all the combinations

compatible with (7) and the angular-momentum triangular conditions. The case
k =1 is of some interest:

#iﬁ(gl - 82)
3 <12|12>5 = Ze = S cos[4(g-¢g)B]-
12 12 12 L, "4
(9
Further sum rules may be derived from Eq. (3). For B = % one obtains
a sum rule for the Moshinsky brackets which may be written as

2iflg -g,) g, 2,
s, <1256 ><34[56 > e =i Sjed)  <12|3a> @0
56

or, equivalently,
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S <1256 ><34]56 > cos [ m(g, - g,)] =
56

n +n +#([ 'l)
=(=1) if 1¥1 iseven, (11)
L]

S <12]56 ><34(56 > sin [ Y m(g - g )]
56 5 6 8

n +n +ﬁ(l4-12+1)
=(=1) if l2 'I-I4 is odd. (12)

Another sum rule is obtained from (3) by noting that if / + l‘ is even, the
imaginary part of the sum must be zero, while if / + / is odd,  the real part is

zero; this is so because the generalized transformation brackets are easily shown
1
to be real. "' Hence

3 sin [‘”2/3(35"86)]<12|56> <34|56> =0 + 17 even (13) )
56 2 4 :

3 cos [4B(g.-g)]<12]56 ><34[56 > = 0 I+ 1 odd. (14)
56 3 0 L

These two relations may be differentiated with respect to 3, say p times.
Putting

0 if 12+ l4+ ? is even
ﬁ —7
7 if I+ +p is odd
2 4
one obtains the result

S (g~ )" <12[56 ><34l56> =0, p=1,2,... . (15)
56

Using (5a) and (6) we can now derive some other sum rules valid only for
the special case 8= %7:
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S <abl12><abl1’2'> =
a

tl+12+k
=1 - ' '
= E [5‘!1 & by +(=1) 51 3 1] (16)

and

S <abl12><ab|1'2'> =
ab

. ll +12+7\
= 5 51,152.2-(-1) 51.262.1] ; (17

The way they are proved is the following: one splits the sum over [ in
(5a) into two parts, one containing the even and the other the odd values of la .
A similar expression is obtained using (5a) again but now interchanging n'/’
with n'1'. One then uses the symmetry relation (6a) for 8 = %7 and adds and
subtracts these two expressions after multiplying the second one by a con-
venient phase factor.

The sum rules (16) and (17) are important in checking the normalization
of the translationally-invariant three-and four-body harmonic-oscillator states
mentioned above.
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RESUMEN

En esta nota se obtienen reglas de suma y relaciones de simetria para los

paréntesis de transformacion de Moshinsky generalizados. También se obtienen

algunas relaciones validas sélo para los paréntesis de transformacién de Moshins-
ky ordinarios.





