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ABSTRACT: In this note we derive the theoretical expression for the
charge form factor of the mass 3 nuclei, using an expansion
of the ground state wave function in terms of translationally

invariant harmonic oscillator states,

1. INTRODUCTION

The problems involved in the use of basis of translationally invari-
ant harmonic oscillator states for the calculation of the properties of the
three and four nucieon systems have been studied extensively, taking ad-
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vantage as much as possible of the group theoretical classification of the
states!.

Recently Jackson? has been able to carry out a calculation of various
properties of the tritium nucleus with the Reid potential® up to a very large
number of oscillator quanta. The agreement he gets for the binding energy
is good in comparison with other calculations. It seems therefore interest-
ing to find other tests of the goodness of his ground state wave function.
One of these is the charge form factor, whose theoretical expression we de-
rive below for the general case of the mass 3 nuclei, using results of ref. 1.

2. THE GROUND STATE OF THE MASS 3 NUCLEI

The ground state of the mass 3 nuclei is characterized by a definite
parity 77, an angular momentum | of projection M, an isospin T = 1/2 (neg-
lecting the Coulomb force in the case of 3He) and an isospin component
M, = 1/2 for H and - 1/2 for He As was shown in ref. 1 it can be ex-
panded in terms of products of orbital and spin-isospin states of definite
permutational symmetry combined so as to satisfy the Pauli principle:

| 7 Mt = ;_MT>

= 3 aaL) L (-0 [|anLfr>|sT =Ly, 77>] (2.1)

Here L is the total orbital angular momentum, § the total spin, and the
square bracket stands for vector coupling of these two angular momenta to
the total value | and projection M. The symmetry of the orbiral states under
§(3) is specified by the partition f and the Yamanouchi symbol r, and that of
the spin isospin-states by f andir, associated with f and r. The symbol aT}r
refers to the dimension of the representation f of §(3)
(d; =1for f={3}or {111}, d, = 2 for f = {21}), and the phase (-1)" is
defined in such a way that (=1)=+1,+1,+1,-1 forr = (111), (321),(211),
(121), respectively. The quantum number a serves to complete the classifi-
cation of the orbital states. The coefficients of the expansion a(aLfS) are
determined by the diagonalization of the hamiltonian matrix.

The three particle spin-isospin states of definite permutational
symmetry are easily constructed from the one and two particle states using
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the well-known one particle spin-isospin fractional parentage coefficients.*
The easiest way of constructing the three-particle orbital states of definite
permutational symmetry ! is by writing them in terms of the states

nlnl LM, >=[P ,(nHP ,(n° 0>, 5.
|1122 i "1111? ”21217)]LMLI (2.2)

where P,; (7)) is the polynomial in the creation operator 7) which creates a
one particle harmonic oscillator state characterized by =, /, tO > is the vacu-
um state, and the creation operators 7', % are defined by !

] (-2 L][+]
V2 VT
= (2.3)
n’? S L]l
IR - /3 Jr= - 4

. . b > . . -
in terms of the creation operators 7)', 12, associated with the Jacobi rela-
tive coordinates

x2 =1 (x!+ x2-2x% . (2.4)

The transformation brackets from the states (2.2) to the states | arLM; fr>
are well known! and show that we can replace a by a single set of quantum

numbers n_ I n_l_, the summation in (2.1) being restricted to those values of
Ll 4 & an +1 +om +1 .
the latter such that (=1)" 1 1 "~ 2 2 is equal to the parity 7. The possi-

bility of forming states corresponding to a definite representation f of §(3)is
is connected with the value taken by the number . defined by the congruence
relation

The symbols 7] and & are vectors as no bold face type for them was available.
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2"1+ Zl-2n2-t2~=-,u.(mod 3, (2.5)

as is shown in Table 1.

TABLE 1

The coefficient A(rzl 11 ;’z 12 ) 1 ll n, 12 fr) of formula (2.8)

,u foor L A(ﬁliléziz,nlzln212fr)
s 4l i
(1) #myh) | 0 | {3}a1n) Ln™ 1 [14(=1)1]
V2
2?;+l. E
0 {111} (321) L= 1= 1]
V2
L om k] i
1.2 | {2ikeny (=) v M[1+(-11']
V2
.. i
1,2 | {21} a2y L™ o)
2
» ¥l
(n1£1)=(n212) 0 {3}(111) even (-z')z 1+ A
0 {111} 321)| odd (="t h

In the computation of the form factor we shall have to deal with the
expectation value of an operator with respect to the state (2.1). The calculus
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is greatly simplified if the orbital states Inl ll n I, LM; [r> are expressed in
terms of the Jacobi coordinates (2.4). To accomplish this it is necessary to
pass from the states (2.2) to the states

|3, LMy > = [P . )P ()] 0>, (26)
11 22 LML

so that we finally get

|nllln212LMLfr> =

. anIZLMLxnlllnzllenlllnzlszr> . (2.7)

It has been shown in refs. 1,5 that the transformation brackets in (2.7) are
given by

<n dm b L|nln L Lfr>

= A(rzll1 n212 ' 7y 1172212 fr)<n111 nzlzL n1lln212£‘ 7 (2.8)

where <n I n | L | ninlL>isa standard two particle transformation

bracket®, and A{r; 11'; 12 ) 1y lln I fr) is a coefficient whose values are
given in Table 1 for all possible values of the quantum numbers.

In the next section, we derive the form factor of the mass 3 nuclei
using the wave function (2.1), together with (2.7) and (2.8).

3. THE FORM FACTOR OF THE MASS 3 NUCLEI

The charge form factor of a nucleus is defined by

ig®x
Fq(@=— Je ' pOdx, (3.1)
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where Z is the number of protons of the nucleus, p(x) the charge density re-
ferred to the centre of mass of the nucleus, and hq the momentum transfer

L
(in units of [hmw] ?). When the ground state wave function of the nucleus
is given by (2.1), the form factor can be written as

F, (@) =/ (QF(+[ (DE (9 , (3.2)

where /(@ = fv(qz) is the form factor of the proton (v = 1) or the neutron
(v =0), which is known experimentally, and Fv(q) is given by

mdoon + 1 +on_+1
F (9 =F,(¢h=1 % X 5 {1_ [1+(-1) S S M
’
ff' n1‘11n212 LS
rr fl! (Y

l
11"

' ] ' ] r '
1'r+2nl+ ll+2f12+ 12 ] (=) (_1)’

x [1+(-1)
Vdfdfv
sin K );2|
x <n]'11'rz2'12'Lf'r'| ] ]nlllnzlszr>
K| x

~t ]
x <ST=Llaif 7| ;_+(-1)V:03 |sT = ;_MT-/»r >a" (n/l!n 1ILf"S)
2

1122

x aind i Lfs)}. (3.3)

Here 77 takes the value 0 for positive parity and 1 for negative parity, K is
given by

k =V g_ q, (3.4)

and !03 is the third component of the isospin of particle 3.
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The matrix element of

sin Kj;(zl

k| x?|

can be reduced to a one particle matrix element using expansion (2.7) in bra

and ket, and is found to be equal to

ol | L L >

PR
ol 1_.2__'{<n111 : len‘llnzlszan Ll b L n! el 1 Lf'r
" %% %%
L+n+n
(3.5)

ARy
5, byl D)Lk},

where the coeff1C1entB(n21 . n l p) has been tabulated by Brody and
Moshmsky , and I (k?) is glven by

2
%
I 2p +1 g, 03
Ly=Le * 3 D{s+4) (5% (3.6)
2 s=0 2s F(P ¥ 1,2) 4
20+ 1
Here is a binomial coefficient, and [" is the gamma function. The
23
matrix element
3.7)

<ST =LM./'7'| §+(-1)”ro3|sr=LMTfF>
2

can be easily evaluated using one particle spin-isospin fractional parentage
coefficients®, and is tabulated in Table 2 for § = 1/2 and in Table 3 for

= 3/2
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TABLE 2

The matrix element (3.7) for § = 1/2

7 {111} {21} {21} {3}
. r (321) (211) (121) (111)
!r ;‘:
111} (32 Ly L sl 2
{111} (321) Y EW My (1) ZMp
21} (211 Li-y Ly -1 in
{21} (211) FHED Sy (=1 Z My
21} (121 (=1 2y li-1) 1y
{21} (121) (=1) Sy ~H(=1) TMr
(3} am (=17 2ty T L
TABLE 3
The matrix element for § = 3/2
- ’
f {21} {21}
r (211) (121)
A
1 Y1
{21} (211) L =(=1) M,
2 3
{21} (121) S My
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Now the knowledge of the mixing coefficients a(:rz I n I LfS) of the
ground state wave function allows us to calculate F; (q%) and finally the

form factor (3.2). We expect that in a near future thls will be applied to the
form factor of the tritium nucleus.

Before concluding we wish also to give a procedure for determining
the matrix element (3.5) without the use of transformation brackets

4. DETERMINATION OF THE FORM FACTOR WITHOUT THE USE OF
TRANSFORMATION BRACKETS.

In the determination of the matrix element (3.5) we let the operator

(KI x?2 |)- | remain unmodified, but changed the bra and ket to
Jacobi coordinates wu:h the help of transformation brackets
ation of the matrix element became trivial.

. In this way the evalu-

Another procedure to carry out this

evaluation, which may be more practical for numerical calculations, is to ex-
.

press x° in terms of the coordinates and momenta associated with 7;2, n? de-
fined by (2.3), and leave the bra and ket as they stand.

From the relation (2.3), and the corresponding one between the an

. . . . 1 2 - -
ni nihilation operators £, £“ and £, fzwhich is obtained from (2.3) by
hermitian conjugation, we see, from the definitions

s

nt =L =ip®, £ = Lix"+ip"), s=1,2,
2 2
(4.1)

o ] -5 . . .
and similar ones for 7", &7, that we have the linear canonical transformation

x! = _1_(pl- ki ;;L:'— 1 (x! - x?) ; (4.2a,b)

V2 V2

= Lx'+x2), p2= Lp'+p?) . (4.3a,b)
V2 V7

<

Thus (« x \) sin (k I x’ | ) can be expanded® in terms of Bessel functions
. . . - 1 2 .
and spherical harmonics associated with x*, x* in the form
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(K‘x.zl)-l sin(K

)
= A
= 2 A Br) B 2w B e) v, G9), ()

where 3 = (K/\/_Z—) and B 95 » Py are the spherical coordinates related with
x* :8=1,2:

It seems then that the matrix element (3.5) can be calculated
straightforwardly. A word of caution is required though. We recall that in
the ket (2.2) the ground state | 0> is defined! by

lo> =mexp {- 4[(x") +(x)]1} (4.5)

The normal evaluation procedure® of the matrix elements of the terms in the
expansion (4.4) can proceed only if in (2.2) the ground state IO > is replaced
by

|

0> =m Fep (-LLa) + )1} . 4o

We have shown elsewhere’ that under the linear canonical transformation
(4.2), (4.3) the state | 0 > transforms into ]0 >, and thus the replacement is
justified. A more elementary way of seeing that we can replace IO > by l 0>

e2|y-1 . *2 ;
in cthe matrix elements Of(K X |) sin (K X |) , is to expand this oper-
ator in series and then use (2.3) and the adjoint equation, to express the
terms of the series in terms of §', M2, &t fz. From this expansion and
(2.2), the matrix element (3.5) becomes the vacuum expectation value of a
function of ', 72, £, £ which we can put in time ordered form with all an-
nihilation operators to the right of the creation ones. As the &% are linear

functions of & s =1, 2, we have

£o>=0, (4.7)

and thus the effect of this operator on lO > is the same as on |b_> .
Therefore the replacement of |0 > by |0 > in (2.2) does not alter the value of
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the matrix element (3.5) and we are justified in following the normal evalu-
ation procedure.

The matrix element (3.5) reduces then essentiallyl to

I=<n'lln'1'L]| (x| x2])" sin (k| x* ) n 1m0 L>

[+ <] ?\. . .
= 720417(-1) <n!l! |]l(,8r1) |n 1 ><n! 1 |]?\(ﬂr2)|n212>
< t g i * > .
A 12L|ny#(ﬁlcpl)YK#(chpz)llllzL (4.8)
where the last matrix element in (4.8) has the well known form?

(T *
<r'rL| EYML(QI P) YM(B2 <p2)] LEL>

']

L
=)' 2w L Ly (@ e+ nl”

N

(211 +1)(2A+1)
417(21" + 1)

(21’2 +1)(2A+1)
41r(21"+ 1)

<in00|20> <iNo00|2'0>

(4.9)

while the first is given by®

<n'l'|jy Br)|nl> =

ntn'+3(1+1

p > B(nl,n'l', p) I,(B,N) (4.10)
p=4(1+1")

with

1,B,\) = ____2____fwr2p+2jx(48r) a2 d . (4.11)
Cep+y) °
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We note that the sum 1n (4.8) is actually finite as the Clebsch-Gordan coef-
ficients in (4.9) restrict A by the inequalities

max { |4 2], [, -]} SAg min {2 #2, L+17} . (4.12)

The radial integral (4.11) can be evaluated with the help of the well

known relation©

e ety 2

Joxte ™, (Bx) dx = S p (et 1,8 )

0 v+1 4 (,u.+v+1)]-*(v+1) 11 2 4a
(4.13)

where o (a,b,z) is the confluent hypergeometric function

© [Mat+tn)['(b) ,»
F(a,b,2)= e 4.14
1 l(a %) néor(ﬂ)r(b‘f'n) n! ( ;

Writing

l/2
j)\(ﬂr) =(m/2B7r) ]M_é (Br) , (4.15)

we see that the radial integral becomes

‘/T_T/SA-[—'(}\+2P+3) 4
i F(At2+3) x#2, B

2 2 4
(4.16)

’P (ﬂak) =
Cp+34) 2™ 'T(A+3y)

The confluent hypergeometric function is given by an infinite sum, but if we

make the transformation!®

lF](a,b,a:)=ele1(b-a,lB,—z), (4.17)

our integral can also be written as
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&
&16 F(M) ",B-"/l ”

1,(B,\) = - e B (X-pn+3, B,
Cp+2) 2™ Tty 2 2 4

(4.18)

As 1/2\ - p is always a negative integer the function ,F, is in this case a
finite polynomial.

We have thus determined the form factor of a three particle system in

a way that does not involve transformation brackets.

10.
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RESUMEN

En esta nota se obtiene la expresién tedrica del factor de forma de
la distribucién de carga de los nicleos de masa 3, utilizando un desarrollo

de la funcién de onda del estado base en términos de estados de oscilador

arménico invariantes bajo traslaciones.



