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ABSTRAer: In this nore we derive rhe theoretical expression for rhe
charge fonn factor of rhe mass 3 nuclei, using an expansion

of [he ground state wave function in rerms of uanslarionally

invariant hannonic oscillator states.

l. INTRODUCTION

The problems involved in the use of basis of translationally invari-
ant hannonic oscillator stutes {oc the calculadon of the propenies of the
three and four nucl.eon s)'stems have been studied extensively, taking ad.

t Work supporred by Comisión Nacional de Energía ~uclear, México.,
Chercheur agréé, Institur Interuniversiraire des Sciences Nucléaires, on leave o(
absence from Universiré Libre de Bruxelles, Belgium.
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vantage as much as possible DE [he graup rheoretical classification oí [he
states l.

Recently }ackson2 has beeo able to carry out a calcularían oí various
properties oí rhe tritium nucleus with (he Reíd potentia13 up to a very large
number DE ascillarar quanta. The agreement he gets foc che binding energy
is good in comparison with oeher calculations. Ir seems therefore interest-
ing to find orher tests oí (he goodness oE his ground state wave funceion.
One DE [hese is che charge form factor, whose cheoretical expression we de-
rive below foc (he general case oí (he mass 3 nuclei, using resules oí re£. l.

2. fHE GROUND STATE OF THE MASS 3 NUCLEI

The ground state oí che mass 3 nuclei is characterized by a definite
parity 1T, an angular momentum J oí projection M, an isospin T = 1/2 (neg.
lecting the Coulomb force in the case of 3He), and an isospin component
MT = 1/2 for 311 and - 1/2 for 3He. As was shown in reL 1 it can be ex-
panded in terms of products of orbital and spin-isospin seaees of definiee
permueational symmetry combined so as eo satisfy the Pauli principIe:

117 fMT = .!.MT >
2

= 2 a(aLjS)2_1_(-1¡' [la17Ljr>IST=.!.MTir>}
aLlS , Id. 2 fM

I

(2.1)

Here Lis che eotal orbital angular momentum, S the total spin, and the
square bracket stands for vector coupliog of these two angular momenta to
the total value J and projection M. The symmetry oí the orbital states under
SO) is specified by the partition j and the Yamanouchi symbol r, and rhatof
the spin isospin.states -by i and;:', associated with j and r. The symbol di
refers to the dimension of the representation j of 5(3)
(di = 1 for I = {J} or {1l1}, d ~ 2 for I = {2l}), and the phase (_1)' is
defined in such a way that (-1> =+ 1, +1,+ 1, -1 for r = (Ul), (21), (211),
(121), respectivay. The quantum number a serves ro complete the classiíi-
cation oí the orbital states. The coefficients oí che expansion a(aLI S) are
determined by rhe diagonalization of the hamiltonian matrix.

The three particle spin-isospin sta tes oí definite permutational
symmetry are easily conscructed from the one and two particle states using
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the well-known one particle spin-isospin fractional parentage coefficients.'-
The easiest Uo'ayof constructing me three-particle orbital states of definite
permutational symmetry 1 is by writing them in terms of the states

( 2.2)

where P"l (7]) is the polynomial in the creation operator TJ which creates a
one particle harmonÍc oscillawr state characterized by n, J, lo> is the vacu-
um sta te, and the creation operators TJ 1, TJ2 are defined by 1

TI' i • 1

12
TI

12
= (2.3)

7)2 i 1 • 2-- TI
fi /2-

in terms of the creation operators 'ÍJ 1, 'ÍJ2, associated with the )acobi rela-
tive coordinates

,; 1 = _1_ (x I _ X 2)

/2

';2 = _1_ (Xl + x2 _ 2x3) .

/6
(2.4)

The ,ransformadon brackers from ,he sra'es (2.2) 'o rhe s,ares I anLML Ir >
are well known 1 and show that we can replace a by a single set oí quantum
numbers n 1 n J , the summation in (2.1) being restrÍcted to those values oí

1 1 2 2 2n + 1 + 2n -+- 1
,he latler such ,ha, (-1) I 1 2 2 is equal 'o ,he pari,y n. The possi-
bility of forming states corresponding to a definite representation I oí 5(3) is
is connected with the value taken by the number J.L defined by the congruence
reladon

The symbols TJ and ~ are vectors as no bold face type for them was available.
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(2.5)

as is shown in Table 1 .

TABLE 1

The coefficient A(~ 1 ~ i ,n In I Ir) of fotmula (2.8)
11221122

f1- / r L A(~J,~,i" n,',n,',/r)

2,j + i j
(n, " ) # (n, " ) O (3}(111) ...!...(-i) , 1 [1 +(-1) 1]

/2

2~ + ¡ 1
O {111} (321) ...!...(_/) 1 '[1_(_1)']

12

., .
2n + / 1

1, 2 {21} (211) ...!...-(-i) 1 1[1+(_1)']
12

2~ + i j
1,2 {21}(121) _1_(_/) , '[1_(_1)']

12

{3}(111)
2~ + 1

(n,',) = (n,',) O even ( - i) 1 1

{11l} (321)
2~ + 1

O odd (-1) , ,

In [he computadon oí [he form factor we shall have ro deal with the
~xpectation value oí an operator with respect ro (he state (2.1). The calculus
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is greatly simplified if rhe orbiral srares In I n I L.lfL Ir> are expressed in
1 1 2 2

rerms of the ]acobi coordinares (2.4). To accomplish this il is necessary lo
pass from the states (2.2) to (he s(ates

l~lil~21>,\fL > = [p, • (.ry ) p. ' (.ry») lo> (2.6)
ni 1 ni 2

1 1 2 2 LML

so ,hal we finally gel

In 1 n 1 LML Ir> =
1 1 2 2

=
n I ~ i

1 1 2 2

(2.7)

It has been shown in refs. 1,5 tha( (he transformation bracke(s in (2.7) are

given by

(2.8)

where < ~ i ~ i L In 1 n 1 L> is a standard (Wo particle transformadon
1122 1122

bracke(6, and A(~I i
1
~21:,n

1
1

1
n

2
1

2
/r) is a coefficien( whose values ate

given in Table 1 for a11 possible values of (he quantum numbets.
In the nex( section, we derive (he form factor of the mass 3 nuclei

using lhe wave funcrion (2.1), rogelher with (2.7) and (2.8).

3. TIIE FORM FACTOR OF THE MASS 3 NUCLEI

The chatge fotm factor of a nucleus is defined by

iq. x
F h(q)" ~ J. p(x)dx

e Z (3.1)



48
Moshinsky et al

where Z is the number of prorons of <he nucleus, P(x) rhe charge density re-
ferred [O che centre oE mass ol the nucleus, and hq the momentum transfer

J<
(in unirs of [hmw] 2). When rhe ground srare wave function of rhe nucleus
is given by (2.1)1 the form faceor can be written as

where f (q) = f (q2) is rhe form facror of rhe proron (11 = 1) or the neurron~ ~
(11 = O), which is known expetimenrally, and F (q) is given by~

F (q) = P (q2) = _1 ~
v v z' 11 ,

"
n 1 n 1
1 1 2 2

"'¡'n'I'
1 1 2 2

{

1T + 2" + 1 + 2" + 1~ !. [1 + (_ 1) 1 1 2 2 ]

LS 4

'11+2"'. /'+2"'+ l'
x [1 + (-1) I I 2 2]

x
sin KI ; 2\

<n'l'n'J'Lj'r']
1 1 2 2 In/ n / Lf r >

1 1 2 2

< ST = !.MTi', , I !.+ (-1¡Y t'\ ST = !.,Ilii; >
2 2 o 2

a. (n' /' n' /' Lj' S)
1 1 2 2

Here 11 cakes che value O for positive pariey and 1 foc negative parity, K is

given by

K =VI" q , (3.4)
3

and 1
0
3 is che third component oí che isospin oC particle 3.
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The matrix element of

sin KI ;21
KI ;21
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can be reduced to a one particle matrix element using expansion (2.7) in bra
and ket, and is found to be equal to

sin K I ; 2 I
<n'f'n'f'L/'r'l I I I >

1 1 2 2 --K-I-;-2-1- nI 1 n2 2 Lf r

= ~ {<,; i,; i LI'n In I L/rX'; i,;' i Lln'I'n'l' Lj'r'> •
••••• , 1122 1122 1122 1122
" 1 " 1 JI.11222

.,
12 + "2 + n 2

~
p=1

2

(3.5)

where the coefficient B (';' i ,,;i ,p) has been tabulated by Brody and
2 2 2 2

Moshinsky6, and lp(K2) is given by I

i5 a binomial coefficient, and r 15 the gamma function. The

~

p+ )Here
25

matrix e ement

,,2
• p

~
" = o

r(. + 1)
r(p + 1)

2 P - s
(- ~)

4

can be easily evaluated using one particle spin-isospin fractional pacentage
coefficients 4, and is tabulated in TabIe 2 foc S = 1/2 and in TabIe 3 for

S = 3/2



so

TABLE 2

The matrix element (3.7) fOl S = 1/2

Moshinsky et al

-I (lll) (21 ) (21) (3)- (321) ( lll), (211) (121)i' -.,
.

(lll) (321) .!-+(-I)" .!-MT " 2- (-1) -MT2 J J

(21 ) (211) 1 " 1 (_1)" ~MT-+(-1) -MT2 J J

( 2l) (l2l! -(-I)~ ~MT .!-t(-I)" .!-MTJ 2 J

l3} (Ill) (_1)" ~MT .!-+(-It .!-.Il,-
J 2 J

TABLE 3

The matrix element (oc S = 3/2

{21} (211)

{21} (121)

,
{21}
(211)

1 v 1_-(-1)_MT2 3

{21}
(l21)
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Now the knowledge of the mixing coefficients a(n I n I LIS) of the
. 21122ground scaCe wave functlon allows us Co calculace F

v
(q ) and finally the

form factor (3.2). We expeCl that in a near fUlUre this will be applied tu ,he
foem factor of the tritium nucleus.

Before concluding we wish also to give a procedure for determining
the matrix element (3.5) without the use of transformation brackets.

4. DETERMINATlON OF TIIE FORM FACTOR WITHOUT THE USE OF

TRANSFORMATlON BRACKETS.

In the determination of the matrix elemenc (3.5) we lec the operator

(K\ ;2 n-1 sin KI ;21 remain unmodified, but changed the bra and ket to
]acobi coordina tes with the help of transformation brackets. In mis way the evalu.
acion of the matrix element became trivial. Another procedure to carry out this
evaluation, which may be more practical for numerical calculations, is to ex-
press ; 2 in terms of the coordinates and momenta associated with TJ2, .,.,2 de.
fined by (2.3), and leave ,he bra and ke, as they stand.

From the relacion (2.3), and the corresponding one between the an
. 'h .t . '" I '" 2 ¡l, i 2ni ni 1 aUon operators S ,S and'::::. ''::::. which is obtained from (2.3) by

hermitian conjugation, we see, from the definitions

7]' = 1 (' . ') ",,___ x -'P , s -

12
1 ( '+' ')_ x 'P ,

12
s = 1,2

(4.1)

and similar ones for 7}3 , ¿3 , chat we have me linear canonical transformacion

• t _l_(pl _ p2), •l
= - _I_(x' _ x2)x p

fi 12

• 2
_I_(xl + x2) ,

• 2
_l_(p' + p2)x = P =

fi /2

(4.2a, b)

(4.3a, b)

Thu s (K 1 ; 2 1) - 1 sin (K I ; 2 1 ) can be expanded8 in terms of Bessel functions
and spherical harmonics associated with xl, x2 in the form
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= (4.4)

where f3 = (K/I2) and T ,e ,'P are the spherical coordinates related with
oS _ oS S S

X ,.s - 1,2.
Ir seems then that the matrix element (3.5) can be calculated

straightforwardly. A word of caution is required though. We recall mat in
the ~et (2.2) the ground state lo> is defined t by

I ["1' .']}O> =1Texp{- J¡ (x ) +(x ) ( 4.5)

The normal evaluation procedure6 oí che matrix elements oí che cerms in che
expansion (4.4) can proceed only if in (2.2) the ground state lo> is replaced
by

lo> = 1T
%
2 exp {_ ~ [ (Xl)' + (X' )' ]}

2
(4.6)

We have shown elsewhere7 (har under che linear canonical transformaríon
(4.2), (4.3) the state lo> transforms into lo>, and thus the replacement is
justified. A more elementary way oí seeing chat we can replace lo> by lo>
in ehe matrix e lemenes oí (K 1; 21 ).1 sin (K I ; 2 1), is to expand chis opee-
ator in series and chen use (2.3) 3nd me adjoint equacion, to express che
tenns oí che series in cerms oí 1] 1,7]2, e-I, e2

. Feom chis expansion and
(2.2), che matrix element (3.S) becomes che vacuum expectation value oí a
funcCÍon oí T} 1,7]2, ~l, ~2 which we can pue in time ordered form wich a11 ao-
nihilarían operators to the right oi the creadon ones. As the es are linear
functions of ~ s = 1,2, we have

~'IO> = O , (4.7)

and thus the effect oí this operator 00 lo> is the same as 00 lo> .
Therefore me replacement of lo> by lo> in (2.2) does not alter the value of
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.ihe malrix elemenl (3.5) and we are juslified in following lhe normal evalu-
atioo procedure.

The marrix elemenl (3.5) reduces ,hen essentially 1 10

(4.8)

where ,he lasl malrix elemen! in (4.8) has lhe well known form9

l'+l-L ~
=(_) 1 2 W(lII'I'; 0..) [(21'+I)(21'+OJ

1212 1 2

y,

[

(21
1
+ 1)(2A + 1)]

471(21'+ 1)

!<

I [
(21 + 1)(2A + 1)] 2

< 1 A 00 l' O > 2 < 1 A00 11' O >
1 2 471(21'+1) 2 2

( 4.9)
while ,he firsl is given by •

• + .'+.(/+1')

:E B(nl,n'I',p)lpCf3,A)
p = ,(/+1')

with

(4.10)

(4.11)
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We note mat me sum 'n (.j.8) is actuaIly finlle as the Clebsch-Cordan coef-
ficients in (4.9) restrict le by the inequalities

max {II -1'1, 11 -1'J}~\~min {I +1',1 +I'}
1122 1122

(4.12)

The radial integral (4.11) can be evalua,ed with the help of the well
known relation 10

~ "",'J x¡;'.- ] (j3x) dx;
o V

¡3Vr(v+¡.<+ 1)
2

2v+' a'(¡;.+v+ I)r(v+l)

,
F (v+¡.<+l,v+l. -L)
1 1 2 . 4a

(4.13)
where lFl (a, b, z) is the confluent hypergeometric function

~ f(a+n)f(b) xn
F(a,b,z)= !. ------

, , • ~ of(a)f(b+n) ni

Writing

%
i
A
(/3r); (11/2f3r) 2 IAH (f3r)

we see that the radial integral becomes

lTr f3A f (A + 2p + 3)
l
p
(/3, le) ; 2 F (A+2p+3), A+::,

f(p+',02A+1f(Ie+'I,)" 2 2

(4.14)

(4.15)

,
-Ll
4

( 4.16)

The confluent hypergeometric functÍon is given by an infinite sum, but if we
make the transformation 10

,F,(a,b,x); 'Z,F,(b- a,b,- x),

Qur integral can also be written as

(4.17)
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( 4.18)
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As 1/2 A - P is always a negarive integer me funcCÍon F is in mis case a
1 1

finire polynomial.
We have thus determined the form factor of a three particle system in

a way that does not involve transformation brackets.
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RESUMEN

Moshinsky et al

En esta nota se obtiene la expresión teórica del factor de forma de
la distribución de carga de los núcleos de masa 3, utilizando un desarrollo
de la función de onda del estado base en términos de estados de oscilador

armónico invariantes bajo traslaciones.


