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ABSTRACT: The dynamical evolution of a two-component slightly relativi-
stic plasma (T *~10 Kev) is discussed following Bogoliubov’s
method to solve Trubnikov’s hierarchy of equations. The hier-
archy is decoupled by means of the perturbation technique for a
weakly interacting gas and solved up to second order. The
final kinetic equation corresponds to the first order relativistic
correction to the Fokker Planck equation for an inhomogeneous
two-component plasma. The model is particularly adequate to

discuss the transport properties of a fusion plasma.
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1. INTRODUCTION

The kinetic equation for a fully ionized, slightly relativistic plasma
has been discussed by Trubnikov' using Bogoliubov's method. He assumes
a Darwin lagrangian? for the interaction and obtains the collision operator
for an homogeneous one component plasma, including dynamical shielding,
using a perturbation expansion in the plasma parameter cpo/kT. The resulting
collision integral corresponds to the relativistic generalization of the Lenard
Balescu equation? up to v2/c? terms.

In classical plasma physics one usually deals with a simplified
version of the Lenard Balescu equation: the Fokker Planck equation. The
latter can be derived from the classical BBGKY hierarchy assuming that the
plasma behav4es as a moderately dense (n, r;"\-' 1), weakly interacting gas
(cPO/k,T <<1) . The perturbation expansion combined with Bogoliubov’s
method gives to first order the Vlasov equation and to second order the
Fokker Planck collision operator®.

In this paper we follow a similar procedure. We start with the gener-
alized BBGKY hierarchy for a system of particles with velocity dependent
interactions. We assume Darwin’s lagrangian for the motion of the particles,
and derive the first order relativistic correction to the Fokker Planck equation.

Two advantages of this equation over the one derived by Trubnikov
should me mentioned. First it is much simpler; second, it is more general in
that it is derived without restriction to a spatially homogeneous plasma.

In part II we solve the generalized hierarchy of equations for a two-
component weakly interacting gas using Bogoliubov’s method and arrive at
the relativistic Fokker Planck equation correct up to v?/c? terms.

Part 111 is devoted to the discussion of the equilibrium properties of
the plasma and the derivation of the electron-ion radial distribution functions.

II. FOKKER-PLANCK EQUATION FOR SLIGHTLY RELATIVISTIC
PLASMAS.

We consider a two component plasma with N particles interacting ac-

cording to Darwin’s lagrangian?.



Two-component inhomogeneous plasma

2 4
m_tv v e e
— aa "Ma Ya _ ab
LD % 2 +§ 8 aéb T !
c ab

e e r r
+ 3 abLVa'Vb-‘-(Va. ab )(vb' “b.) (1)
i 2¢2 Tap |rab| |rab‘
The generalized BBGKY hierarchy of equations can be written as'?
dF s JF
S+ 03 [va' =+_§__-1(“’] (2)
9t a=1 ara ava
and
(a) 1 Y 1 (a)
a a a
(Is )a+(2_'z“2_5a./3+ T Yaa aﬁ)(l ) %
C
s e e a
(s+1) _ _ ab
I(asn) Is-l-l ) dxg _b2=1{ m (Eb)aﬁ(ls)ﬁ+
(r,;)
i €% aba_!_(o.(b)) as+1
Fy a ~ LIE
m, r3 a s+1
ak Iras+1 l
s4+1
+I(U ) F;+1ds+1}
(3
where
L S5 Vab)g("ab)
ab i
g 2¢ | bl lf b|

and



Wisnivesky and Lerner

b (1' ) 2 (r V. )
(c?) = *_15’_4_5[% b ]+ 213[vx(vxrb)]
2c | v ‘ L WS
(4)
ls(“) is defined in terms of the N particle distribution function [y as
19 = v [ 3,y d d
SV e dny ©)

Equation (3) differs from the one given by Trubnikov in the form of
the left-hand side. ‘lhe difference is due to the v*/c? term taken into ac-
count in the expression for the kinetic energy in equation (1). As will be
shown in Appendix I these terms are necessary in order to obtain the correct
Vlasov equation to first order in v2/c?

We look for a perturbation solution of equations (2) and (3) in the
small parameter e2/kT.

To zeroth order we have from (3)
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From (6) we invert and obtain
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In order to compute F(l)(xl, seey Koo B) We make Bogoliubov’'s as-
sumption® that the F are synchromzed w1th F,. Following Bogoliubov’s

notation we have from (2)
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Using equations (6) and (8) we get
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The solution of equation (10) can be obtained in the usual way.
Using the evolution operator
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Equations (20) and (16) give the expression for a weakly relativistic
inhomogeneous plasma collision operator between particles of masses m_ and

m, . This kinetic equation must be used to compute the transport properties
of a fusion plasma.

For an homogeneous system, equation (16) for Fgl) becomes
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where [1 — 2] indicates the previous expression with indices 1 and 2 inter-
changed.

To get the form of the collision operator in the homogeneous case, we
make use of the relations
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where

T _
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and the divergent integral f dk/k is made finite following the usual prescription
of introducing arbitrary cut-offs at large and small £ numbers (closest ap-
proach distance and Debye length respectively).

The expression for the collision operator between particles of masses
m and m, becomes
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and the kinetic equation for a two component interacting charged gas is
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where ’£2) is given by the sum of :wo operators similar to (23) corresponding
to equal particle interaction and different particle interaction. Equation

(24) gives the Fokker Planck term to zeroth order plus the first order rela-
tivistic corrections to the Fokker-Planck equation.
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III. EQUILIBRIUM SOLUTIONS

The equilibrium solution for an electron-ion plasma can be obtained
by requiring that the collision operator vanishes.

We proceed to annul the electron-electron and ion-ion collision oper-
ators and afterwards check whether the solution annuls the electron-ion oper-
ator.

The equilibrium solution is of the form

[=1y(1+b) (25)

where fy is Maxwellian and n satisfies the equation
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where a and 3 are arbitrary constants. The condition that the electron-ion
operator vanishes fixés the value of a = 5/2.
Finally the normalization condition

[d’v h=0 (28)
gives
B=-15 kT (29)
8 HeR

Thus the equilibrium solutions are

fo=f {1_ Me yo45 2 _ 15 AT }
e 8kT c? 2 2 8 m‘!__c2



Two-component inbomogeneous plasma 85

fi=f0£{1- i v4+z_ z—lifl} (30)

The two particle equilibrium solution can be obtained from equation
21) using the solutions given by equation (30) . Writing

f2(x1’ xz) - fl(xl)fl(xz)gm (31)
we obtain
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where g?xb is the non-relativistic radial distribution function, and @ and &
stand for electron or ion.
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RESUMEN

Se discute en este trabajo la evolucién dindmica de un plasma de dos
componentes levemente relativista (T ~ 10 Kev), siguiendo el método de
Bogoliubov para resolver la jerarquia de ecuaciones de Trubnikov. Se desa-
copla la'cadena usando un método perturbativo para un gas en interaccién dé-
bil, y se resuelve hasta segundo orden. La ecuacién cinética final correspon-
de a la correccién relativista a primer orden de la ecuacién de Fokker Planck
para un plasma inhomogéneo de dos componentes. El modelo es particularmen-
te adecuado para discutir las propiedades de transporte de un plasma de tu-
sién.
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APPENDIX I

We will show here that the collision operator given by equation (8) is
in agreement with the relativistic Vlasov’s equation to first order in v2/c?.
The relativistic Vlasov's equation can be written in the form”
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and E and B are the self consistent fields.
Up to first order in v2/c? (and first order in the ratio of electrostatic
to rest energy) , we can express the self consistent fields in the form®
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Replacing (A.5) into (A.1) we get a kinetic equation with a collision
operator identical to equation (8) .

APPENDIX 1I

It is possible to obtain the Fokker Planck equation from the Lenard
Balescu equation in the low density limit (n r % << kT). Accordingly it
should be possible to derive Eq. (23) from Trubmkov s equation in the same
limit. Actually this is not so due to two reasons:

1) In Trubnikov’s lagrangian, (Eq. (1.1) pag. 51, ref. (1)) is missing
the term 3 (mv*/8¢c?).

2) In his derivation of the kinetic equation, (following his Eq. (3.3),
pag. 62), he makes the choice B, =nitly which is precisely the opposite to the
one made by Bogoliubov, and 1n the non-relativistic limit describes a system
evolving to equilibrium when £ — -« instead of + =+ as it should be®.

On the other hand it is possible to compare the equilibrium solutions,
Eq. (30) and (32) with those derived in reference (9) Eq. (21) and (28) re-
spectively.

We consider the result derived in reference (9) in the limit of infinite
relativistic Debye radius (dC =), which corresponds to the Fokker Planck
situation of no shielding. From Eq. (21) of ref. (9) we get

aw ~ (R a%p (B.1)

where fO(R) is the relativistic Maxwell distribution function

(R)’= 1 mc) ex £ \/ 2+mzc2].
b — kT K, ( 1 exp [ e

(B.2)
The ordipary Maxwell distribution is related to f(R) by 1
0

£ = ma %~ L) 2 FR)] (B.3)
2 (1]
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It is simple to check that, up to v?/c? terms, the expression
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reduces exactly to Eq. (30).
To compare the two-particle equilibrium distribution function we take
the limit dc—' w in Eq. (28) of ref. (9). Since
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which is the’same as Eq. (32).






