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ABSTRACT: In a previous paper one of the authors discussed a schematic
theory of nuclear reactions in which both the colliding parti-
cles and the compound system are described as point particles,
the main advantage being that the time-dependent analysis of
the problem is considerably simplified. In the present paper we
extend the schematic theory to include the isotopic spin formal-
ism in the specific example of a two-channel problem involving

isobaric analogue resonances.

I[. INTRODUCTION

In a previous paper, one of the authors® discussed a schematic theory
of nuclear reactions, in which both the colliding particles and the compound
system are described as point particles; the so-called internal region (in the
R-matrix language) has radius zero but still retains all of the characteristics
of a compound system. The idea here for the internal region is similar to

* Work supported by the Comisién Nacional de Energia Nuclear, México.
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that of a classical system of » masses interconnected by springs. This
system has a set of » normal modes, that are analogous to the levels of our
zero-radius compound nucleus. On the other hand, we can consider a semi-
infinite string along the x-axis extending from x = 0 to x = =, which can be
set into vibration; the amplitude of the vibration at a position x at time # is
analogous in the nuclear reaction problem to the wave function of the two
separated fragments, when the distance between them at time ¢ is r. In the
classical system, the really interesting problem arises when we tie the end
of the string to the system of springs at x = 0; this is analogous, in the
nuclear problem, to allowing for a probability different from zero for the tran-
sition between the system being in the form of two separated fragments and
in the form of a compound system. This is achieved by appropriate boundary
conditions at r = 0. The classical model allows a complete time-dependent
description and similarly, in the quantum mechanical case, the main advantage
of shrinking the colliding particles and the compound system to point parti=
cles is that in many instances the time dependence can again be analized?.

In a previous paper® which will be referred to as I from now on, a
classical model was constructed for the two-channel problem* involving iso~
baric analogue resonances and its complete time dependence was analized in
a subsequent paper>.

In the present paper we extend the schematic theory of nuclear re-
actions to the two-channel problem mentioned above. In this problem one
considers a proton |p > incident on a target | C.>

|p>E '19-l
2
lc>= 11,1 >, (1.1)

the target having isospin T0 and projection (N=Z)/2 = T, . In the compound
system one has two possibilities T2 = T‘J +1/2 for the isospin. The states
with T, correspond to the ground and low-lying excited states of the
compound nucleus as their isospin and projection are the same. The states
T., as their projection is T = 1/2, are isobaric analogues of the ground or
low excited states of the nucleus with Z protons and N + 1 neutrons. The
first T, state, from medium heavy nuclei on, will appear in the region of
energy in which the T. states are already quite dense. The T, state will
then interact with this “sea” of T, states, giving rise to a modulating effect
on their widths which is observed in high resolution experiments.
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If we want to construct states with isospin T, or T, , we make use of
Clebsch-Gordan coefficients

+<1~D%(',r0-1)%|1r2 (TD—%)>lnA s 12

We employed the notation

|a>

|1, (1, -1>a T |C> (1.3)

to indicate the isospin part of the neutron wave function and the isobaric ana-
logue of the target, respectively. The simplest model we can make, that
gives rise to T, and T, states is then one that couples the ]pC > channel
of (1.1) with the |#A > channel of (1.3). A strong coupling between these
two channels was observed® in the charge exchange (p, n) reaction, leading
to the isobaric analogue of the target.

Notice that first of all we have made the simplifying assumption that
the ground state of the target and its analog have good isospin, the only
difference between them being the “Coulomb displacement energy” A. If the
incident proton is then assumed to move in an average single particle Coulomb
potential, rigorously speaking the compound system cannot have good isospin,
because the proton in the p + C channel and the neutron in the n + A channel
are treated differently. However it has been shown by Robson that one can
choose the radius of the internal region (inR -matrix language) such that the
isospin impurity arising from the extra proton approximately cancels as far as
the compound states are concerned. This leads to the second simplifying as-
sumption, that isospin is a good quantum number for the compound states de-
fined in the internal region (i.e. we neglect the so called “internal mixing”).
Therefore, in our schematic theory we shall consider that our point-particle
compound system, when isolated completely from the external world, has the
possibility of existing in states with good isospin, In the external region
(r # 0 in our schematic theory) such an approximation would be impossible
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even in the absence of a Coulomb force on the incoming proton, because the
neutron feels a potential barrier equal to the Q (= A) of the (p, #) reaction
and the proton does not. As an example, we show qualitatively in Fig. 1 the
potential Vp felt by a proton in the field of the target and that felt by a
neutron (V) in the field of the analogue of the target. Both potentials have
been drawn identically in the internal region, T being therefore a good quantum
number for states defined for r <a only. If we suppress the Coulomb po-
tential felt by the proton outside the target, we get the potential of Fig. 2.
The isospin impurity produced by V, # v, for r >a is known as “external
mixing” and gives rise to effects such as the Robson’s enhancement factor®**,
that make themselves evident when we allow for an interaction between the
.compound nucleus and the external world.

In the next section we consider the extension of the schematic theory
to the two-channel problem described above, for the simple case in which the
Coulomb interaction on the incoming proton has been turned off, leaving for
Section III the discussion of this interaction.

II. ASCHEMATIC THEORY FOR ISOBARIC ANALOGUE STATES
WITHOUT COULOMB POTENTIAL

As mentioned in the Introduction we shall study in this section the
problem of isobaric analogue resonances in the case where only two channels
are considered: the proton channel and the neutron channel, leaving behind a
residual nucleus in a state which is the isobaric analogue of the target in its
ground state. This problem has been studied by Robson* in the framework of
the R -matrix theory and our purpose will be to rederive his equations from the
standpoint of the schematic theory of nuclear reactions'. In Wigner’s
R-matrix” formalism, configuration space is divided into two regions: the in-
ternal region, corresponding to all nucleons being close together to form a
compound nucleus, and the external region corresponding to two pieces of the
compound nucleus being separated by a distance larger than the sum of the
radii of these two pieces.

In the schematic theory of nuclear reactions described in the Intro-
duction, one would say that we can find the system either in the form of two
separated particles or in the form of a compound system, considered as ele-
mentary particles. We describe the first case by means of the vector ¥ in
Fock’s space
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Y, 0 [pC >
Y= . (2.1a)
g (r, ) | nA >

where l,b (r,t) and t,b (r, t) are the wave functions in relative coordinates for
the proton and neutron channels, respectively; IpC > and |nA > have the
same meaning as in (1.1) and (1.3). We describe the situation in which the
system is in the form of a compound nucelus by means of the vector ®

‘?5?\(!) | >
D= , (2.1b)
&, | 1>

where we have indicated explicitly the possibility of having one compound
state with isospin T, = T +1/2 (the isobaric analogue of a low lying state
in the nC system) and one with isospin T, = T -1/2. Explicitly:

> +/2T >
5 lpc 2T [ nA

VarT +1

V2T |pC>=|na>
Tedm 8 : (2.1¢)
VarT +1

If one thinks of the system as being described by an optical model hamilton-
ian plus Lane’s potential, one has, in fact, a two channel problem and for
the T_ state of the compound nucleus one has a broad giant resonance cen-
tered several MeV below the analogue state. In the true many body problem,
on the other hand, one would have many T, states (instead of a broad giant
resonance) around the analogue, which give rise to the fine structure. This
description could be included in the definition of ®, by adding many states
q%' and the analysis that follows would be almost identical.

In the absence of a Coulomb potential in the external region, ® satis-
fies the following equation, for r # 0
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2
it 3_“’=-5_v21p +mc? ¥ 2:2)
dt 20

where o is the reduced mass of the proton and the targetr, which is almost
identical to the reduced mass in the channel nA; m is a two by two matrix

mp'f'mC 0

0 m"“]’mA

containing the mass of each channel when the two fragments are separated.
The Q of the (p, n) reaction is therefore given by

0 = [(m, + mg) - m, + my)] c2<0

In a formalism in which the internal region was of finite size, elimi-
nating the Coulomb potential in the external region would correspond to con-
sidering for the proton and the neutron the potentials of Fig. 2 instead ot
those of Fig. 1. The Q of the (p,n) reaction is sufficient to produce isospin
mixing, as explained in the Introduction.

If there were no coupling between the vectors W and @ of (2.1a) and
(2.1b), ® would satisfy the equation

ix 0P _ye2o (2.3)
ot
where M is a 2x 2 matrix
M}\_ 0
M = ) (2-4)
0 M
7

M, and M being the masses of the T, and T, compound states respectively.
The splitting between these two states could be thought of as due to Lane’s
potential ¥, e T, which has different eigenvalues for the two value of iso-
spin.

The problem of interest arises of course when there is a coupling
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between ¥ and ®, in which case ® will no longer satisfy Eq. (2.3); in order to
see what kind of an alteration one should introduce into Eq. (2.3), we ask that
the probability of finding the system in the form of two separated fragments,

plus the probability of finding it as a compound nucleus be conserved in time,

i.e.
4 [j\p" WdT + tb"cD] =0 (2.5a)
dt
or more generally, to have conservation of probability even for superposition
of states, we ask that the following scalar product be conserved in time:

j_: [I‘I"+Wdf+¢)'+tb:| =0 (2.5b)

where ¥’ and ®' are any other wave functions. By the scalar product vty

(and similarly for o't o ), we imply a scalar product in isospin space also,
l.e.
qjl’+ = ¥ < ] ¥ , <
¥ =y 0 <pcl, gy e, n<nall | 4, ¢,nlpc>
g (r, 1) nA>

* *
=y (O, () (DY, (). (2.6)
If we take the hermitian conjugate of (2.2) for a vector ¥’

r+ 2
-i5 W L Pty 2.7)
dt 2u

take the scalar product of (2.2) with ¥'* and of (2.7) with ¥, substract and
integrate, we get

2
i% if\p’ﬂyh =- ﬁ_f[w”'vzw-(vzw'*)w dr.
dt 2

(2.8)
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It will be convenient to change from ¥, as defined in (2.1) to contain the
proton and neutron channels, to ¥ which will contain the ] T> and | T, >
channels

v (0| T, >
¥ = (2.9)
>
l;b< (ry 2) ] T,
where
. 2T, _
¥, A Var +1 ¥ 21, +1
=0 , 0=
J, 4, _ 1
0 -
0,71 der 41
(2.10)
Then one clearly has the relation
\Pl+lp _ ﬁti-ﬁ
and (2.8) can be written as
i# iflp'*wT —-----f[ql'*v V- (VU ) W] gy =
dt 2u
__ #? e =N T 4
==7 WV~ (V¥'F)V] - ds (2.11)

2u

where we have applied Green’s theorem, and the integration is performed on
a closed surface consisting of the sphere at infinity plus a small sphere of
radius a centered at the origin (we shall eventually let @ = 0). If our wave
function consists of a packet which goes to zero at infinity, we shall only
have the contribution from the small sphere. Changing the direction of dS
so that it will point outwards and choosing s-waves, we have
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a(ab)

i% iflp'*tpdr _ 27k’ (rng") a(”b )-(ﬂ,b)
,u' >

+(¢)a"“f”-w)a(’¢’ |

re=o

(2.12)

so that the conservation of total probability (5) now reads:

o222 O(ry’ ’ 2 rys 1
AN N )

M dr Zr=0 M dr
= r=20 - r=0
2 3(ry’) 2 Ary ) |
o () - |2 o (rg')
M dr <'r=o0 L dr <r=0
r=0 dr=o0

b .. op 9" ,
¢y (- i a:‘ + M.}\c2<}5l ) - “bx (- i# Tz& - M}\cqu)\) 4

aqb ' "
'k . K 2 ., 9¢ ;
+ q{;# (-n}’ F+MMC q5# ) = qu (- i% at.u +M“c2¢#) —0.

This bilinear form is of the type

* *
(3 % 4i=%5,4) =0 (2:14)

A a

i

and a sufficient condition?! for (2.14) to vanish identically is that the

L ’s be a linear combination of the X ’s

(2.15)
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where C = ” C;; " is a constant Hermitian matrix. A similar condition holds
for the y’s. We therefore have

toahtCy, 4,

2 3(ry )
sl + M. 2 wiE 2mE + 27
- Tili 2 R>|: m = Cac -
=0

+C +
.uld)?\ C##qbf-l :

2 9(ry ) ]
5 .
3ry ) ]
u dr

a r
-;¢%+M”c2¢ il [2‘1’7‘52 Cl 5"’:)] +C [21'7-!!2

(2.16)

The last two equations are the modifications of (2.3) we were looking for,
when ® is coupled to ¥.

Assuming that there is no coupling between the wave functions of the
compound particles themselves, but only between them and the two channels

o ™ O = G =0 At r=0, ¢, being a

T, state, will only be coupledﬂto the T, channel and ¢ to the T, channel
A Che = Cp> =0. At r =0, the T, channel will not be coupled to the T
sothat Cy . = C., =0.

Finally we shall assume that the T, and T¢ channels do not couple

directly but only through the compound particle, i.e. C,, =C_ = 0. This
2

T, and T, , we have C'N/\ = G

will make the background R matrix
sential features of the problem.
The equations (2.16) simplify in an obvious manner. We shall now

vanish, without changing any of the es-

proceed to show that these simplified equations are, for the case of s-waves,
which is the only one we shall discuss in this paper, entirely analogous to
equations (2.3) of Ref. 3 for the classical model. For this purpose we de-
fine appropriately renormalized states of the compound nucleus by
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(1) B, ()
b= 2_, =k (2.17)
> Cep,
and then introduce a phase factor exp [= iﬁ.l (mp 1 mc) c2t] in all wave
functions, i.e.
‘L('ﬂ +m_ ) ct
L,bp(r, 1) - \bp(r, t) e # , etc. (2.18)
The wave equations for our problem become then
LAr) g2 32(rdy) _Arp) 42 D (r)
- 45 b= % - P, - - ;% —7—-leley) @19,b)
r
3 - 2 3(r
- i# __%JF[MK—(mpi-mc)Jc2¢m== s [2”* _%;ﬂg_] (2.19¢)
I r

Fi=0

, 0P = B 3 2752 a(”nb)
-5 Bt M= m, t me)] P, = Gl [ | e

r=0

() . =, , () =% 5 iGeB

together with the linear transformation (2.10) that relates ¥ to ¥ .

The equations (2.19) are then entirely equivalent to (2.3) of Ref. 3
if we consider the relations of Table 1.

For stationary states, i.e.if
iE,

%mnm%me* (2.20)

where E is now the kinetic energy, equations (2.19) reduce to the form
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d* 2 _ d’ 2
Ltk ) () =0 L [UARL (2.21a,b)

r

o - 2 9
{[My= (m, + mc) )= E} by = (Ey = E) Py, oy [2'”‘3’ __(1H_bL)]

o or
r=0
(2.21¢)
- e pligy = < T e 277{528("1[’)
{[M,u. (mp+mc)c} E}¢#:(Eu r:)qb#_cM[ : ars
r=o0
(2.21d)
%:(fsb))_ , b, =(r¢<)r=o ) (2.21e, f)

where we have

% 4
b, = 1. &= 2k (g-10]) (2.22)
#? #*

which, in turn, are identical to equations (3.2) of Ref. 3 if we use the re-
lations of Table 1 which include w? = E.

From (2.21) it follows that

Cory ]
—
ru,b> Or
= [} , (2.23a)
r¢l< ory
r=20 L ar =
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27H C?2\>
e 0
E)\"'E
D =
274 c2<
0 _m
E =-E
L M

351

(2.23b)

In the case we have not one, but many resonant states in the T. channel, the
lower term of the diagonal matrix D becomes

RE)=2
e

2

i

E -E
o

as in (3.16) for the classical problem?3.
The R -matrix for the nuclear reaction problem is then

r,

"‘/1,,

"art,bp =
or

ar‘,bn
| Or

=

. R=0DO

(2.24)

(2.25a,b)

with O being given by (2.10). Carrying this out explicitly we see that

R

Lol o

’
c,c =p,n and we have

= "heMne’ ¢ YieVc!
E,~E E -E
m

(2.26a)
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1 /27752 2T 2772
'}")\p = - C?\> y 'y = J 0 G <
V2T, +1 K “P N 2T t+1 wo ®
2T D) 2
T = \/2’1“(;1 2 Ch> v Yom® ey V Gy -
0 2 /2T0+1 H

(2.26b)

For the more general case when there are several compound nuclear
states of T, , we use the expression (2.24) of R(E) in the diagonal matrix
(2.23b). In that case (2.26a) has a summation with respect to 1 index and

21 . (2.27)
')" = ’)/ v ’)/ = - ')/ % L
up ”n

RLALE T prey

To derive the §-matrix from the R -matrix, we follow the same pro-
cedure as in Ref. 3 and obtain

% A =4
S=K (1-iRK) (1+iRK)K (2.28a)
with R given by (2.26) and K by
k, 0
K= ’ (2.28b)
0 k
n

where kp , k, were defined in (2.22).

From the previous expression for the §-matrix, the analysis of the
effects of external mixing can be carried out exactly as in Ref. 3; the poles
of § retain all the properties discussed in Ref. 5 for the classical model.

The previous results have been obtained eliminating the Coulomb po-
tential outside, so that all the sources of external mixing lie in the differ-
ence between the masses of the pC and the n A channels. The task of in-
cluding the Coulomb potential between the proton and the target will be
undertaken in the next section.
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II. INCLUSION OF THE COULOMB POTENTIAL IN THE SCHEMATIC
THEORY OF ISOBARIC ANALOGUE RESONANCES

We shall now indicate how the presence of the Coulomb potential in
the proton channel can be included. Again we describe the system when it
is in the form of two separated fragments by means of the vector ¥ in Fock’s
space, as in Eq. (2.1a), except that the Schrodinger equation which ¥ should
satisfy, is no longer given by (2.2) but by the following differential equation

x OW _  #% 2 2 1
zﬁg—-ﬁv ¥V + mc ‘I’+Vc(r)(3-tz)q', (3.1)
where
-1/2 0
1 =
z
0 1/2
and
9
Vc(r) _ Zze

r

is the Coulomb potential.

Again one describes the system when it is in the form of a compound
state by the vector ® of (2.1b) which, in the absence of a coupling between
® and ¥ would satisfy (2.3). The analysis about the conservation in time
of the scalar product of two vectors in Fock’s space proceeds unaltered until
we reach (2.13) where the Coulomb potential introduces a logarithmic di-
vergence in the derivatives evaluated at r = 0, as we shall see below.

Eq. (3.1) for the proton wave function (r/, ) has two linearly inde-
pendent solutions, called F and G in the literature and (rif. ) will be a linear
combination of both; for / = 0, F and G have the following asymptotic be-

haviour®

F — sin (kr = 1 In 2kr +GE>)
If kr = >, (3.2)
G = cos (kr=m In 2kr +Oa)
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F = Ckr
If &r 0,
G-L1 )1+27 |1n2r+1 +y=1 ,
c { D [ D 28(7?) 2
(3.3)
where
»? 1
P = 3 ’ = 3'4a;b)
Le“Zz K kD (
v = 0.5772... = Euler’s constant (3.4c¢)
c?=_2™ | gm=-2hn+27® T 1 (3.ude)
ez"‘?_l n=1n(n2+7]2)
210 3
Jo _Lating (3.4f)

- -in)

From (3.3) we observe that for r = 0, G = C.1 , while 3G/ 9r will
diverge logarithmically.

In order to see how one should reformulate the bilinear expression
(2.14), we shall consider, for the sake of simplicity, a one channel case first
and then apply the results to our two channel problem. If in the one channel
problem we call yi(r, #) the wave function for the two fragments (r being the
relative vector) and ¢ = ry/, then for s-waves ¢ will satisfy the following
equation in the stationary case

- '15;2 dch i Zze’

=EBg . 25
= 5 ¢ =Eg (3.5)

If instead of a potential of the type 1/r we had one of the type 1/(r +d) with
d > 0, all the previous difficulties would not arise; Eq. (3.5) would read

2
ne . = Bap , (3.6)
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with two linearly independent solutions F(r+d) and G (r+d). The more
general solution can be written as a linear combination of F and G and we
choose to write it as

¢o=AE)C[G(r+d)+F(r+d) cot 8] , (3.7)

where A(E) only depends on energy, C has been defined in Eq. (3.4) and §
is the phase shift. The R-function of the problem is given by

[l éiP_:l - 1 (3.8)
¢ dr ~

r=20
and it is important to realize that this R(E), being a property of the compound
system only7 » is exactly the same as the one we would have if in Eq. (3.6)

the potential term were absent. For d small enough, ¢ and its derivative at
r = ( are given by

p(r=0)=~ A {1+ 24 l:ln 24 4 lg('r;)w"y—- 1]+C2kdcot5}
2 ‘

D D
[d_‘P] %A{
dr
r=o0

where the asymptotic relations (3.3) have been used. We can therefore write
(3.8) for the R-function as

[In %ﬁi_ +lg(n)+7]+C2kcot5},
2

T~

(3.9)

2 [ln 2d %g(n)+'y] +C%kcot §

23 2Dd 1 2 - R%E) (398
1+22 | In 22 + 2 g(m)+y=1] ¥+ C*kd cot &
: [ = ot ty-1]
If ac this point we take the limit d = 0, we see that [3¢p/Or] diverges
r=o0

and therefore (3.8) is not correct in this limit. However the problem can be
solved by taking the difference between two expressions like (3.8), for two
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different energies, because the term (2/D) In (2d/D)(which is the source of
the divergence in d¢/ Or), being energy independent, will cancel out.  The
following equation is therefore correct, even in the limit d = 0

d d
@ dr dr ~ R(E) RE") S
Py P

Making use of (3.9)

a'
lim | 1 { 1 Ei+1 "+ +Cc'ie a'} =_1 - _1
d— o [‘PE L el - R(E) RE")’

where the prime on the various quantities means that they have to be evalu-
ated at the energy E'. We can make, for example, the choice E'=0.From
the definition? (3.4e) for g(m) one can see that

lim gn')=7vy. (3.12)

E'= o
We define

i Hm € FeotS = 178

d—.(}E'—'O

We now recall that, in the absence of a Coulomb potential, the phase shift
§, and the R function are related by

kcot§ = X, (3.13)

In the vicinity of E = 0, one has the usual approximation involving the
scattering length a and effective range r

k cot 50%-l+%r k* (3.14)
a
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so that, from (3.13) we see that

A mmd | (3.15)
a

Introducing this result, together with (3.12) into (3.11) one gets

. do
lim {1 E_[2,,2d 3y,1,1 T
4701 @, dr D D D b a R(E)

r=0
(3.16)

or, if ¢ now denotes the wave function for the usual Coulomb potential
E

de
Ee 21m27+4 o
y -
(PE
A= +141
D b a

This is therefore the appropriate generalization of Eq. (3.8), which gives the
clue of how to reformulate the bilinear expression arising from the conser-
vation of the scalar product.

Let us now go back to our two channel problem. We note that if in the
proton channel we have to deal with the derivative

or
[ % (210244 (@)] ; (3.19a)
D 14
r=0
while in the neutron channel we have only

d(ry)

~ Jr ’

(3.19b)
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then when carrying out the transformation (2.10) for the derivatives to put
them in terms of (r) ) and (ry) ) we obtain
> <

R ]
_ 2T. _||9 \
. \/ 0 [;%-(Elnz_’+A)(r¢p)]
. 2T +1 r D D
Var +1 o) / r=o
,1 2T, [ar¢n]
L 2T0+ 1 \/ZT(;+ 7 o BT o
L £ %
_ Or
ol 8 A 20t Rl Vil
dr @04_1 D D
dr 2T
_l’bg - J; 21027+ A\ (ry)
- Or 2T +1\ D D L2
r=20 (3.20)
where we made use of the fact that from (2.10)
1 arL/Jp . ZTU arljbn - ‘arlib,} (3.21a)

\/_Z»ITOJr_l or 2T +1 Or or

and similarly for r .
L3
" The wave equations for the problem where we have a Coulomb po-
tential could then be obtained by the same conservation of probability argu-

ments of the previous Section. The only change would be that (3.20) re-
places the derivatives

.
i
dr
(3.21b)
9
r
3r
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appearing in (2.19¢,d), and a term - Zze’/r must be added to (2.19a).
The diagonal form (2.23) of the R -matrix will now connect the wave

functions and derivatives

e _
jz- ;_ zln 2T + 4 (rgbp)
r¢,> or ‘/ﬁcﬁl b D
=D
ory 2
e g ° (2127 +4\(ry)
W or T+LLD P b
= 1 5 {
r=0
(3.22)

and so, applying the transformation O of (2.10), we see that the R = 0Do
matrix now relates

~ 0 =
TL/JP - glnﬂ'l'A rL/J
”;pr or D D p
=R . (3.23)
r\/)” ‘a”;b,,
: Or |
r=20 r=0

Equation (3.23) contains therefore the generalized definition (3.18) of the
R -matrix for the proton channel and the usual one for the neutron channel.

The evaluation of the §-matrix proceeds now exactly as before.
Following Lane and Thomas (Ref. 7, page 269) we define for channel ¢ the
incoming and outgoing waves I_(r) and O_(r) for s-waves

IC = GC - I.Fc g OC = Gc + ipc (3.24)

with asymptotic behaviour, at large distances
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«ifl ¥em. l!lzkcr+UOC)
I ~ e
c
i(kcr'ncln2kcr+0'oc)
0O ~e . (3.25)

€

where kc is the wave number for channel ¢ and Ty e has been defined in
Eq. (3.4f); note that if c denotes the neutron channel, By = 0andm_ = 0.

The wave function in channel ¢’, when one has incident waves in
channel ¢ only, can be written as

(c) I, (r) 0 1 (r)
= e B et (3.26)
< \/k e T \/;a t T
C C

or, in matrix notation, at r =0
i (@ (n)
Wy Ty 1,Vk, 0 0,Vk, 0 S S, .

- = =K “(I-09)

(p) (n)

e rd, 0. I Nk 0 0,/Ve, | |5 Sum

lp 0 Op 0
I= , 0= (3.28)
0 I 0 o,
=0 r=20

One can also write the appropriate expression for the derivatives at r = 0 in
matrix form
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9 rlﬁip)

or

2y

L 3r

or

(» 9 sﬂm

» ry

-(Elnz_'hq) rd (:
D D »

2 2r ()
“[Zln+A)r

aﬂjir)

dr

=K

The R -matrix relation (3.23) can now be written as

K “(1-0S) =RK ‘(1"=0"S) |

which can be solved for the §-matrix to give

S—0'Ki(1-RL) '(1-RL*) K™ %1,

[}
-5
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i'=0"%.

(3.29)

do
dr

(3.31)

(3.32)

which is clearly the generalization of Eq. (2.28a) when there is a Coulomb
potential in the proton channel. The matrix L is a modification of the loga-
rithmic derivative of the outgoing wave function of Ref. 9), i.e.
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- do
1177 [21h27+4)0 0 .
0 dr P D P
2
L= 3.33
ldo ( )
25 n
0 0O dr

which, from the behaviour (3.3) of F and G in the vicinity of r = 0, can be
written explicitly as

- n
gm=Y 1.1l +ac® o
D b a P

L - . (3.34)
0 ik

n

e

In the absence of Coulomb forces, C =1, D = >, 1/b— = 1/a, so that
L—iK,0- 1,11 and the §-matrix of Eq. (3.32) reduces to that of
Eq. (2.28a).

CONCLUSIONS

We have shown how the schematic theory of nuclear reactions can be
extended to include the isotopic spin formalism, in the specific example of
a two-channel problem involving isobaric analogue resonances. The quantum
mechanical problem is mathematically identical and it has physically many
points in common with a classical problem discussed in an earlier paper® .
The analysis was first carried out in the absence of a Coulomb potential
between the incoming proton and the incident target, the only source of Sex=
ternal mixing” being provided in this case by the barrier, equal to the Q of
the (p,n) reaction, felt by the neutron in the field of the analog of the target.
The Coulomb potential felt by the proton was then included and it was shown
what modifications one has to introduce in order to avoid the problem of the
singularity introduced at the origin by the Coulomb field.
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The complete time-dependent behaviour of the classical model was
studied in an earlier publication® and the time dependence of the nuclear
problem could be studied using the ideas developed in Ref. 2).
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RESUMEN

En un trabajo previo, uno de los autores discutié una teoria esquema-
tica de las reacciones nucleares, en la cual se tratan las particulas inciden-
tes y el nicleo compuesto como particulas puntuales. La principal ventaja
del modelo consiste en que el analisis de la dependencia temporal del pro-
blema se simplifica considerablemente. En el presente trabajo se extiende
esta teoria esquemadtica, para poder incluir el formalismo de isospin, en el
ejemplo especifico de un problema de dos canales con resonancias anilogas
isobaricas.
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TABLE 1

Relations between the variables in the mechanical and the

nuclear reaction problems.

Mechanical Problem Nuclear Reaction Problem
x r
/312 - i59/0t
u (x, 1) Py (r,0)
u (x,1) i, (r,1)
v (x, ) rl./))(r, 1)
”z(‘"') f41<(nf)
w (1) $5(1)
w, (1) b,
T/p #2/(2u)
AN p lol
A /M (M= (m, tm.)] ¢t = By
A, /M [M““(”‘p+mc)] CZEE#
- 2’ c2, and am# Che
w? E
k, k,
k k
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Fig. 1 The potentials of the proton in the (pC) and the neutron in the (nA)
channels.
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Fig. 2 A simplified version of the potentials of neutron and proton discussed
in Fig. 1.





