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Integrals of the motion and Green functions for time-dependent
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The application of the integrals of the motion of a quantum system in deriving Green function or propagator is established. The Green
function is shown to be the eigenfunction of the integrals of the motion which described initial points of the system trajectory in the phase
space. The explicit expressions for the Green functions of the damped harmonic oscillator, the harmonic oscillator with strongly pulsating
mass, and the harmonic oscillator with mass growing with time are obtained in co-ordinate representations. The connection between the
integrals of the motion method and other method such as Feynman path integral and Schwinger method are also discussed.
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1. Introduction

R . . 52
In non-relativistic quantum mechanics, the propagator is rep- H(t) = et Py lmw%rtq?’ (1)
resented as the transition probability amplitude for a parti- 2m 2
cle to motion from initial space-time configuration to final
space-time configuration. The Feynman path integral [1] an
the Schwinger action principle [2] are the well-known meth-
ods in calculating the propagator. The aim of this paper is t
present the connection between the integrals of the motion
a quantum system and its Green function or propagator.

As reveal by V.V. Dodonoet al. [3] that the Green func- 1
tion is the eigenfunction of the integrals of the motion de- H(q,p,t) = e " ——+ -mw’e"' ¢, (2)
scribing initial points of the system trajectory in the phase
space. D.B. Lemeshevskiy and V.I. Man’ko [4] constructed  The Hamilton equation of motion for position and mo-
the Green functions for the driven harmonic oscillator withmentum are [10]
the aid of integrals of the motion. In the present paper we
want to calculate the Green functions or propagators for the q= ﬁe—rt7 p=——mwety. €)
damped harmonic oscillator [5-7], the harmonic oscillator m
with strongly pulsating mass, [8] and the harmonic oscillator
with mass growing with time [9] by the method developed by
V.V. Dodonovet al. [3]
This paper is organized as follows. In Sec. 2, the Green re—Tt/2

function for the damped harmonic oscillator is derived. In q(t) = qo (e‘” cos Qt + 50 )
Section 3, the calculation of the Green function for the har-

gvherer is the damping constant coefficient.

The aim of this section is to drive the Green function
G(z,2',t) of the Schrodinger equation by the method of in-
Fgrals of motion [3-4]. The classical correspondence of the
q—|amiltonian operator in Eq. (1) is

The classical paths in the phase space under the initial
conditionsg(0) = go andp(0) = po are given by

monic oscillator with strongly pulsating mass is presented. re~Tt/2
The Green function for the harmonic oscillator with mass tpo| — g sin€t ), )
growing with time is evaluated in Sec. 4. Finally, the con- rt/2
clusion is given in Sec. 5. p(t) = po (ert/2 cos Qf — 7“629 sin Qt)
2

. . mw —rt/2 Ot (5)

2. The Green function for a damped harmonic D\ g Te SRt )
oscillator

whereQ? = w? — r2/4. Now we consider the system of
The Hamiltonian operator for a damped harmonic oscillatorEgs. (4) and (5) as an algebraic system for unknown initial
is described by [5-7] position go and momentunyp, respectively. The variables
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q, p, andt are taken as the parameters. The solution of this By modifying Egs. (14) and (15), the system of equations

system are given as for deriving the Green functio&'(z, 2/, t) are
q0(q,p,t) =q (e”/Q cos Qt — %e”/z sin Qt) OG(x,2',t)  imQ ert/?
ox n \sinQt"
(e—rt/Q . Qt> ) ,
—-p sin , r
m§ — (e cot Qt — T;Q )x) G(x,2't), (16)
2
polg,p,t) =q (mge”/ % sin Qt) OG(z, 2’ t) i (mQert/?
et/ ox' T TR\ Usint ¢
re="
+p (e cosQt + sin Qt) . (7
b ( @ - (chot Ot + ?)m’)G(w,x’,t). 17)

We define operators acting in the Hilbert space as follows

r Now one can integrate Eq. (16) with respect to the vari-
Dld:p:1) =4 (ert/2 cos ¥ — ﬁerm sin Qt> ablez to obtain
—rt/2 . 0
7 (6 o Qt) ’ ® Ga,a',t) = O(a', t) exp (;L{ (mze” cot
mfd
PPN ~ mw? e . mr o, 2 ms) rt)2.
i) =i (e s ) e e ) e

e—'r't/Q

/ H H /
v (e"’t/Q cos Q4+ - - Qt) @ whereC/(«/, t) is the function oft’ andt.

Substituting Eq. (18) into Eqg. (17), we obtain the differ-
ential equation fo’'(z',t) as

Calculating the total derivative of the operatigKd, , t)

with respect to time, we obtain ! j
P m _ (mQ cot Ot + ﬂ)x’C(x’, t). (19)
o _ %y 211, (10) oot 2
— = &, + 741, qo].
e ot~ h Solving Eq. (19), the functiod'(z', ) can be expressed
Similarly, the total time-derivative of the operator as
ﬁO(Qaﬁ7 t) is i /mQ mr
. . < C(2',t) = C(t) exp —cot QU+ — |z"*), (20)
dbo _ b0 | Erp 5 (11) h\ 2 4
dt — ot moPO

Thus, operators in Egs. (8) and (9) are integrals of theWheSreCS) gthe pfure fl.JnCF'OEOf t|1rr61;e. b .
motion and correspond to the initial position and momentum. o, the Green function in Eq. (18) can be written as
Then these operators must satisfy equations for the Green

) O
functionG(z, 2, ), [3-4] G(x,2',t) = C(t) exp (;L{ (er”’ cot Qt — WZ@”) z?
qb(l‘)G(l‘,]/,t) = Q(x/)G(xax/at)7 (12) m mr erTt/2
+ ( cot Qt + >m’2 — :m'})
po()G(z,2',t) = —p(a’)G(z, 2", 1), (13) 2 4 sin (3¢ 21)
where the operators on the left-hand sides of the equa-
tions act on variable;, and on the right- hand sides, ah To find C(¢), we must substitute the Green function of
Now we write Egs. (12) and (13) explicitly, Eqg. (21) into the Schrodinger equation
2 2 !
2 (72 cos Qt — ——emt/2 gin Ot L O0G(z, 2, t) _ e _ 0°G(x, 2/, t)
( ( 20 ) i ot om* Ox?
+ ﬁ67T1ﬁ/2 sin Qt2 G(z,2',t) = 2'G(x, 2, t), (14) + 1Ter26”x2G(m7x/,lf). (22)
mQ ax 7 ) ) ) 7 2
5 . .
mw® o R Gy After some algebra, we obtain an equation that does not
(x ( o ¢ o Qt) Zh(e cos {2t contain the variables andz’,
re "2 d , L O0G(z, 2/ t) dC(t) r QcotQt
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Eqg. (23) can be simply integrated with respect to timand By eliminatingpo in Eq. (31) andg, in Eq. (32), the
one obtains solutions are
C
O(t) = ——e"/4, 24
®) sin Qte (24) qo(gq,p,t) = q<cosvt cos Ot + %sinvt sin Qt)
where(C' is a constant. sec vt sin Of
Substituting Eqg. (24) into Eqg. (21) and applying the ini- — (), (33)
tial condition mi
,p,t) = q(m$ cos vt sin Ot
Gla, 2/ t = 0) = 6(a — '), (5 rolent=d
— mu sin vt cos Q) 4+ p(sec vt cos Qt).  (34)
we get
mQ The Hilbert space operators @f andp, are

O:

2mih (26)

NPT . Ul .
So, the Green function or propagator for a damped har- Qo(q:p,t) =4 ( cos vt cos 2t + Q™" vtsin Qt)
monic oscillator can be written as

. <sec vt sin Qt> (35)
g : —pl—,
G(z,a' t) =4/ 7;”_26. a7 P (;{ <mQQe” cot Qt mA2
mihsin I

PG, D, t) = G(mS cos vt sin Qt — mo sin vt cos Q)

mre”t m mr
- 4> z? + (2 cot Qt + 4> z'? + p(sec vt cos Q). (36)
rt/2
_ er / m/}) 27) We can determine that, andp, are integrals of the mo-
sin (2t tion by finding total time derivatives of
which is the same form as the result of S. Pepairal. [5] dé Py .
calculating from Feynman path integral. % = % + %[ﬁ], Go] = 0, (37)
. . . dp op i
3. The Green function for a harmonic oscilla- Po _ B0 | LIH, p) = 0. (38)
dt ot h

tor with strongly pulsating mass

Then these operators must satisfy the equations for the

The Hamiltonian operator for a harmonic oscillator with : ;
Green functiorG(x, ', t) [3-4]

strongly pulsating mass can be expressed as [9]
- P’ 1 X Go(2)G(z, 2, t) = 4(a')G(x, 2/, 1), (39)

H(t) = m + im COS2 vtw2q2, (28)
_ _ Po(2)G(z, 2’ t) = —p(2')G(x, 2, t). (40)
wherev is the frequency of mass. The classical analog of the

Hamiltonian operator in EqQ. (28) is
P a- (28) Now we write Egs. (39) and (40) explicitly,

p2

H(g,p,t) = 5——5 + lm cos? vtw?q?. (29)
Zmcos” vt 2 (:r ( cos vt cos )t + v sin vt sin Qt)

The classical equations of motion determining the oscil- Q

lator position and momentum are n ihsecvtsinQt 9

/ o ’
sk 8x>G(x,x,t)xG($,T/,t)a (41)

§— 2vutanvtq + w?q =0 (30)

The classical trajectories in the phase space under the ini- | * (mS2 cos vt sin Qt — mv sin vt cos 1)

tial conditionsq(0) = ¢o andp(0) = py can be written as 5
— ihsecvtcos Vt— |Gz, 2’ t
q(t) = qo sec vt cos Qt + pg/mS sec vt sin QO (31) HReC b eos 53:) (z,2,1)
_ S O VI ., 0
p(t) = qo(mw cos vt tan vt cos Qt — mSL cos vt sin Q) _ ZFL?G(x,x’,t) (42)

+ po(cos vt cos Ot + % cos vt tan vtsinQt),  (32)
The system of equations for defining the Green function
whereQ? = w? + v2. G(z,2',t) are
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8G(f£,fﬂ/,t) o 1 /
— = —ﬁ[x (mQ cos vt csc Q)

— 2(m$ cos? vt cot Ot

Substituting Eq. (51) into Eq. (48) and applying the ini-
tial condition in Eq. (25), the consta6tis

Q
+ musin vt cos vt)|G(z, 2, t), (43) =4/ (52)

2mih
, :
M -t [2(m$ cos vt csc Q)

ox’ h Thus, the Green function for a harmonic oscillator with
— ' (mQ cot Q)| Gz, 2, t). (44)  strongly pulsating mass can be expressed as
Now we can integrate Eq. (43) with respect to the vari- , mS) cos vt i 1 5
ablex to get G(x7l' ,t) = mexp |:h(<2mQCOS vt cot Qt
/ / i 1 2 1 : 2 1 12
G(z,2',t) = C(a',t) exp 7 imQ cos” vt cot 2t + Zmvsin vtcosvt |z° + ng cot Qtx
1
+ 5™ sin vt cos vt) z? — mf)cos vt csc thx’) } , (53)
— mf) cos vt csc th’ﬂ . (45)  which is the same result as M. Sabir and S. Rajagopalan [9]

by Feynman path integral method.

Substituting Eq. (45) into Eqg. (44), we obtain the differ-
ential equation fol’'(z/,¢) as

4. The Green function for a harmonic oscilla-

oC (', t) i ) . e
g = pmSeotQ)z’C(a’ 1) (46) tor with mass growing with time
Solving Eq.(46), we obtain The Hamiltonian operator for a harmonic oscillator with mass

i growing with time can be written as
C(x',t) = C(t) exp (%mﬂ cot th’2> .4

n2
T p 1 2 2.2
After substituting Eq. (47) into Eq. (45), we arrive at H(t) = 2m(1 + at)? * Qm(l +at) W (54)
1 _
G(z,2',t) = C(t) exp {721 (<2mQ cos? vt cot Ot wherea is a constant.
2
1 _ P 1
+ imv sin vt cos vt) z? H(q,p,t) = 2m(1 + at)? + im(l + at)2w2q2 (55)
%mQ cot Qtx'? — mQ cos vt csc th’)] . (48) The equation of motion for this oscillator is
To find C(t), we must substitute the Green function of G+ 270‘4 +wg=0. (56)
Eq. (48) into the Sclirdinger equation (1+at)
mﬁg(x oot) = — n o 9*G(x, ) The classical paths in the space under the initial condi-
ot 2m cos? vt Ox? tionsq(0) = go andp(0) = py can be expressed as
1 2 2.2 /
—|—§mcos vtw x Gz, 2, t). (49) sin w4 w cos wt
q(t) = qo o1 al)
After some algebra, we get
sin wt
dC'(t 1 + —_—, 57
% = —i(QcotQt—i-vtanvt)C(t). (50) Po <mw(1—|—at)> ®7)
2
Integrating Eq. (50) with respect to time, we obtain p(t)=qo (moﬂt coswt—mw(1 — at) sin wt— mj sin wt>
cos vt 1/2 «
c@t)y=0cC < - > . (51) +po <(1+at) cos wt—— sin wt> . (58)
sin Qt w
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We can expresg, andpg in terms ofg, p, andt by The system of equations for calculating the Green func-
o tion G(z,2’,t) are
qo(q,p,t) = q((l + at) coswt — — sinwt)
w

24 2
sin wt ox sin wt * h [mw(l + at)
=) (59)

mw(1l + at) x cot wt — ma(1l + at)]) G(x, x, t), (69)

0G(x, 2, t) ( imw(l+at)a’ i

pod. pr ) =p (asinthrw coswt)
o\d,DP,t)=
w(l+at) 0G(x,2',t) @( +weotwh)a! imw(l + at)
5 ] ox' =\ p Tt hsinwt
—q| ma“tcoswt—mw(l + at) sinwt
X G(x,x',t).
G ! (70)
ma? sin wt ] ) )
- ) (60) Now we can integrate Eq. (70) with respect to the vari-

i . . ablez to obtain
We define operators acting in the Hilbert space as follows

G(z,2',t) = C(2',t) exp [Z ((mw(l + at)? cot wt

Go(4,p,t) = cj((l — at) coswt — Zsinwt) 2h
. sin wt —ma(l + at))ngwxx' . (71)
-l —= ), (61) sinwt
mw(l + at)
o sin wt + w cos wt Substituting Eqg. (71) into Eqg. (70), we obtain the differ-
~ A A t — 4 H H !
q0(q, b, 1) (J( o+ at) ) ential equation foc’(2/, ) as
oC(x',t m
cj(maQt coswt — mw(1 + at) sinwt 7{;1’ ) = ?(a +weotwt)r'C(z',t).  (72)
2 i Solving Eqg. (72), we obtain
_ ma smwt) 62) g Eq. (72)
w

/ _ i 12
Calculating the total derivatives of the operatggsand C(a',t) = C(t) exp (2;1(7”0‘ +mw cotwt)z ) (73)
Go With respect to time, we obtain

After substituting Eq. (73) into Eq. (71), we obtain

dq Odo  ip .
S0 S0 4 LA o] =0, (63) o
dt ot ' h / ) ; ,
dpo o i s . G(z,z',t) = C(a',t) exp (271 (mw(1 + at) cot wt
E—E‘f‘ﬁ[fﬂpo]—a (64) -
—ma(l + at))z? twt)x'?
Hence, operators in Egs. (61) and (62) are integrals of ma(l+at))z +(Tna +mw cotwt)z
motion and correspond to the initial position and momentum. ~ 2mw(l +at) or! (74)
Then these operators must satisfy the equations for the Green sin wt '
functionG(z, 2', t) [3-4]
. , ., , To getC'(t), we must substitute the Green function of Eq.
Qo(2)G(z, 7', t) = 4(a")G(z, 2", 1), (65)  (74) into the Schirdinger equation
bo(2)G(w, 2", ) = —p(a")G(x, 2", 1). (66) L O0G(z, 2, t) R? 0?G(x,2',t)
Writing Egs. (65) and (66) explicitly, it can be shown that ‘ ot - 2m(1 + at)? Ox?
o 1
(1: [(1 + at) coswt — gsin wt} + m%) + im(l + at)?w?G(x, 2’ t).  (75)
X G(z,2',t) = 2'G(x, 2, 1), (67) After some algebra, we obtain
., [asinwt +wcoswt\ 0 9 dC(t) Q 1
—ih — — x| ma“tcoswt = -
( ( o+ ab) )856 ( o (2(1+at) 2wcotwt)0(t). (76)
2 .
— mw(l + at)sinwt — W) Glx,2',t) Integrating Eq. (76) with respect to time, we get
w
1/2
L O0G(z, 2 t) _ 1+ at
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Substituting Eq. (77) into Eq. (74) and employing the oscillator problems. This method has the important steps in

initial condition in Eqg. (25), the constant becomes finding the constant of motiong andp, and implying that
P the Green function&:(x, ', t) is the eigenfunctions of the
C=,/ 5T (78)  operatorsjy(x) andpg(z).

) ) ) . In fact, this method has many common features with the
So, the Green function for a harmonic oscillator with schwinger method, [11-14] but the Schwinger method re-

mass growing with time can be written as quires the operatajy () andp, () in calculating the matrix
Clo.dl. ) — mw(1+ at) 1/2 . i " element of Hamiltonian operator in the Green function
7\ 2mikisin wt P 2h i

x cot wt—ma(l + at))z?+(ma 4+ mw cot wt )z’

2mw(l +at) / t) | H(&(t),2(0) | z'(0
sinwt (z(t) | 2'(0))
which is agreement with the result of S. Pepore and B. Suk- 0
bot [11] calculating by Schwinger method. In Feynman path integral, the pre-exponential function
C(t) comes from sum over all historical paths that depend on
5. Conclusion the calculation of functional integration while in the integrals

of motion method this term appears in solving Schrodinger
The method for deriving the Green functions with the helpingequation of Green function. In my opinion the method in this
of integrals of the motion presented in this paper can be suarticle seems to be more simple from the viewpoint of calcu-
cessfully applied in solving time-dependent mass harmonitation.
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