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e-mail: guigobla@doctor.upv.es; mfullana@mat.upv.es

bDept. of Physics and Computer Science, Wilfrid Laurier University Science Building,
Room N2078, 75 University Ave. W. Waterloo, ON, N2L 3C5, CANADA

e-mail: iharanas@wlu.ca; ikotsireas@wlu.ca
cDepartments of Mathematics, East Carolina University

124 Austin Building, East Fifth Street Greenville NC 27858-4353, USA.
e-mail: gkigkitzisi@ecu.edu

Received 2 May 2017; accepted 3 October 2017

We intend to use the description of the electron orbital trajectory in the de Broglie-Bohm (dBB) theory to assimilate to a geodesic correspond-
ing to the General Relativity (GR) and get from it physical conclusions. The dBB approach indicates us the existence of a non-local quantum
field (corresponding with the quantum potential), an electromagnetic field and a comparatively very weak gravitatory field, together with a
translation kinetic energy of electron. If we admit that those fields and kinetic energy can deform the space time, according to Einstein’s field
equations (and to avoid the violation of the equivalence principle as well), we can made the hypothesis that the geodesics of this space-time
deformation coincide with the orbits belonging to the dBB approach (hypothesis that is coherent with the stability of matter). From it, we
deduce a general equation that relates the components of the metric tensor. Then we find an appropriate metric for it, by modification of an
exact solution of Einstein’s field equations, which corresponds to dust in cylindrical symmetry. The found model proofs to be in agreement
with the basic physical features of the hydrogen quantum system, particularly with the independence of the electron kinetic momentum in
relation with the orbit radius. Moreover, the model can be done Minkowski-like for a macroscopic short distance with a convenient election
of a constant. According to this approach, the guiding function of the wave on the particle could be identified with the deformations of the
space-time and the stability of matter would be easily justified by the null acceleration corresponding to a geodesic orbit.
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1. Introduction

The idea that the curvature of space time can explain the
movement of the atomic particles is not new. Indeed, we
could trace it to the early times of the quantum mechanics.

The starting point of our subject is the work of de Broglie
that extended the duality wave particle established by Ein-
stein for the photons, to all particles, and strived to assimi-
late the tracks of the particle from mechanics and the rays of
waves from optics.

The method used by de Broglie was to identify the tra-
jectory of a light ray described by the Fermat principle with
a particle trajectory described by the Maupertuis principle,
to connect the undulatoy and corpuscular theories. In his fa-
mous thesis [1], de Broglie considered the undulatory and
the corpuscular theories that each represented a part of the
phenomena and he looked for a kind of synthesis, equating
the forecasts of both theories. It suggest us a methodological
principle, which could be called the “coincidence principle”:
when a physical phenomenon can be described by two theo-
ries with opposite principles (i.e. corpuscular and undulatory
approaches), by equating their results in a common physical
feature (i.e. the trajectories) in a syntesis effort one can get

significant physical advances. We can obtain a kind of “fu-
sion of opposites”. So could happen with the dBB and GR
approach, regarding electron movement in systems like the
hydrogen atom.

In the deduction of its well-known equation, Schrödinger
considered a non-Euclidean metrics, based in the kinetic en-
ergy of the particle. As it is well known, Schröinger deducted
its evolution equation of quantum systems from the classical
equation of Hamilton Jacobi and from the already mentioned
work on wave - corpuscle duality of de Broglie. The idea that
the dynamics of quantum systems could be determined by
space-time deformations could be already originated in the
Schr̈odinger thoughts [2]. Indeed, in his deduction he postu-
lated the expression (in the space coordinatesqk of the parti-
cles, beingT the kinetic energy in function of the velocities):

ds2 = 2T (qk, q̇k)dt2 (1)

that brings us to a quadratic form, equivalent to a three di-
mensional metrics, that helped him to follow from the Hamil-
ton Jacobi equation towards its well-known equation. But
this metrics did not serve him to characterize the space-time
performance of the particle entourage, because Schröinger
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considered the particle a mere “image point” without phys-
ical meaning; the physical reality was assigned by him to the
wavelike being (wave parcel). The dual theory of de Broglie
became in Scḧoinger an only-undulatory theory. Anyway, the
relationship of Eq. (1) with our approach will be treated by
us in a separate paper.

Later on and in the frame of orthodox quantum mechan-
ics, Wheeler developed a particular conception of geometric-
dynamics (term who Einstein used for the first time), where
the geometry of space-time indeed plays a role in the per-
formance of the quantum system. He assigned a geometrical
picture to the quantum processes, based on the standard ver-
sion of quantum mechanics. He treated to reduce all physical
entities to geometrical beings. But, as Fiscaletti says, [3] it
is impossible a geometric-dynamical description of quantum
process from the orthodox quantum interpretation, because
this interpretation does not permit to consider any event de-
scription in space-time. Wheeler remained in the field of or-
thodox quantum mechanics where no place exists for the par-
ticles trajectory. So his model is far from our approach that,
according to the de Broglie original ideas, considers simulta-
neously real both the particle and the matter-wave, unified in
a non-classical way.

In some opposite way runs the approach of Dürr, Gold-
stein, Tumulka and Zanghi [4] from the 1990 years regarding
the quantum model of de Broglie-Bohm. They made the first
consistent geometric-dynamical conception, as long as we
know, giving the limelight to the trajectories. The wave func-
tion the effective wave function for systems, isolated, in re-
lation with an entourage or even with the complete universe-
has there a nomological character, indicating the evolutive
rules. Their approach misleads the role of the quantum po-
tential. We can mention the interesting attempts of these au-
thors to develop the geometrodinamical approach by invok-
ing a “time foliation”. In this approach, a leaf of this foliation
would be a tridimensional hypersurface where all the points
have a status of simultaneity. It has been studied in connec-
tion with the Bohm model [5,6] and also for curved spaces
[7]. This interesting concept emerges from the empirical fact
of entanglement, but is difficult to conciliate with relativity.

It must be mentioned that M. Atiq, M. Karamian and
M. Golshani [8] developed a quasi-Newtonian approach.
They deduced the quantum potential independently of the
Schr̈odinger equation, so without need of the wave function.
By using the quantum potential in the frame of classical me-
chanics they argued to describe the non-classical effects. But
they need the S and R functions that configure the wave func-
tion in the dBB approach.

Some years earlier and more related with our proposal we
find approaches in the frame of a geometric-dynamical dual
theory and in a curved space-time: A. Shojai and F. Shojai [9]
developed an approach where the motion of a spinless parti-
cle is equivalent to a movement in a curved space time, of
conformal character over a flat metric, the conformal factor
being the Bohm quantum potential. They formulated a con-
formal metrics in a Weyl geometry that is a generalization of

the Riemann geometry. They melted there the gravitation and
the quantum potential coming to the conclusion that the quan-
tum phenomena can derivate from space-time deformations.
In this interesting approach the authors start from the Bohm
version of the Klein Gordon equation; their conclusion is in
this case dual. But their approach is quite different to ours,
and moreover no concrete metrics results for microphysical
systems are calculated by them, in our knowledge.

More recently, Novello, Salim and Falciano [10] sug-
gested that the quantum phenomena can be interpreted as
the manifestation of a non-Euclidean geometry in the three-
dimensional space, in the picture of Weyl geometry, in an
interesting paper. They came to the conclusion to identify the
quantum potential with the scalar curvature of this space. In
our approach we do not leave the pseudo Riemann or Lorenz
geometry that is characteristic of relativity.

Licata and Fiscaletti propose another geometric-
dynamical approach related to a very different considera-
tion, [11]: the entropic effect derived from the microstates
that characterize the quantum system. The trajectories
emerge in this approach by a thermal bath, characteristic
of the Quantum Theory of Fields.

A common feature of most of those lasts papers [9,10,11]
is to postulate a microphysical action and derive from it, by
variation of it, the equations of the movement and the related
physical features including the metrics of the space, in a Weyl
geometry.

Other approaches related with the quantum entropy have
been worked out by Sbitnev [12,13]. In these approaches,
the quantum entropy, related to the number of possible mi-
crostates, plays a fundamental role. The vacuum is assim-
ilated to a fluid, which can be treated by the Navier-Stokes
equation.

The already mentioned two authors, Licata and Fiscaletti,
summarized different concepts about the quantum potential
in an interesting book [14].

1.1. Goal and structure of this work

We focus in this paper the relationship between the de
Broglie-Bohm (dBB) approach, also known as Causal Quan-
tum Mechanics, and the General Relativity (GR), in order to
go deeper in the physical concepts of stationary and entan-
gled states like the electron in hydrogen-like atom.

Our purpose is to investigate the metric structure of the
space-time in the case of stationary quantum systems, where
the geodesic hypothesis seems reasonable, as well as to try
to explain the guidance of the particle by the matter-wave
by means of a deformation of the space-time produced by the
microscopic atomic system itself. It is a first approach, which
excludes the spin and gravitation.

The main purpose of this paper is to find a metric of the
space-time according to the General Relativity where the ex-
pected trajectory in the Bohm model for hydrogen-like atoms
would be a geodesic. This metric must be also in accordance
with the main features of the hydrogen atom. It is also an

Rev. Mex. Fis.64 (2018) 18–29
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objective to go deeper into the role of the wave function on
the spacetime deformation and on the particle guidance. We
remain in the Lorenz pseudo Riemann geometry.

Of course we do not pretend any theoretical synthesis
between the two theories, and, furthermore, our approach
is only an approximation to detect profitable features for a
deeper theoretical progress. We must state that we do not
make any attempt to “unify” both dBB and GR theories. In-
deed, dBB and GR are very dissimilar theories. dBB is not
Lorentz covariant and furthermore it works with an non local
field, the so called quantum field and the associated quantum
potential and quantum energy. GR is a local theory. In ad-
dition, dBB is a theory that fusions the undulatory and the
corpuscular approaches, while the GR is a corpuscular the-
ory.

We assume that the space-time can be curved at the mi-
croscopic scale, under the effect of the mass and energy el-
ements that forms the atomic system. We start from the tra-
jectory that follows electrons in a hydrogen atom, accord-
ing to the dBB model. We assimilate these trajectories with
geodesics of space-time, in the frame to the GR. This is co-
herent with stability of matter, because no acceleration im-
plies no energy emission. Indeed, while in dBB the electron
trajectory is well determined if we suppose an initial posi-
tion and velocity, in the GR we must replace, in the trajectory
equation, the Lorenz force for another one, coherent with the
quantum phenomena. In this paper we choice to make null
this force, making the covariant acceleration of the electron
equal to zero and therefore establishing the energy constancy
of the electron movement, briefly, the well-known Bohr pos-
tulate.

On this subjet, it is interessant to take into account the
considerations of F. Goded Echevarria [15]. According to
him, most force fields can influence the geometry of space
time, not only the gravitatory field. The presence of two or
more of such fields can interact with the geometry and we
can expect some fuzzy impress on it. It happens so with the
gravitatory and electromagnetic fields. We can therefore ex-
pect something similar with the electromagnetic and quan-
tum fields. The same author also get us inspired in another
aspect: he compares (a) the geodesics of the sun system ac-
cording the GR and (b) the classical equation of Binet for
central fields, applicable to the same system [15]. It results
that both have the same structure. Then he can derive relevant
physical conclusions,i.e. regarding the Mercury perihelion.
Our treatment of the electron orbit in both GR and dBB can
be considered a similar methodological approach.

In this sense, we must remark that the gravitational mass
is not the only agent that can deform the space time: any
energy can do it, according to the Einstein’s field equations.
Moreover, any potential energy must contribute to the inertial
mass, according toE = mc2. Consequently, its contribution
must also be done to the gravitational mass or the equivalence
principle would be violated.

The structure of the paper is the following:

• In Sec. 2.1 we present the general features of the dBB
model.

• In Sec. 2.2 we describe the electron trajectory equation
in a hydrogen-like atom in the dBB approach.

• In Sec. 2.3 we progress from the GR general geodesics
to an equation inter the metric tensor components.

• In Sec. 2.4 we adopt a dust metrics from an exact so-
lution of the Einstein’s field equations, with cylindrical
symmetry and gather the corresponding metrics for our
case. We test the solution’s coherence and we conclude
that the metrics must be reformulated.

• In Sec. 2.5 we define the correction of the metrics and
solve the related equations to get the metrics finally
adopted. We justify an approximation made by com-
paring numerical and analytical solutions. We find a
metrics of space-time that is successfully tested to as-
sure the coherence with the basic physical features, like
the independence of kinetic moment regarding the or-
bit radius and that the space-time must be considered
plane for a large value of nucleus-electron distance.

• Finally in Sec. 3 we explain some conclusions about
our results.

2. Development

As previously said, we make the hypothesis that on station-
ary quantum systems the curvature of the space-time must be
of a shape that the movement of particles tracks geodesics,
and that this fact explains the stability of systems like atoms
and molecules. We refer to the atom of hydrogen in a certain
orbital. The fact that the velocity of the particles in such sys-
tems is low enough compared with the velocity of the light
allows us to use the non-relativistic dBB approach and the
GR in the limit for low velocities. We use the Riemannian
geometry, where the general relativity is formulated.

Let us introduce the basic ideas of the dBB approach:

2.1. Basic postulates of de Broglie-Bohm interpretation

As mentioned, de Broglie-Bohm interpretation of Quantum
Mechanics, [16,17], also called Causal Quantum Mechan-
ics, proceeds logically from the classical analytical mechan-
ics. De Broglie assimilated the corpuscular trajectory and
the undulatory ray [1] and from there Schröinger derived his
equation. Bohm analysed the implications of this equation
for a generic wave/mechanical action form (Eq. (2)). The
dBB is a dualistic theory that synthetizes the corpuscular and
wave opposite approaches, with a very deep physical mean-
ing. A minimalist conception of this can be summarized as
follows [18]:
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1) A microscopic physical system comprises a wave prop-
agating in the space-time together with a point particle,
which moves under the guidance of the wave.

2) The wave is mathematically described byΨ(x, t) ∈ C,
a solution of the Schrödinger equation for the specific
system, expressible as:

Ψ(x, t) = ReiS/~ (2)

R andS being real functions ofx andt.

3) The momentum of the particle is given by the gradient
of S:

~p = ∇S(~x, t) (3)

4) From those 3 axioms and a statistical consideration,
one can establish that the probability density is given
by the functionR expressed in (2).The probability that
a particle could be found betweenx i x + dx is given
by

P (~x,~x + d~x) =| Ψ |2 d~x = R2(~x, t)d~x (4)

Based on these assumptions one is able to calculate the
trajectories of the particles, assuming initial conditions
of position and velocity, which act as parameters of the
bundles of trajectories. An example of such calcula-
tions is the trajectories of an electron beam at the dou-
ble slit experiment [19].

Replacing (2) in the Schröinger equation we get what is
called the quantum Hamilton Jacoby equation:

∂S

∂t
+

(∇2S)
2m

− ~2

2m

∇2R

R
+ V (~x, t) = 0 (5)

while in the second and forth terms we recognise the kinetic
and potential energies respectively, we note the third term

Vq ≡ − ~
2

2m

∇2R

R
(6)

which is called the quantum potential, for it appears as addi-
tion to the classical Hamilton-Jacobi equation. Its non-local
character is shown in the quotient∇2R/R that depends on
the shape ofR, not only on its value. This quantum potential
plays an important role in the dBB dynamics.

2.2. Equations of the trajectories of the electron in a hy-
drogen atom

The peculiarity of our approach lies in trying to link the per-
spective of (a) the de Broglie Bohmian mechanics, derived
from considerations about the quantification of the classical
Hamilton-Jacobi equation (Schrödinger equation for station-
ary systems) and (b) Einstein field equations exactly solved,

and that for almost classic systems, leading to specific models
of space-time metrics.

For our purposes, we consider a hydrogen atom as a phys-
ical system particularly simple and well-studied. We are thus
in the frame of an elementary theory of electron motion with-
out considering the spin. The orbits described by the electron
correspond to stationary states; therefore we hypothesize that
the electron in the atom describes a geodesic of the space-
time with constant total energy and null (covariant) accelera-
tion.

Since the trajectories of an electron in a hydrogen atom
are calculable by non-relativistic dBB approach -considering
that the electron speed in the hydrogen atom is, as generally
admitted, small compared with the light speed- and that the
state of the potential at the atomic system is known, we can
think in deriving a metric tensor that describes the geometry
of space-time in the electron environment.

Let us consider then a hydrogen atom. Assume a spheri-
cal coordinate system centred in the nucleus. Let us suppose
the function of the whole system factorable between the func-
tion of the nucleus and the electron; moreover, approaching
the equivalent mass of the electron to its proper mass, re-
gardless of corrections. The wave equation for the electron
in a steady state must be solution of the time-independent
Schr̈odinger equation and its solutions must be Eigen func-
tions of the squared kinetic moment operator, together, with
the projection of the kinetic moment on the OZ axis. We get
the following expressions for the squared kinetic momentum
operator and the OZ component of that [20]:

Lz = −i~∂{ϕ} (7)

L2 = −i~2

[
1

sin θ
∂{θ}

(
sin θ∂{θ} +

1
sin2 ∂2

{ϕ2}

)]
(8)

Their eigenfunctions are spherical harmonics, which admit a
representation of separable variables such as

ΨElu(r, θ, φ) = gElu(r)flu(θ)ei(uϕ−(Et/~)) (9)

wheref andg are real functions;E is the energy of the sta-
tionary state andl andu the orbital and magnetic -azimuth-
quantum numbers l∈ {0, 1, 2 . . . n−1}; u∈ {−l,−l+1...l−
1, l}) and where the exponent ofe is iS/~:

ei(uϕ−(Et/~)) = e(i/~)S(r,θ,ϕ,t) (10)

so the phaseS reads:

S(r, θ, ϕt) = h~ϕ− Et (11)

According to dBB theory, we can compute such veloci-
ties, always in spherical coordinates (m electron mass):

vr = ṙ =
1
m

∂rS

=
1
m

∂r(u~ϕ− Et) = 0 so we see: ṙ = 0 (12)
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vϕ = r sin θϕ̇ =
1

mr sin θ
∂ϕS =

1
mr sin θ

(u~ϕ− Et)

=
u~

mr sin θ
, so: ϕ̇ =

u~
mr2 sin2 θ

(13)

vθrθ̇ =
1

mr
∂θS =

1
mr

∂θ(n~ϕ− Et)

= 0, so: θ̇ = 0 (14)

Integrating with respect to time we have the geodesics
equation:

r = r0ϕ = ϕ0 +
u~t

mr2 sin2 θ
θ = θ0 (15)

corresponding, foru > 0, to circumferences at constant dis-
tance from the origin, initial phase and azimuthal angle cen-
tred on the axis azimuth. It is to note the cylindrical symme-
try of the orbits, with u as multiplicative factor on the linear
and angular velocity. Therefore, the symmetry of the problem
leads to use cylindrical coordinates to simplify them to the
maximum. In cylindrical coordinates centred in the nucleus
(p, ϕ, z) the hourly equations of the trajectory of an electron
in the dBB approach will therefore read:

ρ = ρ0; ϕ = ϕ0 +
u~t
mϕ2

; z = z0 (16)

2.3. Geodesics equation

Now consider that the space-time at a microscopic level can
be described by a Riemannian model. Then their geodesics
will be given by

d2xj

ds2
+ Γj

ik

dxi

ds

dxk

ds
= 0 (17)

Equations (17) have the physical meaning to impose on the
particle zero acceleration, calculated as covariant derivative
of the equations of motion.

We will consider as the parameter s the proper time of
the electron that, taking into account that its velocity is of the
order of 0.02c, (see Eq. 26) we assimilate to the time of the
observer. ThereforeX4 = −ct.

According to Eq. (15) the equations of the orbit of the
electron from Bohmian quantum mechanics are

X1 = ρ = ρ0 (18)

X2 = ϕ =
u~t
mρ2

(with ϕ0 = 0) (19)

X3 = Z = Z0 (20)

X4 = −ct (21)

But in fact we will use from now as coordinateX4 = t
instead ofct, for easier comparisons. We will change to
X4 = ct at the end of this paper.

Concerning the four-velocity, we note that the only
nonzero derivatives with respect to time are regarding theX2

andX4 and that all second derivatives are zero.

V 1 = 0 (22)

V 2 = ω =
u~

mρ2
(23)

V 3 = 0; (24)

V 4 = −c (25)

We remark that the kinetic momentum, as derived from
Eq. (23) is quantized and independent of the radius

Lz = mvρ = u~ (26)

Thus, replacing the velocities on Eqs. (17) of geodesics we
obtain

ω2Γj
22 + 2ωcΓj

24 + c2Γj
44 = 0 (27)

wherej = 1, 2, 3, 4. Let us now replace the affine connectors
according to the related components of the metric tensor as

Γj
ik =

1
2
gjk(∂kgih + ∂ighk − ∂hgki) (28)

We now calculate the affine connectors that are needed
for the four equations of the paths. Taking into account that
the elements of the metric tensor do not depend ont for rep-
resenting a stationary situation neither ofϕ neither ofz due
to the cylindrical symmetry of the trajectory one can write

Γj
22 =

1
2
gjh(∂2gh2 + ∂2gh2 − ∂hg22)

= −1
2
gjh∂hg22 = −1

2
gj1∂1g22 (29)

and in the same way one obtains

Γj
24 =

1
2
gjh(∂2g4h + ∂4gh2 − ∂hg24)

= −1
2
gjh∂hg24 = −1

2
gj1∂1g24 (30)

and

Γj
44 =

1
2
gjh(∂4g4h + ∂4gh4 − ∂hg44)

= −1
2
gjh∂hg24 = −1

2
gj1∂1g44 (31)

We substitute now the affine connectors calculated in the
4 equations of the geodesics (27):

ω2gj1∂1g22 + 2ωcgj1∂1g24 + c2gj1∂1g44 = 0 (32)

that is a contract form of 4 equations withj = 1, 2, 3, 4. To
develop these equations one needs to compute the contravari-
ant metric tensorgij . We know that, ifαij is the attached of
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gij to the determinant of its matrix, that has the valueg > 0
for the metric condition (Gram array), one has

gij =
αij

g
(33)

We can assure that at leastg11 is not null and therefore we
can simplify (32) as:

ω2∂1g22 + 2ωc∂1g24 + c2∂1g44 = 0 (34)

which, by substitutingω for their value in Eq. (19) reads

(
u~

mρ2

)2

∂1g22 + 2c
u~

mρ2
∂1g44 + c2∂1g44 = 0 (35)

and simplifying

(
u~
m

)2

∂1g22 + 2cρ2 u~
m

∂1g24 + c2ρ4∂1g44 = 0 (36)

We introduce theb constant to lighten expressions

b =
u~
m

(37)

It interests us to take as a reference the electron of level
2p: n = 2 andu = 1. Foru = 1 and the mass of the electron,
we obtainb = 1.158× 10− 4 J.s/kg.

Let us write Eq. (36) this way

b2∂1g22 + 2bcρ2∂1g24 + c2ρ4∂1g44 = 0 (38)

This equation applies to cylindrical and axial metrics, as
has been said. This will be the starting equation, representing
the path of the particle with axial kinetic moment quantized;
the concerned elements of the metric tensor must satisfy this
equation.

Let us make an early advance of the physical meaning of
the previous equations. As we will see later, the derivative of
g44 will be considered null andg22 , g24 will be only func-
tions of the radius. If we considered these facts in Eq. (34)
we obtain the approximate relation:

ωg′22 + 2cg′24 = 0 (35 bis)

where “the comma” indicates derivation with respect to the
radius. So it shows dependence betweeng22 andg24, that we
will verify this fact later on (94).

2.4. “Ansatz” for a cylindrical ds 2

The exact analytical resolution of the Einstein field equations
led to a comprehensive set of metrics corresponding to differ-
ent situations. In general, for every kind of situation we may
consider three possibilities, depending on the energy momen-
tum tensor: empty space, fluid and field. Within fluid type,
when its pressure is zero, we have the type of “dust” particles
dissociated comparable to each other. This is the situation
that we assume as first approximation in this paper.

Taking into account the cylindrical symmetry expressed
by the trajectory, we start from the cylindrical solution pro-
posed to this case by Stephani and Kramer [21]. This is the
result of several contributions, including Winicour (1975),
Wishweshwara-Winicour (1977) and King (1974). Special-
izing the van Stockung class (1937) we get:

ds2=e−a2ρ2
(dρ2 + dz2) + ρ2dϕ2 − (cdt + aρ2dϕ)2 (39)

where a (in cursive) is a parameter that is determined from
the equations of the geodesic. We remark that ifa = 0 the
Minkowski metric is obtained. Forρ →∞ we do not obtain
a Minkowskian flat space; but for our purposes it suffices to
be so at a certainρ that limits the validity of the proposed
model that, we advance, is of the order of10−6 m.

Anyway, this metric is not totally satisfactory for our case
since, as it will be shown, the parametera results to be a func-
tion ofρ and the development that followed assuming thata is
constant is not correct, but we consider it as a first approach.
The elements of the metric tensor will be

g11 = g33 = e−a2ρ2
(40)

g22 = ρ2 − ρ4a2 = ρ2(1− a2ρ2) (41)

g24 = −caρ2 (42)

g44 = −c2 (43)

g12 = g13 = g23 = g14 = g34 = 0 (44)

The derivatives of the components relieving for the equa-
tions of the paths are

g′22 = 2ρ− 4ρ3a2 (45)

g′24 = −2cρa (46)

g′44 = 0 (47)

We substitute in Eq. (38) the partial derivatives for the
total with regard to the radius

b2g′22 + 2bcρ2g′24 + c2ρ4g′44 = 0 (48)

and obtain

b2(2ρ− 4ρ3a2) + 2bcρ2(−2cρa) = 0 (49)

b2(2ρ− 4ρ3a2)− 4bc2ρ3a = 0 (50)

and simplifying

b2(1− 2ρ2a2)− 2bc2ρ2a = 0 (51)

or better

2bρ2a2 + 2c2ρ2a− b = 0 (52)

and finally we obtain

a2 +
c2

b
a− 1

2ρ2
= 0 (53)
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The resolution of this equation provides the parametera
as function ofρ, contrary to our hypothesis that this param-
eter was a constant, independent of the radius. This fact has
physical meaning, as we refer later on. We see the values that
acquire the metric tensor

gij =

e−a2ρ2
0 0 0

0 ρ2 − ρ4a2 0 −cρ2a

0 0 e−a2ρ2
0

0 −cρ2a 0 −c2

(54)

If we compare the results obtained with the Minkowski
metric tensor gmij in polar coordinates

gm11 = gm33 = 1gm22 = ρ2gm44 = −cgm12 = gm13

= gm14 = gm23 = gm24 = gm44 = 0 (55)

gmij =

1 0 0 0
0 ρ2 0
0 0 1 0
0 0 0 −c2

(56)

we obtain the difference tensor

εij =

1− e−a2ρ2
0 0 0

0 ρ4a2 0 cρ2a

0 0 1− e−a2ρ2
0

0 cρ2a 0 0

(57)

which for any value different from 0 cannot match with a flat
space (Minkowski-like situation) as a limit.

Regarding velocity and kinetic moment we find the fol-
lowing. The derivatives of the elements of the metric tensor
that will affect us for the path are

g′22 = 2ρ− 4ρ3a2 (58)

g′24 = −2cρa (59)

The affine connectors are

Γj
22 =

1
2
gjh(∂2g2h + ∂2gh2 − ∂hg22)

=
−1
2

gjh∂hg22 =
−1
2

g11∂1g24 (60)

Γj
24 =

1
2
gjh(∂2g4h + ∂4gh2 − ∂hg24)

=
−1
2

gjh∂hg24 =
−1
2

g11∂1g24 (61)

Γj
44 =

1
2
gjh(∂4g4h + ∂4gh4 − ∂hg44)

=
−1
2

gjh∂hg24 =
−1
2

g11∂1g44 (62)

We consider now the value of the componentz of the ki-
netic moment. As previously said, from the dBB model we
must have in our case

Lz = mvρ = u~ (63)

v =
u~
mρ

=
b

ρ
(64)

Lz = mb (65)

independent of the radius. By other side, the equations of the
trajectory in this case read

Γj
ik

dxi

ds

dxk

ds
= 0 (66)

and so

Γ1
22ω

2 − Γ1
24cω = 0 (67)

from there we get

ω =
cΓ1

24

Γ1
22

=
cg′24
g′22

=
−2c2ρa

2ρ− 4ρ3a2
=

c2a

2ρ2a2 − 1
(68)

The electron must have, besides a quantized energy, a
quantified value of the kinetic moment, regardless of the ra-
dius. In other words, for any value of the radius we must
have the same value of kinetic moment. This feature serves
as a contrast to the adequacy of the model. But we have

v = ωρ =
c2aρ

2ρ2a2 − 1
(69)

and thez component of the kinetic moment would be:

Lz = mvρ = m
c2a

2a2 − 1
ρ2

= (70)

that, as we can see, is a function of the radius, against (65).
That lack and the previously mentioned one will disappear
with the model that we consider later, with the parameter a
function ofρ.

Conversely, the shape of the path is consistent with the
hypothesis. Integrating the components of the four-velocity
(the only non-zero component isv2 = ω) with respect to time
we have:

X1 = ρ0

X2 = ωt (with ϕ0 = 0)

X3 = z0

X4 = −ct (71)

So it would be a uniform circular motion in a plane per-
pendicular to OZ, consistently with the dBB model.

We advance one conclusion: from the performed calcu-
lations it result that the cylindrical metric with the parameter
a indicated, allows us to interpret, with the indicated lacks,
the movement of the electron in a curved space time; the cur-
vature of this being caused by the global quantum interac-
tion, including the electrostatic field and quantum potential,
so that the deformation of the space-time would produce the
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guidance of the particle. This guidance is the “role” of the
wave function .

Anyway, we remark the approximated character of this
determination, asa is not constant with regard toρ, as we
have already been stated.

2.5. Consideration ofa as a function ofρ.

The development of the previous point has shown us the fol-
lowing inconvenient of the metric mentioned there:

a) We reach the mathematical conclusion thata is not any
constant parameter but a function ofρ.

b) It is not possible to find a solution, even by adjusting
the equations that conserve the kinetical moment by
assigning toρ an arbitrary value.

c) Finally, we should also mention that it is not possible
to adjust the equations (selection of constantk) in or-
der to make a flat space-time for a macroscopically re-
ducedρ.

A possible solution seems to improve the model suppos-
ing thata is not a constant but a function ofρ that will be
calledy.

Therefore, the proposed metric, withy = y(ρ) will be:

ds2 = e−y2(ρ)ρ2
(dρ2 + dz2) + ρ2dϕ2

− (cdt + y(ρ)ρ2dϕ)2, (72)

and the components of the metric tensor will be

g11 = g33 = e−y2(ρ)ρ2
(73)

g22 = ρ2 − ρ4y2 (74)

g24 = −cρ2y (75)

g44 = −c2 (76)

g12 = g12 = g23 = g14 = g34 = 0 (77)

The (total) derivatives of the components remaining from
the equations for the paths read as

g′22 = 2ρ− 4ρ3y2 − 2ρ4yy′ (78)

g′24 = −2cρy − cρ2y′ (79)

g′44 = 0 (80)

Substituting in Eq. (48), we obtain:

b2g′22 + 2bcρ2g′24 + c2ρ4g′44 = 0 (81)

and so

b2(2ρ− 4ρ3y2 − 2ρ4yy′)

+ 2bcρ2(−2cρy − cρ2y′) = 0 (82)

Dividing by−2bρ and grouping

(bρ3y + c2ρ3)y′ + 2bρ2y2 + 2c2ρ2y = b (83)

Performing the algebra to solve fory′:

y′ +
2bρ2y2 + 2c2ρ2y

bρ3y + c2ρ3
=

b

bρ3y + c2ρ3
(84)

which can be written

y′ +
2y

ρ
=

b

bρ3y + c2ρ3
(85)

To solve analytically this equation we will do an approxi-
mation: the denominator of the second member the first term
is clearly of lesser order that the second one, (by¿ c2), as
it is easy to see by solving numerically that the differential
equation that gives the following Fig. 1: so, we see that the
maximum of y (5.11×106) multiplied byb (1.158×10−4) is
on the order of5.913 × 102, that is very reduced againstc2.
With this approximation the equation remains

y′ +
2y

ρ
=

b

c2ρ3
(86)

differential equation of first linear order that has the follow-
ing solution

y =
b

c2
ρ−2 ln kρ (87)

with k as a constant of the bundle of solutions. Comparing
Eq. (87) with the numerical results the agreement between
both are within the 0.11%.

Replacingy in the metric tensor elements one gets

g11 = g33 = e
−b2

c4 ( ln kρ
ρ )2

= (kρ)
−2b2

c4ρ2 (88)

FIGURE 1. The differential equation ofy solved numerically
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g22 = ρ2 − b2

c4
(ln kρ)2 (89)

g24 = −b

c
ln kρ (90)

In the matrix form the metric tensor is

gij =

e
−b2

c4 ( ln kρ
ρ )2

0 0 0
0 ρ2 − b2

c4 (ln kρ)2 0 −b
c ln kρ

0 0 e
−b2

c4 ( ln kρ
ρ )2

0
0 −b

c ln kρ 0 −c2

(91)

The difference tensor compared to the Minkowski metric tensor in cylindrical coordinates reads

εij =

1− e
−b2

c4 ( ln kρ
ρ )2

0 0 0
0 b2

c4 (ln kρ)2 0 b
c ln kρ

0 0 1− e
−b2

c4 ( ln kρ
ρ )2

0
0 b

c ln kρ 0 0

(92)

The obtained metric has a term out of diagonal (g24) that
binds angular coordinate with time. This fact for stationary
systems can surprise somebody but is accepted for such situ-
ations [22].

Consider now the conservation of kinetic moment of the
particle to which we calculate its velocity based on the equa-
tions of the trajectory. Returning to Eq. (34) with partial
derivatives transformed in totals respect to the radius, the tra-
jectory equation reads

ω2g′22 + 2cωg′24 + c2g′44 = 0 (93)

and asg′44 vanishes, one has

ω2g′22 + 2cg′24 = 0 (94)

so we come to (35 bis). From there the linear velocity can be
expressed as

v = ρω =
−2cρg′24

g′22
(95)

and substituting the derivative of the tensors for their values
in function ofy andy′

v =
−2cρg′24

g′22
= 2cρ

−2cρy − cρ2y′

2ρ− 4ρ3y2 − 2ρ4yy′

= c2ρ
2y + ρy′

1− 2ρ2y2 − ρ3yy′
(96)

We observe there that the velocity of the particle is inde-
pendent of the constant of integrationk. We will show that
it faithfully reproduces the initial hypothesis on the kinetical
moment regarding independence ofρ. Indeed, substitutingy
andy′ and taking into account that the denominator is practi-
cally the unity, the previous expression remains

v =
b

ρ
(97)

So the condition (94) is fulfilled. Furthermore, we can
easily prove approximately (94) in a more direct way. For

it, let us write (94), taking into account (23) in the following
way:

g′22
g′24

=
−2cρ2

b
(98)

Now we substitute in (98) the values ofg′22 and g′24
from (89) and (90) and we obtain:

g′22
g′24

=
−2cρ2

b
+

2b ln kρ

c3
(99)

The discrepancy between (98) and (99) is the second term
of second member of (99), that is of some 20 orders of mag-
nitude lower in absolute value compared with the first term,
for the range of values ofρ andk = 106 as is fixed later on

∣∣∣∣
2cρ2

b

∣∣∣∣ À
∣∣∣∣
2blnkρ

c3

∣∣∣∣ (100)

The equations of the trajectory are reproduced in our ap-
proach; particularly forϕ we get, integrating (97) against
time and replacingb, the Eq. (19). Furthermore, then we can
ensure consistency of the model towards linear momentum.
With this, the kinetic moment reads

Lz = mvρ = m
b

ρ
ρ = mb = m

u~
m

= u~ (101)

as it is required, independent ofρ. The metrics expressed
by (92) is not Minkowskian for large radius because the terms
g22 andg22 = g42 do not tend to 0 whenρ tends to infinity.
All other terms tend to the flat space situation whenρ tends
to infinity. But for the coherence of our approximate model
we only need that the metrics shows a flat space performance
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TABLE I. Exponent and tensor values in center of mass coordinates.

ρ(m) 2.5× 10−11 2× 10−10 7.5× 10−10 0.000001

y(×106) -21.845 -0.27435 -0.0164817 0

g11 = g33 = 1 1 1 1

g22 6.25× 10−22 4.00× 10−20 5.625× 10−19 1× 10−12

g24(×10−9) 4.0931 3.2899 2.7794 0

FIGURE 2. g24 respect to the radius.

at the limit of the model, for a distance large enough of, let’s
say,10−6 m. With this condition, we can provisionally fix

the value of the constantk as106 m−1 , so forρ = 10−6 m,
ln kρ = 0. We show that in the following Fig. 2.

With this choice ofk, the values of the metric tensor are,
for various values of the radius:

The difference compared to the corresponding tensor in
cylindrical coordinates flat space is limited virtually to com-
ponentg24 and its symmetric oneg42.

2.6. Metric tensor usingX4 = ct

So far, for easiness we used t as coordinate. For further use it
is convenient to express the metric tensor usingX4 = ct,
always in cylindrical coordinates. So it is equivalent to apply
the transformation:

X ′
1 = X1; X ′

2 = X2; X ′
3 = X3; X ′

4 = cX4; (102)

We use the transformation:

gT
ij =

∂xk

∂x′i

∂xl

∂x′j
gij (103)

and we come easily to:

gij =

e
−b2

c4 ( ln kρ
ρ )2

0 0 0
0 ρ2 − b2

c4 (ln kρ)2 0 −b ln kρ

0 0 e
−b2

c4 ( ln kρ
ρ )2

0
0 −b ln kρ 0 −1

(104)

The discrepancy with respect to the Minkowskian metrics in cylindrical coordinates reads again like (92):

εij =

1− e
−b2

c4 ( ln kρ
ρ )2

0 0 0
0 b2

c4 (ln kρ)2 0 b ln kρ

0 0 1− e
−b2

c4 ( ln kρ
ρ )2

0
0 b ln kρ 0 0

(105)

that can be schematically approximated as:

εij =

0 0 0 0
0 0 0 b ln kρ
0 0 0 0
0 b ln kρ 0 0

(106)
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3. Conclusions

The following conclusions are framed in the simplicity of
the model,i.e. excluding spin or fully relativistic quantum
model.

We made the hypothesis of assimilate the electron’s
trajectory in the dBB for the Hydrogen-like atoms with
geodesics of space-time in the GR, corresponding to the fact
that in the stationary states there is no loose of energy and
that in a geodesic the acceleration is null. We made our ex-
ploration in the orbital 2p of the hydrogen atom.

We made this exploration in pseudo-Riemanian Lorenz
geometry. We find a metric of this geometry by working out
an exact solution metric of Einstein’s field equations corre-
sponding to dust cylindrical model, dually modified. To es-
tablish the analytic form of this metric, we must make an ap-
proximation that proved to be coherent with the correspond-
ing numerical solution to a high degree. This modification
could be related to the fact that the relation between elec-
tron and nucleus cannot be merely assimilated to ”dust´´ (the
electron) turning around an axle, but deeper holistic consider-
ations should be taken into account, in relation with quantum
potential.

The found metrics proved to be coherent respect the linear
momentum and the constancy of the kinetic momentum, in-
dependently of the radius at which the electron turns around,
that is a variable in the dBB model. Anyway, at a convenient
radius, large enough, the deformation of space time vanishes,
at the radius limit of validity of the model, by election of
(only) a constant. We must highlight that in our approach a)
emerges a relationship between the componentsg22 andg24

of the metrics and b) the major discrepancy with the flat met-
rics is a non-nullg24 component that binds angle and time.

So we concluded that it is possible to explain the men-
tioned electron trajectories by a deformation of the space
time. This deformation is in relationship with the quantum
potential of the atom system, through the wave function.
The role of the wave function appears therefore as defin-
ing the deformation of space time where the particle moves.
Both, wave and the particles (electron and nucleus, the last

considered at rest), are in a non-separable relationship: the
wave guides the particle and the particle determines the wave,
by the process of limitation that introduces the quantization
(Schr̈odinger equation), that in fact derives from the first as-
sumption of de Broglie [1]: to identify the particle trajectory
and the corresponding light ray by stationary principles.

This feature permits us to recognise the same ontologi-
cal character to the particle and to the wave function. The
relation between the particle guiding and the quantum sys-
tem connects in some extension with the relation between
the metric structure and the energy stress impulsion of the
Einstein’s field equation: in both cases the system “tells” the
space time how to deform, and the space time structure “tells”
the body how to move. This relationship is reinforced by the
fact that the GR recognises a dynamical dependence between
matter/energy and space-time.

The coherence of the model here presented allow us to
consider the stability of atomic matter under the insight that
the electron follows a geodesic of the space time, and there-
fore with null covariant acceleration so the electron does not
emit energy because is not accelerating, despite its rotation
around the nucleus.

The capability of the Lorenz geometry to be used in this
approach shall be also highlighted as it distinguished sharply
the time and the spatial coordinates. Of course, it is not ex-
cluded the use of the Weyl geometry, as a generalization of
Riemann geometry, for more general quantum systems.

As an extension of this approach, in a separate paper we
will develop the calculations regarding Ricci tensors, scalar
curvature and further relativistic elements. Specially, we will
calculate the stress-energy tensor and interpret it in function
of the physical features of the system.
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