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ABSTRACT: In a previous papee one oí (he aurhors discussed a schematic

theoey oí nuclear fenecioos in which both che collidin~ partí-
eles and che compound sysrem are described as point particles,
[he mai.o advantage being thar che tíme-dependent analysis oí

che problem is considerably simpljfied. In che present papee we
extend the schematic rheoey to ¡nelude che isotopic spin formal .•

ism in the specific example oí a two-ehannel problem involving

¡sobarie analogue resonances.

1. INTRODUCTION

In a previous papee, one oí the authors 1 discussed a schematic theoey
oí nuclear reactions, in which both the colliding particles and the compound
system are described as point particles; the so.called internal region (in [he
R~matrix language) has radius zero but still retaios a11 of the characteristics
of a compound system. The idea here for the interna! region is similar to

•Work supported by the Comisión Nacional de Energía Nuclear, México.
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char oE a classical syscem DE n masses interconnected by springs.. This
system has a ser DE n normal modes, thar are analogous tO che levels oE oue
zero-radius compound nucleus. 00 che oeher hand, we can consider a semi-
¡nf¡oice seriog alaog che x-axis extending from x = O to x = 000 , which can be
ser into vibradon; che amplitude of che vibrarían at a position x at time t is
analogous in (he nuclear reaction problem to che wa ve (une tion DE che [WQ

separated fragments, when che discance between them at time t is r. In (he
classical system, che really interesting problem arises when we tie [he end
of che seriog to che system oí springs at x = O; chis is analogous, in che
nuclear problem, lO allowing foc a probability d¡Herene from zero for che tean'"
sition becween che syscem being in che form of cwo separaced fragments and
in che form of a compound system. This is achieved by appropriate boundary
conditions at r = o. The classical model allows a complete time"'dependent
description and similarly, in the quantum mechanical case, the main advantage
of shrinking the colliding particles and che compound system to point parti'"
cles is that in many insances the time dependence can again be analized2•

In a previous paper" which will be refcrred to as I from now on, a
classical model was consuucted foc the two"'channel problem" involving iso"
baric analogue resonances and its complete time dependence was analized in
a subsequent papers•

In the present paper we extcnd the schemacic theorv of nuclear re'"
actions to the two"'ehannel problem mentioned above. In this problem one
considers a proton Ip > incident on a target le>

I p > - I~.-+)2

le> = ITo.To)' (1.1)

the target having isospin T and projection (N - Z)/2 = T. In the compoundo o
system one has two possibilides T>: = T 1: 1/2 for the isospin. The states
with T< correspond to che ground<::and low"lying excited states of the
eompound nucleus as their isospin and projection are the same. The states
T>, as their projection is To - 1/2, arc isobarie analogues of the ground or
low excited states of the nucleus with Z protons and N + 1 ncutrons. The
fírsc T> scate, from medium heavy nuelei on, will appear in the region of
energy in which che T< scaces are already quite dense. The T> scate will
chen interacc with this .sea" of T< scaccs, giving cisc to a moduladng cffecc
on meir widths which is observed in high rcsolution expeciments.
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lf we want tO construCt states with isospin T> or T<, we make use of
Clebsch-Gordan coefficienrs

+/T .!.-(T -l).!.-iT,,(T -.!.-) InA"-'o 2 o 2 ~ o 2

We employed the notation

In>-I.!.- 1 >
2 2

lA> " I To (To - 1) > a. T_ le>

(1.2)

(1.3 )

to indicate the isospin part of [he neutron wave function and [he isobaric ana-
logue of [he target, respectively. The simplest model we can make, that
gives rise to T> and T< s[ates is then one that couples the 1 pe > channel
oí (1.1) wirh rhe I nA > channel oí (1.3). A srrong coupling berween rhese
two channels was observed6 in [he charge exchange (P, n) reaction, leading
to the isobaric analogue of the targe[.

Notice [hat first of a11 we have made the simplifying assumption that
[he ground state of me target and its analog have good isospin, the only
difference between them being the .Coulomb displacemenr energy. {';. lf rhe
incident proton is then assumed [O move in an average single particle Coulomb
potential, rigorously speaking the compound system cannot have good isospin,
because the proton in the p + e channel and the neutron in the n + A channel
are treated differently. However it has been shown by Robson that one can
choose me radius of the internal region (inR "matrix language) such that the
isospin impurity arising from the extra proton approximately cancels as far as
the compound sta tes are concerned. This leads to the second simplifying as-
sumption, mal isospin is a good quantum nurober for the compound states de-
fined in che internal region (i.e. we ncglect [he so ealled «Iinternal mixing").
Therefore, in our schematic theory we shall consider thar our point-particle
compound system. when isola[ed completely from [he external world, has the
possibility of existing in srares with good isospin. In che external region
(r =F O in our schematic theory) such ao approximation would be impossible
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even 10 (he absence oí a Coulomb force 00 (he incoming proton, because [he
neutron feels a potential barricr equal ro the Q (= 6) oí rhe (P, n) reaecioo
and rhe proton does noto As ao cxample, we sho\\' qualitatively in Fig. 1 (he
pOlenlial Vp feh by a plo'on in Ihe field of ,he ,arge, and Ihal fel, by a
neutron (V,,) in che field oí (he analogue oí rhe rargct. Both potentials have
beco dcawn idcntically in the internal regiDo, T being thereforc a good quanrum
number foc statcs defined foc r < a ooIy. lf wc supprcss rhe Coulomb po-
tendal felr by rhe proton outsidc rhe target, we gel rhe potential of Fig. 2.
The isospin impuriry produced by Vp #- Vn foc r > a is known as "externa"¡
mixing" and gives cisc tú effccts such as rhe Robson's enhanccment fac(or3 ••

(har make themsclves evident when we allow for an interaction between the
. compound nuc1eus and the external world.

In the next section we consider the extension of the schematic theory
to the two •.channel problem described above, for the simple case in which the
Coulomb interaction on the incoming proton has been curned off, leaving for
Section 111the discussion of this interaction.

!l. A SC!lEMATlC TIIEORY FOR ISOBARIC ANALOGUE STATES

WITIIOUT COULmm POTENTIAL

As mentioned in the Introduction we shall study in this section the
problem of isobaric analogue resonances in the case where only two channels
are considered: the proton channel and the neutron channel, leaving behind a
residual nucleus in a state which is the isobaric analogue of the target in its
ground state. This problem has been studied by Robson" in [he framework of
[he R -ma[rix [heory and oue purpose will be [o rederive his equations from [he
scandpoint of [he schematic [heory of nuclear reac[ions 1. In Wigner's
R.matrix7 formalism, configuradon space is divided into two regions: the in"
ternal region, corrcsponding to all nucleons bcing close toge[her to form a
compound nucleus, and the ex[ernal region corrcsponding to two picces ofthe
compound nuc1eus being separated by a distance larger than the sum of the
cadii of [hese [wo pieccs.

In [he schcmatic theoey of nuc lear reactions described in the lntro.
duclion, one would say that wc can find the system either in the (orm of two
separated partic1es or in the form of a compound system, considered as ele-
mentar)' particles. \Ve describe [he firs[ case by rncans of [he vector tp in
Fock's space
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'1'" [tPp(r,t) Ipe > ] '

tP.(r,t) I nA>
(2.1a)
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where t./Jp (r, t) and t./Jn(r, t) are rhe wave functions in relarive coordinares for
rhe proron and neurron channels, respecrively; 1 pe > and I nA> have rhe
same meaning as in (1.1) and (1.3). We describe rhe siruadon in which rhe
sysrem is in rhe form of a compound nucelus by means of rhe vecror <t>

(2.1 b)

where we have indica red explicidy rhe possibiliry of having one compound
srare wirh isospin T> ::::::;To + 1/2 (rhe isobaric analogue of a low lying srare
in lhe ne syslem) and one with isospin T< = To - 1/2. Explieitly:

¡pe> +m InA >o----------
vTi+¡o

l2ilpe>-lnA>o

/IT- + io

(2.1e)

If one thinks of rhe system as being described by an optieal model hamilton-
ian plus Lane's porenrial, one has, in facr, a two ehannel problem and for
rhe T< srare of rhe compound nuc1eus one has a broad gianr resonance cen-
rered severaI ~feV below rhe analogue srare. In rhe true many body problem,
on rhe other hand, one would have many T< srares (insread of a broad giant
resonanee) around [he analogue, which give cise [O the fine structure. This
deseriprion could be includcd in rhe definirion of <t>, by adding roan y s[ates
<p. and rhe analysis that fo11ows would be almost identicaL
l'

In the absence of a Coulomb potential in the exrernal region, cI> satis-
fies [he fo11owing equation, for r f O
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if5 Cl'l'
ClI

,
!!..- V" '1' + me' '1'2¡;.
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(2.2 )

where f.L is che reduced mas s of the peaton and che target, which is almost
¡dcodeal to the reduced mass in the channel nA; m is a (WO by [WO matrix

containing the mass of each channel when the [wo fragments are separated.
The Q of ,he (P, n) ,eac,ion is ,herefore given by

In a formalism in which the internal regiDo was of f¡oite size, elimi.
nating the Coulomb potcntial in [he external regiDo wauld correspond to con-
sidering foe the proton and (he neutron the potentials of F ig. 2 instead al

those oí Fig. l. The Q of the (P, n) feaecioo is sufficient [O produce isosplo
mixing, as explained in (he Introduction.

If (here wece no coupling between the vectors '11and et> of (2.1a) and
(2.1b), $ would satisfy ,he equa,ion

wherc M is a 2 x 2 matrix

i/5 Cl$(1) = M e '$ ,---al (2.3)

(2.4 )

,\1" and M,u being the masses of the T> and T< compound states respectively.
The splitting between these tWOstates could be thought of as due to Lane's
potcntial V t. T, which has different eigenvalues for the twO value of iso.

I
spin.

The problem of intercst arises of coursc when there is a coupling
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belween '1' and <1>, in which case <1> will no longer satisfy Eq. (2.3); in order 10

see what kind oí an alteration one should introduce into Eq. (2.3), we ask mat
the probability of finding the system in the form of two separated fragments,
plus me probability of finding it as a compound nucleus be conserved io time,

l. e.

(2.5a)

or more gene rally , to have conservation oí probability even for superposition
oí states, we ask that the following scalar product be conserved in time:

d
dt

(2.5b)

where 'JI' and l1>' are any other wave functions. By the sea lar product lJ" + lJ'
(and similarly foc l1>' + lf> ), we imply a scalar produet in isospin space a150,
i. e.

'1"+'1' = [</J;*(r,t) <pcl , </J~'(r,t)<rlAI] [</Jp(r,t)IPC>]

</Jn(r,t)lnA>

.1•• ' .1. .1••'= 'Yp (r, t) 'Yp (r, t) + 'Yn (r, t) </Jn(r, t).

If we take the hermitian Lonjugate of (2.2) for a vector lJ"

(2.6)

- if5
0'1' ' +
al

(2.7)

lake lhe scalar producl of (2.2) Wilh q'<+ and of (2.7) Wilh '1', subStraCI and
integrate, we get

= - dT.

(2.8)
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It will be convenicnt [O chaoge Crom lJ1, as defined in (2.1) to conrain the
proton and neutroo channels, to iV which will contain the 1 't:> and \ T< >
channels

[ " ('." I " , ]
'V - (2.9)

</J (r, t) I T< >
<

where

1 ¡;f;[~] [~] ¡-2T+l 2To : 1
O

o
= O =

~

1
2To : 1 ¡-2T + 1

O

(2.10)

Then ooe elearly has (he reladon

and (2.8) can be wr¡((en as

(2.11)

where we have applicd Grcen's rhcorcm, and rhe ¡nregratioo is performcd 00

a c10sed surfacc consisting oC (he sphcre ar infinity plus a small spherc oC
radi,us a centcrcd at the origin (wc shall cvencuall}' let a -- O). If our wavc
funccion consists of a packct which gocs to zero at ¡nfinje)', we shall 001)'

have the contribution Croro the small sphcre. Changing the dircction oí dS
so thar ir will potor outwards and choosing s-waves, wc have
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i/j ~fiji"'I'dT = 21TIf'
dI f-L

(2.12)
so that the conservadon of total probability (5) now rcads:

*[2;' o( rt/;) ] (rt/; ) _ [2:;' o(rt/;) ] (rt/;' ) +Or > r = o Or > r = o
r = o r = o

+ r21TIf' o(rt/;/ ] (rt/; ) _ [2;;' o( ;~) ] ,q (rt/;:) , = o +
f-L Or < , "" o

r "" o

*
- ep" ( - i/, o::" + ,11" e' ep',,) +

(
oep ),* . JJ. 2+ep -t1i_+Mcep

1" 01 1" 1"

This bilioear form is of the type

Oep~ + M e' ep')* = O •
01 1" 1"

(2.13)

4
- ( * *i:- 1 Yi Xn +.; - Xi Yn + i) ::::;O (2.14)

and a 5ufficient conuition 1 for (2.14) to yanish idcntically is [ha[ the
x +. '5 be a linear combination of [he x. 's

• 1 l

Xn + i =
•
~ C .. x.
i ""1 J J J

(2.15)
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where e = 11 c .. 11 is a constant Hermitian matrix. A similar condiríon holds
'1

foc (he y's. U'e therefore have

(2.16)

The tase [WQ equations are (he modifications of (2.3) we were looking foc,
when <1>is coupled w 'P •

Assuming (har (here is no coupling between (he wave functions of [he
compound particles themselves, but only between them and [he [wo channcls

T> and T<, .we have CM = C¡J- = CA¡J- = C¡J-A = O. A" = O, <PA, being a
T> s,a,e, w,ll only be coupledw ,he T> channel and <P w ,he T< channel

• ¡J-
:. CA< = C¡J->= O. A" = O, ,he T> channel w,ll no, be coupled 'o ,he T<
so ,ha, C>< = C<> = O.

Finally we shall assume thar: (he T> and T< channels do not couple
di,ecdy bu< only ,hcough ,he compound pa,cic1e, i.e. C» = C« = O. This
will make the background R matrix 2 vanish, without changing any of (he es-
sentíal features of (he problem.

The equations (2.16) simplify in 3n obvious manner. \Ve shall now
proceed to show thar these simplified equations are, foc che case of s'"'waves,
which is the only one \Ve shall discuss in this paper, entirel)' analogous to
equa,ions (2.3) of Ref. 3 fo, ,he classical model. Fo, ,his pu'pose we de-
fine appropriately renormalized sta tes of the compound nuc1eus by
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<p (1) =
!'

(2.17)
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-1 ]and then introduce a phase factor exp [- j15 (mp + me) c2 1 in aH wave
functions, i. e.

"!-(mp+ m ) c2t
f5 et/Jp(r,I)-t/Jp(r,I)< etc.

The wave equations for our problem become then

(2.18)

_ jf5 O_(_'''''_p_) = ~ 0_2_C_'''''_p_)
o/ 2¡.¡. o.'

_ i!j O(.</J.) = /J'

o/ 2¡.¡.
(2.19a,b)

- jI! c~> [2171!2 o(.t/J) ] (2.19c)
f1- o. , ~ o

o<p -
- j15 ----.!!:. + [.\1 . - (m + me)] c2 <p =

01 !' P !' [
21715' o(.t/J) ]

f1- o.
, ~ o

(2.19d)

(2.1ge,O

IOgether with the linear transformation (2.10) that relates t¡t to t¡t.

The equations (2.19) are then entirely equivalent 10 (2.3) of Rel. 3
if we consider the re lations of Table 1.

For stationary states, i. c. if

_i8 t

t/Jp(r,I) = t/Jp(r) < -IJ (2.20)

where E is now me kinetic energy, equations (2.19) reduce to [he form
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(
d' ,)_+k (rt/J.) =0
dr 2 n n
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(2.21a,b)

d( n/;) ]
dr

, := o

(2.21c)

_e' [27Th'-, < --
l' j1-

d(n/;) ]
dr

, = o

(2.21d)

where we have

~ = (n/; )
> ,::= o

k = [ 2j1-E ] J¡p --,
152

(2.2Ie, f)

(2.22)

whiL'h, in (uro, are idcntical [O equations (3.2) of Re£. 3 if we use the rc-
latioos of Table 1 which includc w2

-o f::.
Froro (2.21) ir follows ,ba,

rf
>

, ::: o

=D (2.2 3a)
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D =

o

o
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(2.23b)

In the case we have not one, but many resonant states in the T< channel, the
lowcr term of the diagonal matrix D becomes

2

=:s.~
B - E!
l'

as in (3.16) for lhe classical problem'.
The R -matrix for [he nuclear reaction problem is then

(2.24)

r::J -R
, "" o

, = O

~
• R = ODO (2.25a, b)

Wilh O being given by (2.10). Carrying [his out explicitly we see [hat

R ,
ce

e, e' = p, n and we have

= YAc YAc' +
EA-E!

(2 .26a)
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1

/2T + 1o

~tel1o and \.foshinsky

-1 J217h'C<.
/n+1 fL JJ.

o
(2.26b)

F oc che more general case when there are several compound nuclear
s,ates of T< ' we use ,he expre"ion (2.24) of R(/n in the diagonal matrix
(2.23b). In ,hat case (2.26a) has a summation with respec, tu fL index and

=- 1 Y.
/n + 1 JJ.

o

(2.27)

Tú derive che S-matrix from (he R-matrix, we follo\\' [he same pro.
cedure as in Reí. 3 and obtain

1 -1 "1
S=K (l-iRK) (l'¡'iRK)K

with R given by (2.26) and K by

(2.28a)

(2.2 8b)

where k ,k were defined in (2.22).p n
FroID [he previous express ion Coc [he S -matrix, [he analysis oí (he

eHects oí external mixing can be carried out exactly as in Ref. 3; [he poles
oí S reta in a11 the propcrtics discussed in Reí. 5 Cor (he classical modelo

The previous results have beco obtained e liminating (he Coulomb po.
tential outside, so that a11 [he sources oí external mixing lie in che diffee-
ence between [he masses oí che pe and the tl A channels. The task oí in-
cluding [he Coulomb potential betwccn the proton and the targct will be

undertaken in the next section.
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IlI. INCLUSION OF TIIE COULmlB POTENTIAL IN THE SCIIE~IATIC

THEORY OF ISOBARIC ANALOGUE RESONANCES
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\X/e shall now indicate how the' presence of the Coulomb potencial in
the proron channel can be included. Again we describe [he system when it
is in the form of two separated íragmenrs by means oí the vector '1' in Fock's
space, as in Eq. (2.la), except that the Schrodinger equadon which qr should
satisfy, is no longer given by (2.2) bur by rhe following differenrial equation

where

!J2 2
_ 'V 'V + mc2'V + V (r)(.!_- t ) 'V
2¡L e 2 z

(3.1)

and

IS the Coulomb potencial.
Again onc describes rhe system when it is in the íorm oí a compound

srare by rhe vecror '1l of (2.lb) which, in rhe absence oí a coupling berween
el> and 'JI wouId sarisíy (2.3). The analysis about the conservadon in time
of the scalar producr oí rwo vectors in Fock's space proceeds unalrered until
we reach (2.13) where the Coulomb potenrial introduces a logarithmic di ...
vergence in the derivatives evaluated at r = O, as we shall see below.

Eq. (3.1) for ,he proron wave function (n/;p) has 'wo lincarly inde-
pendenr solutions, called P and G in rhe Iiterature and (rlji ) wiIl be a linear
combinadon oí both; for I = O, F and G have the íollowin~ asymprotlc be ...
haviour8

S F - sin (kr - r¡ In 2kr + ao)

If kr - O(l, t
G - cos (kr - r¡ In 2kr + 0;,)

(3.2)
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where

~tello and ~Ioshinsky

F - Ckr

If kr - O.

G-z {1+~; [In ~++g(7)+Y-IJ}
(3.3)

v 1/
~'¡U Zz

7) ~ 1
kV

(3.4a. b)

y ~ 0.5772... ~ Euler's constant (3 .4c)

C' 27T'r¡
2,"'7

• - 1

r (l + i7)

r (l - i7)

N

g(7) ~ - 2 In 7)+27)' L
n = I , ,

TI (TI + 7) )
(3.4d,e)

(3,4fJ

.1
Ftom (3.3) we observe tha, for T - O. G - C ,while oG / Or will

divcrge logarithmically.
In order to see ho\\' one should reformulate the bilincar expression

(2.14), we shall consider, foc the sake of simplicity, a one channel case firsr
and then apply (he rcsults to Que [WO channel problem. lf in the one channel
problem we call1jJ(r, t) che wave funcrion fOf che (\VD fragrncnts (r being [he
rcladve vector) and <p == np, (he n for s-wavl'S <p will satisfy the following
equation in (he stationary case

1J'
2¡L

+ Zu' 'i'~I!'i"
r

(3.5)

If instead of a poten,ial of the type l/r we had one of ,he type l/(r + d) ",¡,h
d > O, aH (he previous difficultics wuuld oot arise; Eq. (3.5) wOllld rcad

-h' d'- - _'£.. +
2¡L dr'

Z '~'i'~l!'i'
r+d

(3.6)
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Wilh IWO lineady independenl solutions F (r + d) and G (r + d). The more
general soludon can be wcinen as a linear combinadon of F and G and we
choose to write ir as

355

<p = A(E) C [G(r+d) + F(r +d) COlO] , (3.7)

where A(E) only depends on energy, C has been defined in Eq. (3.4) and O
is lhe phase shifl. The R-funetion of [he problem is given by

[ .!.. '!..:£.- ]
<p dr

r'= O

1
R(E)

(3.8)

and it is important to realize that this R(I!), brÍ11g a proprrty o{ th~compotmd
systrm only 7, is exactly rhe same as the one we would have if in Eq. (3.6)
the potential terro were absent. For d small enough, cpand its derivative at
r = O are given by

<p (r = O) '\:: A { 1 + 2d
D

[ ~~ ] r = o % A {~ [In ~ + ~ g (7J) + y ] + C' k eO[ O } ,

(3.9)

where the asyroptotic relations (3.3) have been used. \'('e can therefore write
(3.8) for lhe R.fune[ion as

.?. nn 2d + '!"g(7J) +Y] + C' k COlO
D L D 2

1+ 2d [In 2d + '!"g(7J) +Y-IJ + C'kdeo[ O
D U 2 •

= 1 . (3.9a)
R(E)

If at lhis point we lake [he limit d - 0, we see that [o<p/or] diverges
, = o

and therefore (3.8) is not correct in this limito lIowever the problem can be
solved by taking the difference between two cxpressions like (3.8), foc two
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different energies, beeause rhe rerm (210) In (2dIV)(whieh is lhe souree of
[he divergcnce in o<p/ or) I being cocegy indepcndcnt, will cancel out. Thc
following equadon is therefore corrcer, even in (he limit d -o O

[

_1 dq>E_

q>E dr

Making use of (3.9)

dq> ]E'---;¡;-
, = o

= _1 1_
R(E) R(E')

(3.10)

lim [..!... d~E_{~[ln2d+!..g(7J')+'YJ+C'2k'CotÓ'}]
d - o ~ d, D D 2

E

1
R(E)

1
R(E' )

where (he prime 00 (he various quantities meaos that they have to be cvalu"
atcd at (he cocegy E'. We can make, foc example, (he choice l!' = O. Feoro
lhe definition9 (3.4e) for g(r¡) one ean see thal

We define

lim g(r¡') = y
£'- o

, 2, ~,
lim lim e k eOI o "l/b .

d-DE'-O

(3.12)

We now recall that, in [he abscnce oí a Coulomb pocential, (he phase shift
00 and (he R function are related by

1
R(E)

(3.13)

In (he vicinity oC E = O, one has (he usual approximation involving [he
scancring length a and effective cange ro

k eOI So "" - ~ + ~ r k 2 (3.14)
a 2 o
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so ,hat, from (3.13) we see ,ha,
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I
R(O)

I
a

(3.15)

lnttoducing this resul" together with (3.12) into (3.11) one ge,s

I
R (E)

(3.16)

or, if cp now denotes [he wave funcdon for [he usual Coulomb potencial
E

lim
, - o

de;
E

dr
~ln ~+ A
D D

'PE
I

R(E)
(3.18)

This is therefo,e the appropriate generalization of Eq. (3.8), which gives the
clue of ho\\' [O reformulate [he bilinear expression arising from [he conser-
va[ion of [he scalar producto

Le[ us now go back to our [\\'0 channel problem. We note [ha[ if in [he
proton channe 1 we have [O deal wi[h [he deriva[ive

(3.19a)

while 10 [he neutron channel we have only

(3.19b)
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then when carrying out the transformadon (2.10) for the derivatives to put
them in tetms of (np ) and (np ) we obmin

> <

I

/2'( + Io

¡;-21'
21' ~ Io

J:~T:I
o.

[d;~n]
, "" o

I (~ln~+A)(r.¡J,)
r:=--' D D Pv 21' + 1o

rn:;- (~ In 1..':. + A) (rt/J. )V z:r"+i D D P
o

, "" o (3.20)

where we made use of rhe fac! !ha! from (2.10)

I

/27+1
O

d npp +
dr

(3.2Ia)

and similarly for np
<

. The wave equations for the problcm whcrc we havc a Coulomb po-
tential could then be obtained by the same conscrvation of probability argu.
men!s of !he previous Section. The only change would be !ha! (3.20) re-
pIaces the derivatives

(3.2Ib)

, "" o
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appearing in (2.19c,d), and a term - Zu'/r must be added to (2.19a).
The diagonal form (2.23) of the R-matrix \\'ill no\\' conneet the wave

funetions and deriyatives

d re/; 1 e.ln ~+ A) (r</;p)-2 -

r</; dr ;rr'+'l V D
> o

=0

r</; d re/; ~ (~In ~ + A ) (re/;p)< ~-
, = o dr 2To + 1 D D

r = o

(3.22 )

and so, applying the rransformation O oi (2.10), we see that the R = 0'00
matrix no\\' re lates

rtjJ
n

, = o

=R

, =- o

(3.23 )

Equation (3.23) eontains thcrcfore the gencralized dcfinition (3.18) of the
R-matrix for the proton channel and the usual one for (he neutron channel.

The evaluation of the S -matrix procecds now cxactly as before.
Following Lane and Thomas (Re£. 7, page 269) we define foc channcl e rhe
incoming and outgoing waves / (r) and O (r) for s-wavese e

(3.24)

with asymptotic behaviour, at large distances
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-i(k '-7) ln2k ,+0- )e e e oc
1"'.e

i(k '-7) ln2k ,+0- )e e e OC
O "'.e

Mello and Moshinsky

(3.25)

whefe k is the wavc number foc channel e and a- has beco defined in
e oc

Eq. (3.4£); note chat if e denotes (he neutron channel, o-oc = O andTJc = O.
The wave function in channel e', when one has incident waves in

channel e only, can be wrincn as

(e) 1 , (r) O ,(r)
.p • (r) = e Ii • e Ii , (3.26)

e Ik e e /k --;r e e
, r

e e

or, in matrix nocacion, ar r = O

.~
• K (1- OS)

where K was defined in Eq. (2.28b) and !he matrices I and O are defined as

J.[~:.] .of:J
,=0 r=O

(3.28)

One can al 50 wrice (he appropriate express ion foc [he derivatives at , = O in

matrix form
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(o)

a,.pp (2 2, ) ,1,(0)
~- _ln_+A r't'p
or D D

[

dlP _ (~ In .!..c. + A) I
dr D D P

,. !!

O
d:O]
d,

, '" o

, '" o

[

dOP -(~In~+AJO
dr D D P

O'1!!!

O

O J (3.30)
dO

o-;¡;-
, • o

The R-matrix celadon (3.23) can now be written as

_ x _ x
K '(1- OS) = RK '(1' - O' S) •

which can be sol ved for che S -macrix to give

x .1 x
S = 0-1 K '(1- RL) (1- RL *) K- '1

(3.31)

(3.32)

which is clearly ,he generalizadon oí Eq. (2.28a) when rhere is a Coulomb
po(en(ial in (he pro(on channel. The matrix L is a modifica(ion of (he loga-
ri(hmic derivacive of (he ou(going wave function of Re£. 9), i. e.
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L =

[
dOp -(~ln~+A)O]

dr D D P

o

Mello and ~ioshinsky

o

dO
(3.33)

1 n

O drn

f' = O

which, Croro [he behaviour (3.3) oC F and G 10 (he vicinity oC r = O, can be
writtcn explicitly as

L =

[
g (r¡) - y - .!.- - .!.- ]

D b a

o

o

ik n

(3.34)

In [he absence of Coulomb forces, e 1, tJ .....•CXl, 11b ....•- l/a. so rhat
L - iK, 0- ¡,1- ¡ and ,he S-macrix uf Eq. (3.32) reduces tu ,ha, nf

Eq. (2.28a).

CONCLUS10NS

\l,re have shown how (he schcmatic theory oC nuc lcar rcactions can be

extended to ¡nelude (he isalopie spin formalism, in the specific cxamplc oC
a two.ehannel problem involving isobaric analogue rcsonances. lbe quantum
mechanical problem is mathematicalIy ¡dcodeal and it has phys ically man)'
points in common wirh a classical problem discusscd in an earlier paper

3
•

The analysis was first carried out in the abscnce oC a Coulomb potential
between (he incoming pro ton and the incident targct, the only source of {Ilex"
ternal mixing" being provided in this case by the barrier, equal to the Q of
the (P, n) reaction, felt by the neutron in thc ficId of the analog oC the target.
The Coulomb potencial fe Ir by the proton \Vas then included and it was shoWIl
what modifications one has ro intnxluce in order to a\'oid the problem ofthe
singularity introduced at the origin by the Coulomb f¡eld.
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The complete time-dependent behaviour of the classical model was
swdied in an earlier publications and the time dependence of the nuclear
proble m could be s rudied us ing ,he ideas deve loped in ReL 2).
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REsmlEN

En un trabajo previo, uno de los autores discutió una teoría esquemá-
tica de las reacciones nucleares, en la cual se tratan las panículas inciden-
tes y el núcleo compuesto como partículas puntuales. La principal ventaja
del modelo consiste en que el análisis de la dependencia temporal del pro-
blema se simplifica considerablemente. En el presente trabajo se extiende
esta teoría esquemática, para poder incluir el formalismo de isospÍn, en el
ejemplo específico de un problema de dos canales con resonancias análogas
isobáricas.
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TABLE 1

Relaüons between the variables in [he mechanical and the

nuclear reaedon problemso

\lechanical Problem

VI (x. t)

U' (1)
I

T/p

I-./p

1-. /,~
I

T/M

w'

Nuclear Reaction Problem

- i~dial

rl/1,,(r,/)

1> (1)~

[.\1 - (m + me)] c2 ~ I!~ P J J.I.

I!
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Fig. 1 The pQ(entials oí the proton in (he (pe) and the neutron in the (nA)
channels.
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e..
Fi¡.t. 2 A simplified ""ersion oí the potentials oí neutron and proton discussed

in Fig.1.




