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We intend to use the description of the electron orbital trajectory in the de Broglie-Bohm (dBB) theory to assimilate to a geodesic correspond-
ing to the General Relativity (GR) and get from it physical conclusions. The dBB approach indicates us the existence of a non-local quantum
field (corresponding with the quantum potential), an electromagnetic field and a comparatively very weak gravitatory field, together with a
translation kinetic energy of electron. If we admit that those fields and kinetic energy can deform the space time, according to Einstein’s field
equations (and to avoid the violation of the equivalence principle as well), we can made the hypothesis that the geodesics of this space-time
deformation coincide with the orbits belonging to the dBB approach (hypothesis that is coherent with the stability of matter). From it, we
deduce a general equation that relates the components of the metric tensor. Then we find an appropriate metric for it, by modification of an
exact solution of Einstein’s field equations, which corresponds to dust in cylindrical symmetry. The found model proofs to be in agreement
with the basic physical features of the hydrogen quantum system, particularly with the independence of the electron kinetic momentum in
relation with the orbit radius. Moreover, the model can be done Minkowski-like for a macroscopic short distance with a convenient election
of a constant. According to this approach, the guiding function of the wave on the particle could be identified with the deformations of the
space-time and the stability of matter would be easily justified by the null acceleration corresponding to a geodesic orbit.

Keywords:De Broglie Bohm; curvature of space time; metric tensor; general relativity; hydrogen-like atoms; electron trajectory; quantum
potential; wave function; numerical methods; geodesics; Lorenz geometry.
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1. Introduction significant physical advances. We can obtain a kind of “fu-
sion of opposites”. So could happen with the dBB and GR
The idea that the curvature of space time can explain th@pproach, regarding electron movement in systems like the
movement of the atomic particles is not new. Indeed, wehydrogen atom.
could trace it to the early times of the quantum mechanics. In the deduction of its well-known equation, Setinger
The starting point of our subject is the work of de Broglie considered a non-Euclidean metrics, based in the kinetic en-
that extended the duality wave particle established by Einergy of the particle. As it is well known, Sabinger deducted
stein for the photons, to all particles, and strived to assimiits evolution equation of quantum systems from the classical
late the tracks of the particle from mechanics and the rays adquation of Hamilton Jacobi and from the already mentioned
waves from optics. work on wave - corpuscle duality of de Broglie. The idea that
The method used by de Broglie was to identify the tra-the dynamics of quantum systems could be determined by
jectory of a light ray described by the Fermat principle with space-time deformations could be already originated in the
a particle trajectory described by the Maupertuis principle Schivdinger thoughts [2]. Indeed, in his deduction he postu-
to connect the undulatoy and corpuscular theories. In his faated the expression (in the space coordinatesf the parti-
mous thesis [1], de Broglie considered the undulatory angles, beingl” the kinetic energy in function of the velocities):
the corpuscular theories that each represented a part of the
phenomena and he looked for a kind of synthesis, equating ds* = 2T (qx, ) dt* Q)
the forecasts of both theories. It suggest us a methodological
principle, which could be called the “coincidence principle”: that brings us to a quadratic form, equivalent to a three di-
when a physical phenomenon can be described by two theorensional metrics, that helped him to follow from the Hamil-
ries with opposite principles.é. corpuscular and undulatory ton Jacobi equation towards its well-known equation. But
approaches), by equating their results in a common physicahis metrics did not serve him to characterize the space-time
feature {.e. the trajectories) in a syntesis effort one can getperformance of the particle entourage, because Guper
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considered the particle a mere “image point” without phys-the Riemann geometry. They melted there the gravitation and
ical meaning; the physical reality was assigned by him to thehe quantum potential coming to the conclusion that the quan-
wavelike being (wave parcel). The dual theory of de Broglietum phenomena can derivate from space-time deformations.
became in Sabinger an only-undulatory theory. Anyway, the In this interesting approach the authors start from the Bohm
relationship of Eq. (1) with our approach will be treated by version of the Klein Gordon equation; their conclusion is in
us in a separate paper. this case dual. But their approach is quite different to ours,
Later on and in the frame of orthodox quantum mechan-and moreover no concrete metrics results for microphysical
ics, Wheeler developed a particular conception of geometricsystems are calculated by them, in our knowledge.
dynamics (term who Einstein used for the first time), where  More recently, Novello, Salim and Falciano [10] sug-
the geometry of space-time indeed plays a role in the pemrgested that the quantum phenomena can be interpreted as
formance of the quantum system. He assigned a geometricdle manifestation of a non-Euclidean geometry in the three-
picture to the quantum processes, based on the standard vdimensional space, in the picture of Weyl geometry, in an
sion of quantum mechanics. He treated to reduce all physicahteresting paper. They came to the conclusion to identify the
entities to geometrical beings. But, as Fiscaletti says, [3] iguantum potential with the scalar curvature of this space. In
is impossible a geometric-dynamical description of quantunour approach we do not leave the pseudo Riemann or Lorenz
process from the orthodox quantum interpretation, becausgeometry that is characteristic of relativity.
this interpretation does not permit to consider any event de- Licata and Fiscaletti propose another geometric-
scription in space-time. Wheeler remained in the field of or-dynamical approach related to a very different considera-
thodox guantum mechanics where no place exists for the pation, [11]: the entropic effect derived from the microstates
ticles trajectory. So his model is far from our approach thatthat characterize the quantum system. The trajectories
according to the de Broglie original ideas, considers simultaemerge in this approach by a thermal bath, characteristic
neously real both the particle and the matter-wave, unified irof the Quantum Theory of Fields.
a non-classical way. A common feature of most of those lasts papers [9,10,11]
In some opposite way runs the approach @D Gold- s to postulate a microphysical action and derive from it, by
stein, Tumulka and Zanghi [4] from the 1990 years regardingrariation of it, the equations of the movement and the related
the quantum model of de Broglie-Bohm. They made the firsphysical features including the metrics of the space, in a Weyl
consistent geometric-dynamical conception, as long as wgeometry.
know, giving the limelight to the trajectories. The wave func-  Other approaches related with the quantum entropy have
tion the effective wave function for systems, isolated, in re-been worked out by Shitnev [12,13]. In these approaches,
lation with an entourage or even with the complete universethe quantum entropy, related to the number of possible mi-
has there a nomological character, indicating the evolutiverostates, plays a fundamental role. The vacuum is assim-
rules. Their approach misleads the role of the quantum poiated to a fluid, which can be treated by the Navier-Stokes
tential. We can mention the interesting attempts of these awequation.
thors to develop the geometrodinamical approach by invok-  The already mentioned two authors, Licata and Fiscaletti,
ing a “time foliation”. In this approach, a leaf of this foliation summarized different concepts about the quantum potential
would be a tridimensional hypersurface where all the pointsn an interesting book [14].
have a status of simultaneity. It has been studied in connec-
tion with the Bohm model [5,6] and also for curved spaces) 1. Goal and structure of this work
[7]. This interesting concept emerges from the empirical fact
of entanglement, but is difficult to conciliate with relativity. We focus in this paper the relationship between the de
It must be mentioned that M. Atig, M. Karamian and Broglie-Bohm (dBB) approach, also known as Causal Quan-
M. Golshani [8] developed a quasi-Newtonian approachtum Mechanics, and the General Relativity (GR), in order to
They deduced the quantum potential independently of thgo deeper in the physical concepts of stationary and entan-
Schiddinger equation, so without need of the wave function.gled states like the electron in hydrogen-like atom.
By using the quantum potential in the frame of classical me-  Our purpose is to investigate the metric structure of the
chanics they argued to describe the non-classical effects. Bgpace-time in the case of stationary qguantum systems, where
they need the S and R functions that configure the wave funghe geodesic hypothesis seems reasonable, as well as to try
tion in the dBB approach. to explain the guidance of the particle by the matter-wave
Some years earlier and more related with our proposal wby means of a deformation of the space-time produced by the
find approaches in the frame of a geometric-dynamical duamicroscopic atomic system itself. Itis a first approach, which
theory and in a curved space-time: A. Shojai and F. Shojai [9gxcludes the spin and gravitation.
developed an approach where the motion of a spinless parti- The main purpose of this paper is to find a metric of the
cle is equivalent to a movement in a curved space time, ofpace-time according to the General Relativity where the ex-
conformal character over a flat metric, the conformal factompected trajectory in the Bohm model for hydrogen-like atoms
being the Bohm quantum potential. They formulated a conwould be a geodesic. This metric must be also in accordance
formal metrics in a Weyl geometry that is a generalization ofwith the main features of the hydrogen atom. It is also an
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objective to go deeper into the role of the wave function on
the spacetime deformation and on the particle guidance. We
remain in the Lorenz pseudo Riemann geometry.

Of course we do not pretend any theoretical synthesis
between the two theories, and, furthermore, our approach
is only an approximation to detect profitable features for a
deeper theoretical progress. We must state that we do not
make any attempt to “unify” both dBB and GR theories. In-
deed, dBB and GR are very dissimilar theories. dBB is not
Lorentz covariant and furthermore it works with an non local
field, the so called quantum field and the associated quantum
potential and quantum energy. GR is a local theory. In ad-
dition, dBB is a theory that fusions the undulatory and the
corpuscular approaches, while the GR is a corpuscular the-
ory.

We assume that the space-time can be curved at the mi-
croscopic scale, under the effect of the mass and energy el-
ements that forms the atomic system. We start from the tra-
jectory that follows electrons in a hydrogen atom, accord-
ing to the dBB model. We assimilate these trajectories with
geodesics of space-time, in the frame to the GR. This is co-
herent with stability of matter, because no acceleration im-
plies no energy emission. Indeed, while in dBB the electron
trajectory is well determined if we suppose an initial posi-
tion and velocity, in the GR we must replace, in the trajectory
equation, the Lorenz force for another one, coherent with the
guantum phenomena. In this paper we choice to make null
this force, making the covariant acceleration of the electron

I. HARANAS, AND M.J. FULLANA
The structure of the paper is the following:

e In Sec. 2.1 we present the general features of the dBB

model.

In Sec. 2.2 we describe the electron trajectory equation
in a hydrogen-like atom in the dBB approach.

In Sec. 2.3 we progress from the GR general geodesics
to an equation inter the metric tensor components.

In Sec. 2.4 we adopt a dust metrics from an exact so-
lution of the Einstein’s field equations, with cylindrical
symmetry and gather the corresponding metrics for our
case. We test the solution’s coherence and we conclude
that the metrics must be reformulated.

In Sec. 2.5 we define the correction of the metrics and
solve the related equations to get the metrics finally

adopted. We justify an approximation made by com-

paring numerical and analytical solutions. We find a

metrics of space-time that is successfully tested to as-
sure the coherence with the basic physical features, like
the independence of kinetic moment regarding the or-
bit radius and that the space-time must be considered
plane for a large value of nucleus-electron distance.

Finally in Sec. 3 we explain some conclusions about
our results.

equal to zero and therefore establishing the energy constaney Development

of the electron movement, briefly, the well-known Bohr pos-
tulate.

On this subjet, it is interessant to take into account th
considerations of F. Goded Echevarria [15]. According to
him, most force fields can influence the geometry of spac
time, not only the gravitatory field. The presence of two or
more of such fields can interact with the geometry and we

As previously said, we make the hypothesis that on station-
ATy quantum systems the curvature of the space-time must be
of a shape that the movement of particles tracks geodesics,
nd that this fact explains the stability of systems like atoms
and molecules. We refer to the atom of hydrogen in a certain
rbital. The fact that the velocity of the particles in such sys-

; fems is low enough compared with the velocity of the light

gravitatory and electromagnetic fields. We can therefore exd
pect something similar with the electromagnetic and quan-
tum fields. The same author also get us inspired in anothe?

aspect: he compares (a) the geodesics of the sun system ac-

cording the GR and (b) the classical equation of Binet for

llows us to use the non-relativistic dBB approach and the
GR in the limit for low velocities. We use the Riemannian
eometry, where the general relativity is formulated.

Let us introduce the basic ideas of the dBB approach:

central fields, applicable to the same system [15]. It result€-1. Basic postulates of de Broglie-Bohm interpretation

that both have the same structure. Then he can derive reIevaR

t . . . .
s mentioned, de Broglie-Bohm interpretation of Quantum

physical conclusiong,e. regarding the Mercury perihelion. .
Our treatment of the electron orbit in both GR and dBB can.MeChamCS’ [16,17], also called Causal Quantum Mechan-

be considered a similar methodological approach. ICS, proceeds [ogmal_ly from the classical analytlc.al mechan-
ics. De Broglie assimilated the corpuscular trajectory and

In this sense, we must remark that the gravitational masthe undulatory ray [1] and from there Séimger derived his
is not the only agent that can deform the space time: angquation. Bohm analysed the implications of this equation
energy can do it, according to the Einstein’s field equationsfor a generic wave/mechanical action form (Eq. (2)). The
Moreover, any potential energy must contribute to the inertiadBB is a dualistic theory that synthetizes the corpuscular and
mass, according t& = mc?. Consequently, its contribution wave opposite approaches, with a very deep physical mean-
must also be done to the gravitational mass or the equivalendeg. A minimalist conception of this can be summarized as
principle would be violated. follows [18]:
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1) A microscopic physical system comprises a wave propand that for almost classic systems, leading to specific models
agating in the space-time together with a point particle of space-time metrics.
which moves under the guidance of the wave. For our purposes, we consider a hydrogen atom as a phys-
, i ) ical system particularly simple and well-studied. We are thus
2) The wave is mathematically describedbix, 1) € C, i the frame of an elementary theory of electron motion with-
a solution of the Scltidinger equation for the specific ¢ considering the spin. The orbits described by the electron
system, expressible as: correspond to stationary states; therefore we hypothesize that
the electron in the atom describes a geodesic of the space-
time with constant total energy and null (covariant) accelera-
U(x,t) = Re'S/" (2) tion.
Since the trajectories of an electron in a hydrogen atom
are calculable by non-relativistic dBB approach -considering
e . ~.that the electron speed in the hydrogen atom is, as generally
3 ;)I’fhgzmomentum of the particle is given by the gradler‘tadmitted, small compared with the light speed- and that the
state of the potential at the atomic system is known, we can
7= VS(Z,t) ©) think in deriving a metric tensor that describes the geometry
of space-time in the electron environment.

4) From those 3 axioms and a statistical consideration, L€t US consider then a hydrogen atom. Assume a spheri-

one can establish that the probability density is givencal coordinate system centred in the nucleus. Let us suppose

by the functionR expressed in (2).The probability that the function of the whole system factorable between the func-

a particle could be found betweeri x + dx is given tion of the nucleus and the electron; moreover, approaching

by the equivalent mass of the electron to its proper mass, re-
gardless of corrections. The wave equation for the electron

PR +dX) =| ¥ > dX = R*(X,t)dX  (4) in a stgady state must be_ solutior_1 of the time-in_dependent

Schiddinger equation and its solutions must be Eigen func-

Based on these assumptions one is able to calculate thi@ns of the squared kinetic moment operator, together, with

trajectories of the particles, assuming initial conditionsthe projection of the kinetic moment on the OZ axis. We get

of position and velocity, which act as parameters of thethe following expressions for the squared kinetic momentum

bundles of trajectories. An example of such calcula-operator and the OZ component of that [20]:

tions is the trajectories of an electron beam at the dou- _

ble slit experiment [19]. L. = —ihdg, @)

1 1
.39 . 2
—Zh |:b1n€8{g} (Sln 96{9} + bl1128{4’02}>:| (8)

Their eigenfunctions are spherical harmonics, which admit a
= _ V(K1) = 0 5 representation of separable variables such as
ot + 2m 2m R V1) ®)

_ i(up—(Et/h))
while in the second and forth terms we recognise the kinetic Ve (r,0,8) = gpiu(r) fuu(0)e ©)

and potential energies respectively, we note the third term where f andg are real functionsf is the energy of the sta-

B2 V2R tionary state and andu the orbital and magnetic -azimuth-
(=5 R (6) quantumnumbersd {0,1,2...n—1};ue {-I,—I+1..1—
1,1}) and where the exponent efs iS/A:

which is called the quantum potential, for it appears as addi-

tion to the classical Hamilton-Jacobi equation. Its non-local

character is shown in the quotiewt? R/ R that depends on

the shape of?, not only on its value. This quantum potential

R andS being real functions af andt.

Replacing (2) in the Scbinger equation we get what is L?
called the quantum Hamilton Jacoby equation:

95 | (V2S) R V°R

eilup—(Et/h)) _ (i/R)S(r.0,p:t) (10)

so the phasé reads:

plays an important role in the dBB dynamics. S(r,0,t) = hhp — Et (11)
2.2. Equations of the trajectories of the electron in a hy- According to dBB theory, we can compute such veloci-
drogen atom ties, always in spherical coordinates électron mass):

The peculiarity of our approach lies in trying to link the per-
spective of (a) the de Broglie Bohmian mechanics, derived ,, =y = iarg
from considerations about the quantification of the classical m
Hamilton-Jacobi equation (Sdbdtinger equation for station-

1
: - . = —0,(uhp — Et) = SO we see: 7 = 12
ary systems) and (b) Einstein field equations exactly solved, ma (ufip )=0 W r=0 (12
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Concerning the four-velocity, we note that the only

1 1 nonzero derivatives with respect to time are regardingffe
vy, =rsinfp = W%S = m(uh@ — Et) and X* and that all second derivatives are zero.
1_

= uh , SOOI ¢= LQ (13) V=0 (22)
mrsin 0 mr2 sin® 0 uh

.1 1 View=— (23)
097‘0 = 7&95 = 789(7@7@0 - Eﬁ) mp

=0, so: =0 (14) o
Vi=—c (25)

Integrating with respect to time we have the geodesics
equation: We remark that the kinetic momentum, as derived from
Eqg. (23) is quantized and independent of the radius

e It
mr2sin” 6 L, =muvp=uh (26)

corresponding, for, > 0, to circumferences at constant dis- . . .
T . Thus, replacing the velocities on Eqgs. (17) of geodesics we
tance from the origin, initial phase and azimuthal angle cen-

tred on the axis azimuth. Itis to note the cylindrical symme-Obtaln

try of the orbits, wlth u as multiplicative factor on the linear wQFJQ»Q n 2wcF§4 N C2F£4 0 @)
and angular velocity. Therefore, the symmetry of the problem

leads to use cylindrical coordinates to simplify them to thewhere;j = 1,2, 3, 4. Let us now replace the affine connectors

maximum. In cylindrical coordinates centred in the nucleusaccording to the related components of the metric tensor as
(p, @, 2) the hourly equations of the trajectory of an electron

r="Trop =¢o+

) . . ; 1 .,
in the dBB approach will therefore read: T/, = §9Jk(3kgm + D5k — Ongis) (28)
uht
p=po; ©=¢o+ 3 A= (16) We now calculate the affine connectors that are needed
4 for the four equations of the paths. Taking into account that
2.3. Geodesics equation the elements of the metric tensor do not depend fon rep-

resenting a stationary situation neithergheither ofz due
Now consider that the space-time at a microscopic level cafo the cylindrical symmetry of the trajectory one can write
be described by a Riemannian model. Then their geodesics

will be given by r, = 591”’(829;12 + 0292 — Ong22)
A2l o dxt dxF 1 . 1.
ds2 + Zk ds ds = (17) = —59‘7h3h922 = —59‘7131922 (29)

Equations (17) have the physical meaning to impose on thgnd in the same way one obtains
particle zero acceleration, calculated as covariant derivative
of the equations of motion.

; 1 .
I}y = ~¢""(02gan + O1gh2 — Ongos
We will consider as the parameter s the proper time of 7 2 ( )

the electron that, taking into account that its velocity is of the 1 1

. - = — 9" 0hgas = — 597 D194 (30)
order of 0.02c, (see Eq. 26) we assimilate to the time of the 2 ' 2
observer. Therefor&* = —ct.

According to Eq. (15) the equations of the orbit of the and

electron from Bohmian quantum mechanics are i 1
q Ty = §gjh(54g4h + O04gna — Ongaa)

X'=p=po (18) 1., 1

wht = *igj Ong2s = *igj 01944 (31)
X2=p= — (with g = 0) (29)

mp We substitute now the affine connectors calculated in the
X3=7Z=2 (20) 4 equations of the geodesics (27):
X* = —ct (21) w? g1 01 gag + 2weg? 01 goy + 27 D1gas =0 (32)

But in fact we will use from now as coordinat§* = t that is a contract form of 4 equations with= 1,2, 3,4. To
instead ofct, for easier comparisons. We will change to develop these equations one needs to compute the contravari-
X* = ct at the end of this paper. ant metric tensoy®. We know that, ife;; is the attached of
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gi; to the determinant of its matrix, that has the vajug 0 Taking into account the cylindrical symmetry expressed

for the metric condition (Gram array), one has by the trajectory, we start from the cylindrical solution pro-
o posed to this case by Stephani and Kramer [21]. This is the
Zij

(33)  result of several contributions, including Winicour (1975),
g Wishweshwara-Winicour (1977) and King (1974). Special-

We can assure that at leagt is not null and therefore we izing the van Stockung class (1937) we get:

can simplify (32) as:

g7 =

ds?=e2F" (dp? 4 dz?) + p*dp® — (cdt + apdp)? (39)

2 2
0 2wed 0 =0 34 . L . .
WiO1g22 + 2WCOLG20 F €010 (34 where a {n cursive is a parameter that is determined from

which, by substituting. for their value in Eq. (19) reads ~ the equations of the geodesic. We remark that i 0 the
Minkowski metric is obtained. Fqy — oo we do not obtain
uh \ 2 uh a Minkowskian flat space; but for our purposes it suffices to
— ] 0 2c——0 201940 =0 (35 ) - v
mp? 1922 + Cmp2 1944 + € 01944 = (35 be so at a certaip that limits the validity of the proposed
S model that, we advance, is of the orden6f ¢ m.
and simplifying Anyway, this metric is not totally satisfactory for our case
N2 5 since, as it will be shown, the parameteesults to be a func-
() 01922 + 2cp® — D gas + ptOigas =0 (36)  tionofpandthe development that followed assuming thiat
m m constant is not correct, but we consider it as a first approach.

We introduce thé constant to lighten expressions The elements of the metric tensor will be
2 2

uh a7 gin=gsz=¢€ " (40)

m 57 ga2 = p* — p'a® = p*(1 — a?p?) (41)
It interests us to take as a reference the electron of level

2p: n = 2andu = 1. Foru = 1 and the mass of the electron,

we obtainb = 1.158 x 10 — 4 J.s/kg. gas = — (43)
Let us write Eq. (36) this way

b:

g24 = —cap2 (42)

g12 =913 = g23 = g14 = g34 = 0 (44)

2 2 2 4 _
001922 + 2bcp™O1g2a + ¢"p 01944 = 0 (38) The derivatives of the components relieving for the equa-

This equation applies to cylindrical and axial metrics, ast'onS of the paths are

has been said. This will be the starting equation, representing I — 9, — 4p3a2 (45)
. . S . 922 P pa
the path of the particle with axial kinetic moment quantized,; )
the concerned elements of the metric tensor must satisfy this Goq = —2cpa (46)
equation.
“ Gia =0 (47)

Let us make an early advance of the physical meaning of
the previous equations. As we will see later, the derivative of  \We substitute in Eq. (38) the partial derivatives for the
g4 Will be considered null angsz , g24 Will be only func-  total with regard to the radius
tions of the radius. If we considered these facts in Eq. (34)
we obtain the approximate relation: b?gha + 2bcpghy + ¢ pghy = 0 (48)
Wahy + 2¢ghy, =0 (35 bis) and obtain
where “the comma” indicates derivation with respect to the b*(2p — 4p°a”) + 2bep®(—2¢cpa) = 0 (49)
ra_dius._So it_ shows dependence betwggrandg., that we b2(2p — 4p%a?) — 4bc*pPa = 0 (50)
will verify this fact later on (94).
and simplifying

2.4. “Ansatz” for a cylindrical ds 2

b2 (1 — 2p%a?) — 2bc*p*a =0 (51)
The exact analytical resolution of the Einstein field equations
led to a comprehensive set of metrics corresponding to differ®" Petter
ent situations. In general, for every kind of situation we may
consider three possibilities, depending on the energy momen-
tum tensor: empty space, fluid and field. Within fluid type, and finally we obtain
when its pressure is zero, we have the type of “dust” particles )
dissociated comparable to each other. This is the situation a2 + o BN -0 (53)
that we assume as first approximation in this paper. b 2p?

20p%a® + 2¢2p%a —b=0 (52)
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The resolution of this equation provides the parameter L, =mvp =uh (63)
as function ofp, contrary to our hypothesis that this param- uh b
eter was a constant, independent of the radius. This fact has v=— = — (64)
physical meaning, as we refer later on. We see the values that mpe.-p
acquire the metric tensor L,=mb (65)
e—a’r’ 0 0 0 independent of the radius. By other side, the equations of the
0 2 — p*a? 0 —cp? trajectory in this case read
gij = p p-a . cp~a (54) J y
0 0 e 4 r 0 dt dak
0 —cp? 0 —c? J———=0 66
v ‘ *ds ds (66)
If we compare the results obtained with the Minkowski gnd so
metric tensor gmij in polar coordinates
Iiw? —Thecw=0 (67)
gmi1 = gmsz = lgmas = ,02977144 = —Cgmiz2 = gmis
from there we get
= gmig = gMmaz = gMmayg = gmyy =0 (55) ) ) ) )
cl'sy  cgoy —2c*pa cca
0 0 Ty g3 2p—4pPa®  2p%a® -1
gmii= 9 0 1 0 (56) The electron must have, besides a quantized energy, a
0 0 0 —c? quantified value of the kinetic moment, regardless of the ra-
) ) dius. In other words, for any value of the radius we must
we obtain the difference tensor have the same value of kinetic moment. This feature serves
1 — g—as? 0 0 0 as a contrast to the adequacy of the model. But we have
0 pta? 0 cpia 2a
= . 57 o P
ig 0 0 1-e" 0 &7 R Y N | (69)
0 cp’a 0 0 o
and thez component of the kinetic moment would be:
which for any value different from 0 cannot match with a flat 9
. T . . P cta
space (Minkowski-like situation) as a limit. L.=mvp=m_—— = (70)
Regarding velocity and kinetic moment we find the fol- 2a% = 2

lowing. The derivatives of the elements of the metric tenso

. Ehat, as we can see, is a function of the radius, against (65).
that will affect us for the path are

That lack and the previously mentioned one will disappear
with the model that we consider later, with the parameter a

92 = 2 — dp’a” (58 function ofp.
Goy = —2cpa (59) Conversely, the shape of the path is consistent with the
hypothesis. Integrating the components of the four-velocity
The affine connectors are (the only non-zero componenti$ = w) with respect to time
_ 1 we have:
[y = ggjh(azg% + O29n2 — Ong22) )
X" =po
— ;1 Jhgy — ;1 119 60 2 _ i _
=59 OG22 = 59 Oi19u (60) X* =wt (with ¢y =0)
3
Iy, = %gjh(azgm + Oagn2 — Ongaa) X0 =2
) . X4 =—ct (71)
— jih — 11
N 79j Ongae = PR 91924 (61) So it would be a uniform circular motion in a plane per-
i1 pendicular to OZ, consistently with the dBB model.
Tia =39 (Da9an + O1gna — Ongaa) We advance one conclusion: from the performed calcu-
1 1 lations it result that the cylindrical metric with the parameter
= 79%511924 = 791131944 (62) a indicated, allows us to interpret, with the indicated lacks,

the movement of the electron in a curved space time; the cur-
We consider now the value of the componemf the ki-  vature of this being caused by the global quantum interac-

netic moment. As previously said, from the dBB model wetion, including the electrostatic field and quantum potential,

must have in our case so that the deformation of the space-time would produce the
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guidance of the particle. This guidance is the “role” of the  Dividing by —2bp and grouping
wave function .

Anyway, we remark the approximated character of this (bpy + o)y + 2bp%y* +2¢%p°y =b  (83)
determination, a® is not constant with regard to, as we
have already been stated. Performing the algebra to solve fgf:
2,2 2.2
2.5. Consideration ofa as a function of p. i 2bpTy" + 2077y b (84)
bp3y + c?p3 bp3y + c?p3

The development of the previous point has shown us the fol- )
lowing inconvenient of the metric mentioned there: which can be written
. . . 2
a) We reach the mathematical conclusion thetnot any "+ Y _ b

= — : (85)
3 2,3
constant parameter but a functionof p bpPy+cip

b) It is not possible to find a solution, even by adjusting To solve analytipally this equation we will do an approxi-
the equations that conserve the kinetical moment b)}natlon: the denominator of the second member the first term
Is clearly of lesser order that the second one, €oy?), as
it is easy to see by solving numerically that the differential
¢) Finally, we should also mention that it is not possible equation that gives the following Fig. 1: so, we see that the
to adjust the equations (selection of constanin or-  maximum of y 6.11 x 10°) multiplied byb (1.158 x 10~%) is
der to make a flat space-time for a macroscopically reon the order 065.913 x 107, that is very reduced against.

assigning tg an arbitrary value.

ducedp. With this approximation the equation remains
A possible solution seems to improve the model suppos- 'y 2y b (86)
ing thata is not a constant but a function pfthat will be Y p  c2pd
calledy.
Thgrefore the proposed metric, wigh= y(p) will be: differential equation of first linear order that has the follow-
’ ' ing solution
ds? — e—yz(p)pQ(de +d2?) + prdp? )
=—p *lnk 87
— (cdt +y(p)p*dp)?, (72) el (57)

with k as a constant of the bundle of solutions. Comparing
Eq. (87) with the numerical results the agreement between
gi1 = g33 = e (p)p? (73) bothare w!thm.the 0.11%.'

Replacingy in the metric tensor elements one gets

and the components of the metric tensor will be

G922 = P2 - P4y2 (74)
_p2 (M)Q —42b22
goa = —cp’y (75) gu=gsg=e /) =(kp)Tr (88)
gus = —c (76)
g12 =912 = go3 = g14 = g34 = 0 (77) x 10 Plot of the y numerical solution
The (total) derivatives of the components remaining from
the equations for the paths read as of
gho = 2p — 4p”y* — 2p'yy’ (78) sl ]
s = —2cpy — cp*y’ (79)
= -2} A
=0 80
Jaa ( ) Max abs value y=5.1059-105 for p>5-10711
Substituting in Eq. (48), we obtain: 30 T
b2y + 2bcp? gy + ptglhy = 0 (81) 4 ]
and so
5 1 1 1 1 1 1 1 1 1
1 2 3 4 5 ] 7 8 9 10
b*(2p — 4p%y® — 20" yy) p x 10"
+ 2bcp®(—2cpy — cp*y’) =0 (82)

FIGURE 1. The differential equation of solved numerically
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b2
922 = p* = 5 (Inkp)’ (89)
b
924 =~ Inkp (90)
In the matrix form the metric tensor is
e ()’ 0 0 0
2 b2 2 —b

gij = 0 p° — a(Inkp) iy Oln VI Inkp (91)

0 0 e (%5%) 0

0 _Tb Inkp 0 —c?

The difference tensor compared to the Minkowski metric tensor in cylindrical coordinates reads

—b2 (ln kp)2

l—et\ 7 0 0 0
0 Y (Inkp)? 0 blnk
€ = 64(11 p) e - Rp (92)
0 0 176@4( P) 0
0 %lnk‘p 0 0

The obtained metric has a term out of diagonal ) that
binds angular coordinate with time. This fact for stationaryit, let us write (94), taking into account (23) in the following
systems can surprise somebody but is accepted for such sitway:

ations [22].
Consider now the conservation of kinetic moment of the Ghy  —2cp? 98
particle to which we calculate its velocity based on the equa- b (98)

tions of the trajectory. Returning to Eq. (34) with partial
derivatives transformed in totals respect to the radius, the tra-  Now we substitute in (98) the values gf, and g},

jectory equation reads from (89) and (90) and we obtain:
2/ / 2/
w + 2cwgy, + € =0 93
. 922 924 G4 ( ) 9/22 _26,02 2b1n k’p
and agy}, vanishes, one has -0 T (99)
24
w?gh + 2¢g5y = 0 (94)

so we come to (35 bis). From there the linear velocity can bef The discrepancy l]:c)etweeﬂ (9.8) afnd (99) is the secor;d term
expressed as of second member of (99), that is of some 20 orders of mag-

nitude lower in absolute value compared with the first term,

v = pw = —20/0954 (95) for the range of values of andk = 106 as is fixed later on
922
and substituting the derivative of the tensors for their values 2cp® N 2blnkp (100)
in function ofy andy’ b c?
—2cpgsy —2cpy — cp?y’ : . .
v = 7 = 20,02 A3 — 2t The equations of the trajectory are reproduced in our ap-
922 PRy Py proach; particularly forp, we get, integrating (97) against
_ 2 2y + py’ (96) time and replacing, the Eq. (19). Furthermore, then we can

1— 20242 — p3yy/’ ensure consistency of the model towards linear momentum.

We observe there that the velocity of the particle is inde-With this, the kinetic moment reads
pendent of the constant of integratién We will show that b b
it faithfully reproduces the initial hypothesis on the kinetical L, =mvp=m—p=mb= ml = uh (101)
moment regarding independencepofindeed, substituting p m

andy’ and taking into account that the denominator is practi-__ .. . . . .
) X . . as it is required, independent pf The metrics expressed
cally the unity, the previous expression remains

by (92) is not Minkowskian for large radius because the terms
v = b (97) 922 andgs2 = g42 do not tend to 0 whep tends to infinity.

P All other terms tend to the flat space situation whetends
So the condition (94) is fulfilled. Furthermore, we can to infinity. But for the coherence of our approximate model

easily prove approximately (94) in a more direct way. For we only need that the metrics shows a flat space performance
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TABLE |. Exponent and tensor values in center of mass coordinates.

p(m) 2.5 x 10711
y(x10%) -21.845
gi1 = g33 = 1
g22 6.25 x 10722
g24(x1079) 4.0931

2x 10710 7.5 x 10710 0.000001
-0.27435 -0.0164817 0
1 1 1
4.00 x 10720 5.625 x 10719 1x 10712
3.2899 2.7794 0

%10

Plot of the y numerical solution

Max abs value y=5.1059-105 for p>5-10"11

FIGURE 2. g24 respect to the radius.

at the limit of the model, for a distance large enough of, let’s

the value of the constaitas10® m=! , so forp = 1075 m,
In kp = 0. We show that in the following Fig. 2.

With this choice ofk, the values of the metric tensor are,
for various values of the radius:

The difference compared to the corresponding tensor in
cylindrical coordinates flat space is limited virtually to com-
ponentgs, and its symmetric ongy..

2.6. Metric tensor usingX* = ct

So far, for easiness we used t as coordinate. For further use it
is convenient to express the metric tensor usky= ct,
always in cylindrical coordinates. So it is equivalent to apply
the transformation:

say,10~¢ m. With this condition, we can provisionally fix

Inkp
P

)2

.2
e (

gij =

The discrepancy with respect to the Minkowskian metrics in cylindrical coordinates reads again like (92):

In kp

1—e%ﬁ<7

that can be schematically approximated as:

eij =

)2

OO OO

10 X{=X1; Xo=Xo; X3=X3 Xj=cXy (102
-10
We use the transformation:
8xk 8xl
T
= —— i 103
(%) 8.13; ax;gj ( )
| andwe come easily to:
0 0 0
2 Y (Inkp)? 0 —blnk
p = P P (104)
—b2 (Inkp\2
0 e 4 ( P ) 0
—blnkp 0 -1
0 0 0
Y (In kp)? 0 blnk
04(n P) 2 e nrxp (105)
0 1o (%) ¢
blnkp 0 0
0 0 0
0 0 blnkp
0 0 0 (106)
blnkp 0 0
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3. Conclusions considered at rest), are in a non-separable relationship: the
wave guides the particle and the particle determines the wave,
The following conclusions are framed in the simplicity of py the process of limitation that introduces the quantization
the model.i.e. excluding spin or fully relativistic quantum (Schgdinger equation), that in fact derives from the first as-
model. sumption of de Broglie [1]: to identify the particle trajectory
‘We made the hypothesis of assimilate the electron'$ing the corresponding light ray by stationary principles.
trajectory in the dBB for the Hydrogen-like atoms with  Tpjs feature permits us to recognise the same ontologi-
geodesics of space-time in the GR, corresponding to the faghy| character to the particle and to the wave function. The
that _in the statio_nary states the_re i§ no loose of energy angation between the particle guiding and the quantum sys-
that in a geodesic the acceleration is null. We made our em connects in some extension with the relation between
ploration in the orbital 2p of the hydrogen atom. the metric structure and the energy stress impulsion of the
We made this exploration in pseudo-Riemanian LorenZsjnstein’s field equation: in both cases the system “tells” the
geometry. We find a metric of this geometry by working out s ce time how to deform, and the space time structure “tells”
an exact solution metric of Einstein’s field equations corre{pe body how to move. This relationship is reinforced by the

sponding to dust cylindrical model, dually modified. To es-fact that the GR recognises a dynamical dependence between
tablish the analytic form of this metric, we must make an aPmatter/energy and space-time.

proximation that proved to be coherent with the correspond-  The coherence of the model here presented allow us to

ing numerical solution to a high degree. This modification qnsider the stability of atomic matter under the insight that
could be related to the fact that the relation between elecqe electron follows a geodesic of the space time, and there-
tron and nucleus cannot be merely assimilated to "dust™ (thgyre with null covariant acceleration so the electron does not
electron) turning around an axle, but deeper holistic considers it energy because is not accelerating, despite its rotation
ations should be taken into account, in relation with quantuny.q.nd the nucleus.
potential. . . The capability of the Lorenz geometry to be used in this
The found metrics proved to be coherentrespect the lineag, o4 ch shall be also highlighted as it distinguished sharply
momentum and the constancy of the kinetic momentum, iNg,q (ime and the spatial coordinates. Of course, it is not ex-
depe_ndently of the radius at which the electron turns aro_unqjuded the use of the Weyl geometry, as a generalization of
tha'F is a variable in the dBB model._ Anyway, at a convementRiemann geometry, for more general quantum systems.
radius, Iarge er_mggh, the_ d_eformauon of space time \{anlshes, As an extension of this approach, in a separate paper we
at tlhe radius limit of Val'd'%,oth,hi mhodgl, by election ﬁf will develop the calculations regarding Ricci tensors, scalar
(only) a constant. We must highlight that in our approach a), atyre and further relativistic elements. Specially, we will

emerges a relationship between the compongntandgzs  caicylate the stress-energy tensor and interpret it in function
of the metrics and b) the major discrepancy with the flat metyt the physical features of the system

rics is a non-nully, component that binds angle and time.

So we concluded that it is possible to explain the men-
tioned electron trajectories by a deformation of the spacAcknowledgments
time. This deformation is in relationship with the quantum
potential of the atom system, through the wave function©One of us, MJFA, is partially supported in his work by the
The role of the wave function appears therefore as definSpanish Ministry of Economa y Competitividad, MICINN-
ing the deformation of space time where the particle movesTEDER project FIS2015-64552-P. We are also very grateful
Both, wave and the particles (electron and nucleus, the lager the comments and suggestions of the referee.
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