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ABSTRACT:
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A discussjon is given here of the implications and relative ad-
vantages of the use of the minimization of the energy variance,
as an alternative to the well known Ritz principle. To supple-
ment the arguments, some variational calculations of a couple

of simple and completely soluble problems are done, using the
different minimization criteria. It is shown that when the trial
functions are chosen on a physical basis, convergence is quite
as good in the variance as in the Ritz procedure. However the
variance technique is impractical if the sole criterium for the

election of the trial function is a mathematical one as, tor

instance, analytical convenience only. The convergence of the
Temple lower bound (in Conroy’s modified version) is also

studied.
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1. INTRODUCTION

The minimal variance method stands out among the various minimi-
zation criteria regularly employed in variational calculations of atomic and mo-
lecular systems, in the sense that it is designed to optimize the wave function
itself and not just a particular physical property of the system. For instance,
the optimization of the ground state energy as is done in the well-known Ritz
procedure does not guarantee that the adjusted function will be reliable when
used for the calculation of the other properties of the system.

The optimization of the function is obtained by adjusting the variation-
al parameters, so that it becomes an approximate eigen-function of the physi-
cal hamiltonian with the exact energy eigenvalue. We do this by minimizing
the expectation value of the operator

(H=E. )’ (1)

with respect to our trial functions. We then define the variance as the expec-
tation value

vi=<v|@-£e)"|¥> (2)

which, by construction is positive definite. It should be emphasized here
that we are assuming that in (2), H is the exact hamiltonian and also that E__
is the exact energy eigenvalue. As in general this energy is not known be-
forehand, we can use either the experimental value or any extrapolation of a
calculated one.

To avoid this we could use, as is often done?, the Ritz energy instead
of B, in eq. (2). However, this alternative introduces certain disadvantages,
as we shall see. We will now analize two completely soluble problems, where
E _ is known; we shall then be able to draw some conclusions about the ac-
curacy and flexibility of (2).

The present work is intended as a test of the variance method, as used
by Conroy in his study of small molecules!. He uses carefully built trial
functions, which satisfy all the characteristics of the problem and that in-
clude many-body correlations; he then uses them in eq. (2), proceeding by
numerical integration, because of the complexity of the functions. The use
of the Monte Carlo method to perform the integration, implies iterations that
would normally tend to magnify the error introduced by the use of the Ritz,
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or any other approximate form of the energy in eq. (2). As Conroy’s results
give the best ab initio potential energy surfaces for H: and H, yet available,
a test of his variance method seems of interest.

Let us first establish how the variance method works. The quantity
U? is positive definite, so its smallness is a measure of the adequacy of the

trial function W. In fact if U2 =0, then ¥ is an eigenfunction of H with
eigenvalue E__ and viceversa. The equivalent situation in the Ritz principle
is when <‘}’|H|‘P> = E,, . However if U? > 0 and 8 >E_ , the Ritz

ener £ oives only a rel’ahve measure of the devmnon as onl the ratio
8y Cp 8 Y y

£ -E

R ex
E

ex

has an absolute meaning; using the variance, on the other hand, the value of
U? is an absolute measure of the deviation from the exact solution. In fact

the variance minimization consists in the approximate annihilation of the
function | ¢>=(H=-E_) “P > and the adequacy of the chosen trial function
]ll’ > is given by the smallness of the norm

<ple>= 0. (3)

It has been noted” that if the overlap between a trial function and the
eigenfunction ‘Pex is optimized, one can in some instances get nearly a 100%
overlap but still the function ¥ cannot be used to give the atomic or molecu-
lar properties with high accuracy. Or, in other words, the maximum overlap
criterium:

<y |y

ex ' trial

>n 1 (4)

does not give an absolute measure. This is so, because the two functions
can differ in a reduced, yet physically significant region of space. This is
avoided in (3) since the operator (H = Et_x)2 contains all the physical infor-
mation of the system and in a sense “weighes” the importance of the differ-
ent regions of space.

The upper and lower bounds we are going to obtain from the variance
are the following: for the upper bound, the expectation value of H with re-
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spect to functions that have been adjusted before to optimize U*. This is
not only an upper bound to the exact energy, but also by construction to the
Ritz value. As a lower bound, we will use the well known Temple criterium?
using a modified form introduced by Conroy " :

(0) 2
E,_>\=§ - —— )U
k)

5 (5)
ex R

(0) (1)
where SR is the Ritz value, U? is defined in eq. (2) and L and E_  are

the exact eigenvalues of the ground and the first excited state of the
same symmetry. Again, the criticism that in eq. (5) we are using two exact

0
values (Eex is implicit in Uz) to obtain an approximate energy, is not rele-
vant, because in Conroy’s work eq. (5) is only used to extrapolate a value

(0)

s (1)
for the iteration process and, in our problems, we do know E, and E__

exactly; we are only testing the accuracy and convergence properties.

2. VARIANCE MINIMIZATION IN PSEUDO-LITHIUM

A pseudo-atom is a mathematical model that consists of a system of
particles of spin 1/2 that interact among themselves through repulsive har-
monic oscillator forces of unit frequency and that move in a common oscil-
ator potential of frequency v'Z . This is a soluble many body problem intro-
duced by Moshinsky and Calles® with the idea of using it as a trial ground
for approximation techniques developed in atomic physics.

The 2e¢” pseudo atom has been solved by numerous approximation
techniques in a recent paper?. The Ritz variance minimizations were carried
out using the harmonic oscillator (h.o.) basis both in the standard way and
taking the Hartree-Fock solution as a starting point. We use here these re-
sults to calculate the Temple-Conroy lower bound defined in eq. (5).

The results for the pseudo-lithium ion (Z = 3) are shown infigures 1,
2 and 3, where we have used different energy units for the standard and HF
calculations, for practical reasons, as discussed in ref. (9). As the pseudo
atom is a fictitious system, what really matters are the convergence proper-
ties. The curve marked “variance upper bound” corresponds to the energies
derived from the variance minimization. We see that they differ very little
from the Ritz values. Also the convergence of the variance is quite satis-
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Fig. 1 Upper and lower bounds as a function of the number of quanta, for the
standard case.
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Fig. 2 Upper and lower bounds as a function of the number of quanta, using
Hartree-Fock functions.
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Fig. 3 The variance value as function of number of quanta, for the standard
and Hartree-Fock procedures.
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factory ; the lower bounds, on the other hand, start off very well but are
slower in their convergence.

3. VARIANCE MINIMIZATION IN HYDROGEN

Though the H atom is of course a soluble problem, it is still common-
ly used as trial ground for approximation methods. 'In a previous paper by
Moshinsky and Novaro® a Ritz variational calculation for the ground state
energy of several molecules and atoms including hydrogen were carried out
using h.o. states, with the intention both of testing the practical possibili-
ties of the h.o. basis in atomic and molecular physics, and also of showing
the analytical simplicity provided by the group-theorical techniques that have
developed in nuclear physics. We shall here develop a parallel calculation,
minimizing the variance instead of the hamiltonian operator, and compare our
result with those of reference (6). As we are using a real orthogonal basis

we have to minimize the following expression:

v?=[(H¥-E__¥)dv =

- 2
= L Ay iy [I(Hcp,,”cpm - 2B, 9, Ho,) AV + E, sm] (6)

?

where W is the trial function, given as a linear combination of h.o. states
Py » with coefficients Am . We shall follow the notation of (6) using the
variational parameter

2
e=vio ¢

mc4

associated to the frequency w of the h.o. functions and use the dimension-
less form for the hamiltonian:

2 2 /E-EZ

H=L¢?p
2 T

(7)
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In this way the ground state energy has the value E, == 1.

The integrals involved in eq. (6) can be simply calculated, by an ex-
pansion in terms of Talmi integrals using tabulated coefficients”. We simply
list here the results. For zero quanta in the h.o. expansion we get the value
U* = 0.42245, which is certainly not a small one; if we use the value of the
parameter € = 0.416 that minimizes U’ to calculate the energy, we get
€ 2==10.53400 which is a very poor value, especially if it is compared to
the value SR = = 0.849 we get using the Ritz procedure®. To test the con-
vergence we go to a higher number of quanta, remembering that with the Ritz
procedure we get a value of = 0.962 for 10 quanta. If we minimize U? for 10
quanta in the h.o. expansion we see that convergence is extremely slow,
since we get U? = 0.410881; of course, the corresponding energy
e , = =0.53434, does not fit the correct value.

The lower bound, as defined in eq. (5), was also calculated; although
its convergence is of course as slow as that of U?, the value A = = 1.539 is
not much worse than the upper bound obtained from U?.

Therefore, we have a situation in which the Ritz principle gives reason-
able values for the energy® and in which we can optimize the overlap of the 0
quanta function to reach 96 % with the exact function® ; yet, as we have shown
here, this function does not satisfy the H atom Schrodinger equation (1).

In conclusion the mere selection of a trial function, only because of-
analytical simplicity to calculate the integrals, gives a very bad value for
the variance; this is because in the physically relevant regions of space (in
this case inside Borh’s radius) the function does not nearly resemble the ex-
act function®. On the other hand the Ritz method, and also the maximum
overlap criteria, mask this fact, because they concentrate on a single proper-
ty of the system.

This indicates that the variance method is actually useful only when
we choose the functions with great care and when we want them to give a
complete information about the system (as is the actual case nowadays, in
most atomic and molecular calculations). In nuclear physics where H it-
self, let alone E_,  is in doubt and where we can profit on the obtention of
a single property, the Ritz principle may be preferred.

In conclusion we see that when the h.o. trial functions are used in a
problem for which they are well suited, the variance method is quite superior
to the Ritz procedure as it gives excellent convergence, lower and upper
bounds quite as satisfactory and, of course, one can rely more on the functions
when using them to calculate other physical properties; one example is the
calculation of excited states where the Ritz minimization only gives station-
ary values and U? gives absolute minima.
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RESUMEN

En este trabajo se discuten las implicaciones y ventajas relativas del
uso de la minimizacién de la variancia como alternativa al bien conocido
principio de Ritz. Para complementar los argumentos, se resuelven variacio-
nalmente dos sistemas simples, con solucion exacta conocida, usando los
diferentes criterios de minimizacion.

Se muestra que cuando las funciones de prueba se escogen bajo un
criterio fisico, la convergencia es tan buena en el método de la variancia co-
mo en el de Ritz. Sin embargo, la técnica de la variancia no es practica si
el dnico criterio de eleccion de la funcion de ensayo es matematico como,
por ejemplo, por mera conveniencia analitica. La convergencia de la cota
inferior de Temple (en la version modificada por Conroy) también se analiza.





