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ABSTRACT: A discussion is given here oC che implicadons and relative ad•.

vantages oC che use oC the minimizadon oC the energy variancc,

as an alternative to the well known Ritz principie. To supple-

mene the arguments, sorne variational calculations oí a couple

oC simple and completely soluble problems are done, using che
differem minimizati?" criteria. h is shown [har when rhe trial

functions are chasco 00 a physical basis. convergence is quite
as good in che variance as in che Ritz procedurc. lIowever che

variance technique is impractical if che sole criterium for the

election of the trial funcdon is a mathematical one as, lor
instance. analytical convenience only. The conver,Q:ence ol the
Temple lower bound (in Conrov's modified version) is also
studied.
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1. lNTRO()UCTlO~

Novaro and Calles

The minimal vafiance mechod stands out among (he "auous ffiInlffilw

zatioo criteria regularly cmployed in variational calculations oí atomic and mo-
lecular systems, in che sense chat ir is designed (O optimizc the wavc function
itself and nor jusI a particular physical peopert)' of (he systcm. For inscance,
[he optimizadon oí (he ground s(atc cncrgy as is done in (he well.known Rirz
procedure does nor guarantee (hat (he adjustcu function \\'i11 be ecliable when
used foc (he calculadon oí (he other properties oí (he sysrcm.

The optimizaríon oí (he function is obtaincd by adjusting (he \'afiarion-
al parameters, so chat ir bccomes an approximatc eigen-function oí (he physi-
cal hamiltonian wuh (he cxac( encrgy eigenvaluc. \~/e do this by minimizing
the expectation ,"alue of the operator

(11 _ I! )'
ex

(1)

with respect to our trial functions. W'e then define the variance as the expec-

tation value

u' = <II'lul-E )'111'>ex (2)

which, by construcrlon is positive definite. Ir should be cmphasized here
that we are assuming that in (2), JI is the exact hamiltonian and also that £ex
ís the exact energy eigenvalue. As in general this energy is not known be-
forchand, we can use either the experimental value or any extrapolation of a

ca1culated one.
To avoid this we could use, as is often done2 , the Ritz energy instead

of E in eq. (2). Howevcr, this alternarlve introduces certain disadvantages,
ex

as we shall see. \l'e will now analize two completely soluble problcms, where
E is known; we shall then be able ro draw sorne conclusions about the ae-
ex

curacy and flex ibility of (2) •
The present work is ¡ntended as a test of the ,"ariance method, as used

by Conroy in his study of small moleculcs 1. He uses earefully built trial
functions, \\'hich satisfy all the characteristies of the problem and that in-
elude many-body eorrelations; he then uses them in cq. (2), proceeding by
numerical integrarlon, beeause of the eomplexity of the funetions. The use
oí the Monte Carlo method ro perform the integration, implies ¡terations that
would normally tend to magnify the error introduccd by the use of the Ritz,
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As Conroy's results
and H yet available,

3

or any ocher approximate form of the energy in eq. (2).
give the best ah initio potential energy surfaces for "3+

a test of his varianee method seems of interest.
Let us first establish how the variance method works. The quantity

U2 is positive definite, so its smallness is a measure of the adequacy of the
trial function \1'. In faet if U2 = 0, then '1' is an eigenfunetion of 11 with
eigenvalue E and viceversa. The equivalent situation in the Ritz prine iple

ex Iis when < '1'111 \ji> = E • lIowever if U2 > O and 2R > E , the Ri[z
ex ex

cnergy C
R
givcs only a re/otive measure oí the deviation as onll' the ratio

2R - E ex

E ex

has an absolute meaning; using the variance, on the other hand, the value of
U2 is an obso/ute measure oí the deviation from the exaet solution. In faet
the variance minimization eonsists in the approximate annihilation of the
func[ion 1 q>> = (1/- E ) I 'JI > and the adequacy of [he chosen erial function

I
ex

\1' > is given by the smallness oí the norro

Ir has been noted 3 that if the overlap between a trial function and the
eigenfunetion \I'ex is optimized, one can in sorne instances get nearl}' a 100%
overIap but still the íunctÍon 4' cannot be used tO give the atomie or molecu'"
lar properties with high aceuracy. Or, in other words, the maximum overlap
criterium:

<'1' I'JI. > '" 1ex mal (4)

does not give an absolute measure. This is so, because the t\Vo íunctÍons
can diHer in a reduced, yet physically signiíicant region oí space. This is
avoided in (3) since the operator (11 - E ) 2 contains all the physical infor.

ex
mation oí the system and in a sen se "weighes" the importance of the diffcr-
ent regions of space.

The upper and lower bounds we are going to obtain from the variance
are the following: for the upper bound, the expectation value of 11 with re-
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spect to functions thar have beeo adjusted before to optimize U2• This is
Dor only an upper bound to (he exact energy, but also by construction to [he
Ritz value. As a lower bound, we wiU use the well known Temple criterium4

usiog a modified form introduced by Coneoy 1 :

( o)
E ~A. = 1: -ex R

u'
(1) 1:Eex - R

(S)

(o) (t)
where 1:R is rhe Rirz value, U' is defined in eq. (2) and E and E areex ex
(he exact eigenvalues oí (he ground and (he (¡rsr excited s[ate oí (he
same symmetry. Agaio, (he criticism (har in eq. (5) we are using two exac[

(o)
values (E is implicit in U2) (O obrain aD approximate energy, is Dor rele-ex
vaDC, because in Conroy's work eq. (5) is only used tú extrapolare a value

(o) (1)
for (he iteration process and, in oue problems, we do know E and E

ex ex
exactly; we are only testíog (he accuracy and convergence propenieso

2. VARIANCE MINIMIZATION IN PSEUDO-LITHIUM

A pseudo-atom is a mathematical model that consists of a system of
panicles of spin 1/2 that interact among themselves through repulsive har-
monic oscil1ator íorces oí unit frequency and that move in a common oscil-
aror porential of frequency /Z. This is a soluble many body problem inrro.
duced by Moshinsky and Calles. wirh ,he idea of using ir as a trial ground
for approximation techniques developed in atomic physicso

The 2e ~ pseudo atoro has becn sol ved by numerous approximation
techniques in a. recent paper9 o Thc Ritz variance minimizations were carried
out using the harmonic oscil1ator (ho o.) basis both in the standard way and
taking the Hartrec-Fock solution as a staning pointo We use here these re-
suhs 10 calculare rhe Temple-Conroy lower bound defined in eq. (S).

The results foc (he pscudo ...lithium ion (2 = 3) are shown in figures 1,
2 and 3, where we have used different energy units for the standard and HF
ca1culations, for practical reasons, as discussed in re£. (9) o As the pseudo
atom is a fictitious system, what really maners are the convergence proper-
tieso Thc curve marked "variance upper bound" corresponds to the energies
derived from the variance minimization. We see that they differ very linle
írom the Ritz valueso Also the convergence oí the variance is quite satis-
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Fig. 1 Upper and lower bounds as a function ol the number of quanta, lor the
standard case.
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Fig. 2 Upper and lower bounds as a function of (he number oC quan[a, using
Hanree-Fock functions.
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factory; the lower bounds, on the other hand, sran off ver)' well bur are
sIower in their convergence.

3. VARIANCE MINI~nZATION IN IlYDROGEN

Though the H atom is of course a soluble problem, ir is still common-
Iy used as tri al ground for approximation methods. .In a previous paper by
~Ioshinsky and ~ovaro6 a Rirz variational calculation for the ground state
energy of several molecules and aroms including hydrogen were carried out
using h. o. states. with the intention both of testing the practical possibili-
ries of the h. o. basis in atomic and molecular physics, and al50 of showing
the analyrical simplicity provided by the group-theoricaI techniques that have
developed in nuclear physics. \Ve shall here develop a paralleI calcularion,
minimizing the variance insrcad of the hamiltonian operator, and compare our
resulr with those of reference (6). As we are using a real orthogonal basis
wc have to minimizc the following cxpression:

u' ~J(II'II- E '11)' dV ~
ex

~ A A [J(II'f' 1I'f' -21: 'f' 1I'f' )dl'+E' S ] (6)n m n m ex n m ex r.m
n, m

where qJ is the rrial function, given as a linear combinarÍon of h. o. states
al , with coefficients A We shall follo\\' the notation of (6) using the
Tm m
variational parameter

associatcd to the frequency W of the h. o. functions and use the dimension-
less form for the hamiltonian:

11 1 E' p' _ 12EZ
2 r

(7)
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In rhis way the geound stare enetgy has rhe value Eex = - l.
The integeals in volved in eq. (6) can be simply calculared, by an ex.

pansion in retms of Talmi inregeals using rabulared coeffieienrs 7. We simply
list heee rhe tesults. Fot zero quanra in rhe h. o. expansion we get rhe value
U 2 = 0.42245, whieh is cetrainl)' nor a small one; ii we use rhe value of rhe
paeameree € = 0.416 rhar minimizes U2 to calculare rhe eneegy, we ger
2 2 = - 0.53400 which is a very poor value. especially if ic is compared to
r~ value tR = - 0.849 we get using rhe Rirz ptocedure6. To tesr rhe con-
veegence we go ro a highee numbee of quanra, eemembeting rhar wirh rhe Rirz
ptocedure we ger a value of - 0.962 foe 10 quanra. If we minimize U2 foe 10

quanra in rhe h.o. expansion we see rhar eonveegence is extremel)' slow,
sinee we ger U2 = 0.410881; of eouese, rhe coeeesponding eneegy
2 2 = - 0.53434, does nor fir rhe correcc value.

1-L The lowee bound, as dcfined in eq. (5), was also calculared; although
irs eonvetgence is of eouese as slow as rhar of U2

, rhe value A = - 1.539 is
IlOt mueh worse rhan rhe upper bound obrained feom U2•

Therefore, we have a siruadon in whieh rhe Rirz principie gives reasoo-
able values for rhe energy6 and in which we ean opiimize rhe overiap of rhe O
quanra funcrion to reaeh 96 % wirh rhe exact funetion 3; yer, as we have shown
here, rhis funetion does not satisfy the /1 atom Sehrodinger equation (1).

In conclusion the mere selecrion of a rrial funcrion, only beeause of.
analytical simpliciry ro calculare rhe inregrals, gives a very bad \.alue for
the vatiance; rhis is 1?eeause in the physieally relevant regions of spaee (in
this case inside Borh's radíus) rhe funcdon does nor ncady resemble the ex-
aet Iunction3• 011 the other hand the Ritz method, and also rhe maximum
overlap crireria, mask this faet, because they coneentrate on a single proper-
ty of the system.

This indicates thar rhe varianee method is aetually useful onl}' when
we choose rhe functions wirh great care aO<.Iwhen we want them ro gi\'e a
complete informarion abour the sysrem (as is rhe actual case nowadays, in
mosr aromie and molecular ealculations). In nuclear physics wheee 11 ir-
sclf, let alone P. ,is in doubt and where we ean profit on the obrenrion ofex
a single peoperr}', rhe Rirz principIe may be preferred.

In conclusion we sce rhar when the h. o. trial functions are used in a
problem fot which rhey are well suited, the vatiance merhod is quire superior
to rhe Rirz procedure as it ~ives excellenr convergencc, lower and upper
bounds quite as sarisfac(ory and, of course, orle can rely ffiOr(00 the funcrions
when using rhem to ealculare orher physical propenies; one example is rhe
calcularion of excired srares where (he Ritz minimizadon only gives srarian-
ary values and U2 gives absolure minima.
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work.

Novaro and Calles
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RESUMEN

En estc trahajo se discuten las implicaciones y ventajas relativas del
uso de la minimización de la \'ariancia como ahcrnativ3 al bien conocido
principio de Ritz. Para complementar los argumentos, se resuelven variacio.
nalrnentc dos sistemas simples, con solución exacta conocida, usando los

diferentes criterios de minimización.
Se muestra que cuando las funciones de prueba se escogen bajo un

criterio físico, la convergencia es tan buena en el método de la \'ariancia co~
mo en el de Ritz. Sin embargo, la técnica de la variancia no es práctica si
el único criterio de elección de la función de ensayo es mat,'mátlCo como,
por ejemplo, por mera conveniencia analítica. La convergencia de la cota
inferior de Temple (en la versión modificada por Comoy) también se analiza.




