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ABSTRACT: I'he saturation problem in the one triplet Fermi quark model
is treated, in the non-relativistic approximation, by a second
quantization formalism with two-body and three-body forces,
invariant under U(6). An approximate mass formula is derived
based on which the saturation properties of the inter-quark
forces are discussed, together with the gross features of the

baryon spectrum.

I. INTRODUCTION

A most serious objection raised against the Fermi quark model !, that
is, a quark model built from one quark triplet satisfying Fermi statistics, is
that the proton form factor, derived from an analytic antisymmetric wave-
function with L = 0 has zeros, as shown by Mitra and Majundar®. Subse-
quently, Kreps and de Swart® have shown that the zeros might be shifted to
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a region where the form factor was not yet measured. But in a recent work,
Meyer* presented a very simple example of a non-analytic wave function
which does not give zeros at all, his form factor being in excellent agreement
with experiment. It appears, then, that the Fermi quark model may still have
its place as a meaningful model.

In the present work, we reexamine the saturation problem® of the inter-
quark forces for a system of Fermionic quarks, in the non-relativistic approxi-
mation aiming to study in what conditions those forces saturate at some value
bo of the quark number. This would, of course, mean that the forces are such
that any configuration with a higher quark number would be energetically for-
bidden as a possible bound-state. The case by =3 corresponds to the case
of strict saturation and as will be seen later on this may not necessarily ex-
clude the existence of diquarks.

Thus, the saturation problem, in the Fermi quark model is intimately
related to the problematical existence of fractionally chargéd particles®,
corresponding to quark configurations with triality different from zero.

In order to study the saturation properties, use is made in this paper
of a convenient treatment of the second quantization formalism’ to describe
an assembly of quarks, interacting via U(6) invariant two-body and three-
body forces, both of ordinary and exchange types. This is the analogue of
the Wigner first approximation in the U(4) supermultiplet theory of nuclear
structure®, although in the nuclear case, three-body forces play only a minor
role.

In quark models, three-body forces,together with two-body forces,have
been introduced by Kuo and Radicati?, some time ago, to bind three quarks
into baryons. However, they have not discussed the saturation. Later, the
same type of forces were discussed by Schiff!? in a schematic treatment of
the saturation.

In Section II, we develop the second quantization formalism and de-
rive an approximate mass formula, in the “infinite range approximation”, fa-
miliar in nuclear structure theoryu. Based on this formula, we discuss, in
Section III, the gross features of the baryon spectrum, together with the
saturation properties. The main conclusions are discussed in Section IV.

1. THE SECOND-QUANTIZATION TREATMENT AND AN APPROXIMATE
MASS FORMULA.

We consider a system of b Fermionic quarks, supposed to be very
massive objects of mass M. Ina non-relativistic treatment, we disregard
their kinetic energy with respect to the total rest mass. The Hamiltonian
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of the quarks, interacting via two-body and three-body forces can then be
written jin this approximation, as

!
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In-Fqg. (1), b; and b” are Fermi creation and annihilation operators
satisfying

+ g’ :5}9’
(6,67 =8

bY, 6t = (87,57 ] =0 . 2)
L, 8] 1 (

TI'he indices pare here composite indices, pP=(u, r), where 1 de-
scribes the spin-F spin of the quarks and r, their independent particle
motion, r= (¥Im) By an enumeration convention, the index M runs from 1

to 6.

We have, for instance, in an obvious notation:

1—.2)0?, 2—'nOT, 3—')\0T,

d=p | , S—*nl, 6—-)\0'[. 3)

0

Similar convention may be adopted for enumerating the available single-parti-
cle states, whose number is supposed to be finite.

The two-body and three-body potentials in Eq. (1) are symmetrical
functions in their arguments and the corresponding matrix elements, with re-
spect to the spin-F spin indices 4 are taken between states of the funda-
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mental representations of the U(G) group. Further, we assume that the forces
have an ordinary part (W) and an exchange part (M), w.r.t. the U(6) group:

t t
Vl2 = Z v (lz)Pu ’
t=W,M
_ t t
Vm = ¥ \% (12':':)P123 : (4)
t=W, M

: W W . : ; ;
In the above equations P, and P, are unit operators in the spin-F spin

space. It is convenient to express Pgi in the form®

M_ _ g% P
PM=_E (WE, @, (5)

in terms of the matrices Ef(a, B=1,2,....,6) which are the well known,
six by six matrices, forming the basis for the fundamental irreducible repre-
sentation of the U(6) group. By definition, one has:

v
(ef) -5,8", (6)
m

from which easily follows that

b

B8 B
E, Ey = E?, ; (7)
Here, Greek indices run from 1 to 6.

The negative sign in Eq. (5) is a well known consequence of the kx-
clusion Principle. The physical content ofbthat equation is mcge clearly
seen by writing E_as a direct product of T, (a,b=1,2) and g, (A, B =1,2,3)
which, in turn, are bases for the fundamental representation of the U(2) and

U(3) subgroups of U(0), respectiveiy:
B2 =ctie g, )

the index i (i = 1,2,3) being the particle index. Upon using the well known
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(a0 b] - [cod] =[acle [b-d]

one immediately has
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where the first factor representsthe spin exchange force and the second, its
F-spin analogue (E, = A /2, the A, being the Gell-Mann matrices).

Since the matrices E_ (i) commute for different values of the particle
label (7), one may easily derive, from Eqs. (6) and (7), the well known proper-
ties

2
(p" =1, pMeAaypM-Efq). (10)

By analogy we assume, without essential loss of generality, for the
corresponding three-body exchange force the expression®

pM - + g2

B ¥
s ﬂ(l) Ey (2) B, (3) . ¢11)

The positive sign in the above equation, as printed out by Kuo and Radicati®
is a consequence of the property

?
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_ pM . pM
123_P12 P
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(12)

as can be seen from Eqs. (5),(6) and (7).

The solution of Eq. (1) presents, of course, considerable difficulties.
Besides, the spatial dependence of v(1,2) and V¥(1,2,3) is actually not
known. However, it is possible to extract some physics from Eq. (1) taking
as a very first approximation, the potentials vi(1,2) and V*(1,2, 3) at the
limit of a square well of infinite range, the so called infinite range square
well limit!', well known in nuclear structure theory. Although the inter-quark
forces are, of course, short-range forces, the approximation appears to be
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physically relevant, providing some semi-quantitative information on the dy-

namics of the problem.
In this approximation, the Hamiltonian in Eq. 1 is exac:ly diagonal-

izable, for each irreducible representation(IR) [b b b ] of U(6).
In fact, in the limit considered, one has
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and similarly, .
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where V' and V‘m are constant. The deltas in the orbital labels r, in the

above equauons aliow Eq. (1) to be written in the form

1

_ 1 b 11 2
M[b]%bM 2! z=M,MV SHy K |12 |’u' Hy” [C C uz CuI]

M P‘é
1 111 t ! £ i 1
-= 2z v Sy Py by |P123| Byt ""’3>[Cp1 Cp- By

!
N =w,m :

T Y BN Biopl Ky K
{3 CC #4 C © bg rd
(uz Wy By My oy uz) +(8u2 5“3 C# ‘*‘5 5 C )]

(15)



Saturation in the Fermi Quark Model

'u'f
In Eq. (15), the operators C“ are defined as

!

H - + ol o
C#—§b‘“b ; (16)

and they obey the foilowing commutation relations, as one can easily derive
from Eq. (2):

,U.J ‘LL'” ,U.”‘ ' " "
[c.c.] = 3: . C#,, 5 (17)

!
Thus, one sees that the Cu. are U(6) (or SU(G)) generators. The use
of U(6), instead of the usual SU(G), implies that the invariant operator

C#

1 H

Mo

u

gives the quark number operator, whose eigenvalues, for an IR characterized
by [bl, by soo. bs] are given by

Further, we note that, by using U(6), as done here, the F-spin algebra may
be taken as UF(S) or SUF(3), both of which are subalgebras of U(6). Thus,
either quarks with fractional charges or quarks with integral charges'? are
both possible cases.

It remains to evaluate the matrix elements of P:z and sza in Eq.(15).
Having in mind the enumeration convention, Eq. (3), and Eq. (6) one has

7 i

' By 1 B

<ulElu>=(8)) =3, 8
1
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Therefore

Ha
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Upon substitution in Eq. (15) one finally gets

Wy b=, [(5) A+ (4) Al -

L, -6mall+ L {c,-6C, +h(37-2m} AT, (19
2 3

where we put V' = v A}’ and vt =y Al with v, > 0. InEq.(19), C
and C are the Ihll‘d and second order Cas;mu- invariants of U(6)

B o
C2= a?ﬁ CaCﬁ "
& B Y
c.= & L,C.C4 , (20)
i s gy B ¥ P

whose eigenvalues, for a given IR of U(6) characterized by the maximum
weights vector [bl b, .. i b 1 are respectively given by
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6
where b = 32 b, -

a=1

III . THE GROSS FEATURES OF THE BARYON SPECTRUM AND THE
SATURATION PROPERTIES.

We begin this section by specia.izing Eq. (19), for the baryon case
(b = 3). Upon using Eq. (21), one easily gets for the masses corresponding
to the representations [300000], [210000] and [111000] , of dimensions 56
70 and 20,

?

Py 1I III
M, =M -V [-34 +4a}"] ,

- 1 4111
Mp =My * % EAM i

- II I
My, =M, -V, [34y +A4'], (22)

where we separated the common contribution, due to the ordinary forces, in
the term

M, =3M-V [347 +Al"] . (23)
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On empirical grounds, one knows that*?

Mg <My
with no evidence for the 20 up to about 2.5 GeV. Therefore, either (I) the 20
appears at a higher energy or (II) its absence is due to some peculiar dynami-
cal feature of the forces.
In case I, by imposing the condition

Mss <M70<Mm R (24)
in Eq. (20), one obtains
11 1 4111
-AgEIali> 0, (25)

which implies Af“[ <0. Thus the two-body exchange forces are attractive in
the 56 and repulsive in the 20, as can be seen from Eq. (22). Ifone further
imposes the positiveness of the masses in Eq. (22), one sees that the possi-
ble solutions for the parameters AH = x and AHI =y, in a (x,y) plane, corre-
spond to the points in the interior of a triangle, denoted by I, in Fig. 1, the
vertices of which are (0,0), (- £/5, 2£/5) and (- &, - 2£), where &= MO/‘{).
Note that in this case there exist solutions with A[I“n either positive or nega-
tive. Taking (x,y)= (- £/5, 2£/5), for instance, one gets

M M
2 =3 and " =1.5 . (26)
M56 MSE

If A;;IS 0, one has
My —My 2 My =M (27)

that is, the mean masses will be equally spaced only if AH] =0.

In case I, we have M_ - M_, >0,M, >0 but M, <0. The possi-
ble solutions correspond to the internal points of the region II, Fig. 1. One
sees that AIIHI > 0 and A;""> 0 in this case.
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(-F ~22)l.2f \

Kig. 1.

III

In solid lines are indicated the regions in the plane (x,y) = (A;AI s AM 1
corresponding to cases [,II, and IIlas discussed in the text. The straight

line crossing those regions correspondsto the ratio % = 1.5
M56
Finally, in Fig. 1 is represented, in region III, the solution consider-
ed by Kuo and Radicati? . In this region, one has M, < M, < M_ , which,
however, is not empirically favored. And is also shown, in Fig. 1, the
straight line corresponding to the ratio M, /M, = 1.5.

Some consequence of the above discussion for the cases bh =2 (di-
quarks) and b =4 are now briefly discussed. Here, diquarks appears in U(6)
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supermiltiplets of dimensions 21 and 15 and one easily gets the result that
M > M, for casesl and IIl and M, > M _ for case II.

For h =4, the U(6) supermultiplets have dimensions 126, 210, 105, 35
and 15. From a more detailed analysis of this case, one arrives at the re-
sult that there is no region in the (x,y) plane for which all those masses are
positive. Thus, at least one of the supermultiplets is to be excluded asnon-
physical.

If the pattern of the baryon spectrum repeats itself in this case, the 15
supermultiplet is the probable candidate and besides, the 126 would appear
in the lowest mass, this last condition being found possible for points in the
(x,y) plane, with x <0, limited by the lines x=0 and x-y= 0.

At this point, it appears clear the distinct role played by the two
types of force, ordinary and exchange.

For an estimate of the relative magnitude of those forces consider,
for instance, the case

111
AM

11
Ay

with Aful <0. Then

=9
M'm"Mss_Evolx| ’

On the other hand, for AlJ'/A} = - 1 with Ay} >0, and a quark mass M 2 10
GeV, one gets

AI[

Y1 x10%. (28)
II

AM

One sees that the ordinary forces are about two order of magnitude stronger
than the exchange forces. The role of the ordinary forces, in this treatment,
is to provide the iarge reduction of mass from 3M to M . Instead, the ex-
change forces play their main role in the form of the low-lying baryon
spectrum and in the mass difference of the spin-F spin supermultiplets.
Therefore, one is justified in neglecting altogether the exchange
forces, in confront with the ordinary ones, in a first discussion of the
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saturation ®. In this case, Eq. (19) reads

Mpp ™ bM - v[ Lp-1)4) + ! =b (b -1} - 2) Ay"] . (29)

The first and second terms in this equation®™ are proportional to the
number of two-body and three-body “bonds”, respectively. Since the number
of three-body bonds increases more rapidly than the number of two-body
“bonds” as b increases, it is clear that, in order to achieve saturation at
some value b= b , one has to assume three-body repulsive forces and at-
tractive two-body forces, as proposed at first time by Schiff’®. As a conse-
quence, the saturative solution necessarily allows the existence of diquarks.
Following de Swart'*, Eq. (29) for a possible state may be written as

- .
5] ~(1-ep2+(2¢-3) p+3(1-1<1 (30
hM 2 2

where we wrote V, A{,/I = 3M( 1- %_6) and 4 A{,;I = 3M(1 - €), in terms of
the parameter € <1.

As pointed out by de Swart, there are several possibilities for con-
figurations to exist with triality different from zero and masses substantial-
ly lower than the quark mass M.

In Fig. 2, it is shown M[b] /(kM) against b and one has

qu <M4q <Mq !

the diquark having the lowest mass and then it would be energetically possi-
ble a super-strong decay of the Mq and M4q into diquarks by processes such
as

*We note that, for the IR of the type [5,0, ,07], the contribution of the ex-
change and ordmary forces in Eq. (19) 1s of the same form, so that Eq. (29), in

this case, is valid with coefficients A - A;‘I, AnI + AII&I
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7~ (gq)+ (qq9) ,
7999 ~ (9 9) +2(qqq9) ,

which preserve charge and baryonic number, as proposed in the original paper
by Gell-Mann!' ¥,

¥hg
Y

Eig; 2 ‘__b_q as a function of the quark number b,
hM

The parameteru € is such that qu = €M and .M3

q

CONCLUSIONS

The theoretical importance of the quark models, in view of their re-
markable success in coordinating a large amount of data on particles and
resonances, dwells on the indication of dynamical ideas which may be rele-
vant for a future theory. Among the dynamical problems suggested by the
quark models one finds that of the saturation. Since the quark models pre-
sent a still unresolved problem of statistics, the solution of the saturation
problem depends on the specific model considered®’ * . In this paper, we
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discussed saturation in the one triplet model of Fermionic quarks, together
with the gross features of the baryonic spectrum. Although the diagonal-
ization of Eq. (1) would be desirable for a definite class of potentials, the
complexity of the analysis indicates the necessity of a preliminary treatment
allowing a semiquantitative discussion of the problem, specially the role of
the different forces involved and their relative importance. In such an ap-
proximate treatment, we arrived at mass formula Eq. (19), based on which the
main conclusions of this work are derived. The mass formula contains the
contributions of ordinary and Majorana exchange two-body and three-body
forces. The ordinary forces are almost two orders of magnitude stronger than
the exchange forces. They are dominant in an approximate discussion of the
saturation, which is achieved by a mixture of 3-body repulsive and 2-body at-
tractive forces, as first discussed by Schiff'®. On the other hand, the
Majorana exchange forces are mainly responsible for the mass differences of
the U(6) supermultiplets. As far as the baryon spectrum is concerned the
mixture of two and three body Majorana exchange forces allows solutions
corresponding to the ordering M, <M <M, . However, it is equally possi-
ble to have solutions which excludes the existence of the 20 supermultiplet,
with M_ <M, , as seems to be indicated by the empirical evidence.

The diagonalization of the Hamiltonian Eq. (1), beyond the present
approximation, aiming to a proper treatment of the orbital excitations would
be the natural step towards a closer solution of the problem. We hope to re-
turn to this interesting topic at a later date.
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RESUMEN

Se trata el problema de la saturacion en el modelo de un triplete de

quarks fermiénicos, dentre de una-aproximacion no relativista, medianteun
formalismo de segunda cuantizacién con fuerzas de dos y tres cuerpos, in-

variantes frente a U(6). Se obriene una férmula de masas aproximada, en
términos de la cual se discuten las propiedades de saturacion de las fuer-
zas entre los quarks, asi como las caracteristicas gruesas del espectro ba-
ridénico.



