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The application of the integrals of the motion of a quantum system in deriving Green function or propagator is established. The Green
function is shown to be the eigenfunction of the integrals of the motion which described initial points of the system trajectory in the phase
space. The explicit expressions for the Green functions of the damped harmonic oscillator, the harmonic oscillator with strongly pulsating
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integrals of the motion method and other method such as Feynman path integral and Schwinger method are also discussed.
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1. Introduction

In non-relativistic quantum mechanics, the propagator is rep-
resented as the transition probability amplitude for a parti-
cle to motion from initial space-time configuration to final
space-time configuration. The Feynman path integral [1] and
the Schwinger action principle [2] are the well-known meth-
ods in calculating the propagator. The aim of this paper is to
present the connection between the integrals of the motion of
a quantum system and its Green function or propagator.

As reveal by V.V. Dodonovet al. [3] that the Green func-
tion is the eigenfunction of the integrals of the motion de-
scribing initial points of the system trajectory in the phase
space. D.B. Lemeshevskiy and V.I. Man’ko [4] constructed
the Green functions for the driven harmonic oscillator with
the aid of integrals of the motion. In the present paper we
want to calculate the Green functions or propagators for the
damped harmonic oscillator [5-7], the harmonic oscillator
with strongly pulsating mass, [8] and the harmonic oscillator
with mass growing with time [9] by the method developed by
V.V. Dodonovet al. [3]

This paper is organized as follows. In Sec. 2, the Green
function for the damped harmonic oscillator is derived. In
Section 3, the calculation of the Green function for the har-
monic oscillator with strongly pulsating mass is presented.
The Green function for the harmonic oscillator with mass
growing with time is evaluated in Sec. 4. Finally, the con-
clusion is given in Sec. 5.

2. The Green function for a damped harmonic
oscillator

The Hamiltonian operator for a damped harmonic oscillator
is described by [5-7]

Ĥ(t) = e−rt p̂2

2m
+

1
2
mω2ertq̂2, (1)

wherer is the damping constant coefficient.
The aim of this section is to drive the Green function

G(x, x′, t) of the Schrodinger equation by the method of in-
tegrals of motion [3-4]. The classical correspondence of the
Hamiltonian operator in Eq. (1) is

H(q, p, t) = e−rt p2

2m
+

1
2
mω2ertq2, (2)

The Hamilton equation of motion for position and mo-
mentum are [10]

q̇ =
p

m
e−rt, ṗ = −−mω2ertq. (3)

The classical paths in the phase space under the initial
conditionsq(0) = q0 andp(0) = p0 are given by

q(t) = q0

(
e−rt cosΩt +

re−rt/2

2Ω

)

+ p0

(
re−rt/2

mΩ
sinΩt

)
, (4)

p(t) = p0

(
ert/2 cosΩt− rert/2

2Ω
sinΩt

)

− q0

(
mω2

Ω
re−rt/2 sinΩt

)
, (5)

whereΩ2 = ω2 − r2/4. Now we consider the system of
Eqs. (4) and (5) as an algebraic system for unknown initial
positionq0 and momentump0, respectively. The variables
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q, p, andt are taken as the parameters. The solution of this
system are given as

q0(q, p, t) = q
(
ert/2 cos Ωt− r

2Ω
ert/2 sinΩt

)

− p

(
e−rt/2

mΩ
sinΩt

)
, (6)

p0(q, p, t) = q

(
mω2

Ω
ert/2 sinΩt

)

+ p

(
e−rt/2 cosΩt +

re−rt/2

2Ω
sin Ωt

)
. (7)

We define operators acting in the Hilbert space as follows

q̂0(q̂, p̂, t) = q̂
(
ert/2 cos Ωt− r

2Ω
ert/2 sinΩt

)

− p̂

(
e−rt/2

mΩ
sinΩt

)
, (8)

p̂0(q̂, p̂, t) = q̂

(
mω2

Ω
ert/2 sinΩt

)

+ p̂

(
e−rt/2 cosΩt +

re−rt/2

2Ω
sin Ωt

)
. (9)

Calculating the total derivative of the operatorq̂0(q̂, p̂, t)
with respect to timet, we obtain

dq̂0

dt
=

∂q̂0

∂t
+

i

~
[Ĥ, q̂0]. (10)

Similarly, the total time-derivative of the operator
p̂0(q̂, p̂, t) is

dp̂0

dt
=

∂p̂0

∂t
+

i

~
[Ĥ, p̂0]. (11)

Thus, operators in Eqs. (8) and (9) are integrals of the
motion and correspond to the initial position and momentum.
Then these operators must satisfy equations for the Green
functionG(x, x′, t), [3-4]

q̂0(x)G(x, x′, t) = q̂(x′)G(x, x′, t), (12)

p̂0(x)G(x, x′, t) = −p̂(x′)G(x, x′, t), (13)

where the operators on the left-hand sides of the equa-
tions act on variablex, and on the right- hand sides, onx′.
Now we write Eqs. (12) and (13) explicitly,
(

x
(
ert/2 cosΩt− r

2Ω
ert/2 sinΩt

)

+
i~

mΩ
e−rt/2 sin Ωt

∂

∂x

)
G(x, x′, t) = x′G(x, x′, t), (14)

(
x

(
mω2

Ω
ert/2 sin Ωt

)
− i~

(
e−rt/2 cos Ωt

+
re−rt/2

2Ω
sinΩt

)
∂

∂x

)
G(x, x′, t)=i~

∂G(x, x′, t)
∂x′

. (15)

By modifying Eqs. (14) and (15), the system of equations
for deriving the Green functionG(x, x′, t) are

∂G(x, x′, t)
∂x

= − imΩ
~

(
ert/2

sin Ωt
x′

− (
ert cotΩt− rert

2Ω
)
x

)
G(x, x′, t), (16)

∂G(x, x′, t)
∂x′

= − i

~

(
mΩert/2

sinΩt
x

−
(
mΩcot Ωt +

mr

2

)
x′

)
G(x, x′, t). (17)

Now one can integrate Eq. (16) with respect to the vari-
ablex to obtain

G(x, x′, t) = C(x′, t) exp
(

i

~

{(
mΩ
2

ert cot Ωt

− mr

4
ert

)
x2 − mΩ

sinΩt
ert/2xx′

})
, (18)

whereC(x′, t) is the function ofx′ andt.
Substituting Eq. (18) into Eq. (17), we obtain the differ-

ential equation forC(x′, t) as

∂C(x′, t)
∂x′

=
i

~
(
mΩcot Ωt +

mr

2
)
x′C(x′, t). (19)

Solving Eq. (19), the functionC(x′, t) can be expressed
as

C(x′, t) = C(t) exp
(

i

~

(
mΩ
2

cot Ωt +
mr

4

)
x′2

)
, (20)

whereC(t) is the pure function of time.
So, the Green function in Eq. (18) can be written as

G(x,x′, t) = C(t) exp
(

i

~

{(
mΩ
2

ert cotΩt− mr

4
ert

)
x2

+
(

mΩ
2

cotΩt +
mr

4

)
x′2 − mΩert/2

sinΩt
xx′

})
.

(21)

To find C(t), we must substitute the Green function of
Eq. (21) into the Schrodinger equation

i~
∂G(x, x′, t)

∂t
= − ~

2

2m
e−rt ∂

2G(x, x′, t)
∂x2

+
1
2
mω2ertx2G(x, x′, t). (22)

After some algebra, we obtain an equation that does not
contain the variablesx andx′,

dC(t)
dt

= C(t)
(

r

2
− Ωcot Ωt

2

)
(23)
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Eq. (23) can be simply integrated with respect to timet, and
one obtains

C(t) =
c√

sinΩt
ert/4, (24)

whereC is a constant.
Substituting Eq. (24) into Eq. (21) and applying the ini-

tial condition

G(x, x′, t = 0) = δ(x− x′), (25)

we get

C =

√
mΩ
2πi~

. (26)

So, the Green function or propagator for a damped har-
monic oscillator can be written as

G(x,x′, t) =

√
mΩert/2

2πi~ sinΩt
exp

(
i

~

{(
mΩ
2

ert cotΩt

− mrert

4

)
x2 +

(
mΩ
2

cotΩt +
mr

4

)
x′2

− mΩert/2

sinΩt
xx′

})
, (27)

which is the same form as the result of S. Peporeet al. [5]
calculating from Feynman path integral.

3. The Green function for a harmonic oscilla-
tor with strongly pulsating mass

The Hamiltonian operator for a harmonic oscillator with
strongly pulsating mass can be expressed as [9]

Ĥ(t) =
p2

2m cos2 vt
+

1
2
m cos2 vtω2q̂2, (28)

wherev is the frequency of mass. The classical analog of the
Hamiltonian operator in Eq. (28) is

H(q, p, t) =
p2

2m cos2 vt
+

1
2
m cos2 vtω2q2. (29)

The classical equations of motion determining the oscil-
lator position and momentum are

q̈ − 2v tan vtq̇ + ω2q = 0 (30)

The classical trajectories in the phase space under the ini-
tial conditionsq(0) = q0 andp(0) = p0 can be written as

q(t) = q0 sec vt cosΩt + p0/mΩ sec vt sinΩt, (31)

p(t) = q0(mv cos vt tan vt cosΩt−mΩcos vt sinΩt)

+ p0(cos vt cosΩt +
v

Ω
cos vt tan vtsinΩt), (32)

whereΩ2 = ω2 + v2.

By eliminatingp0 in Eq. (31) andq0 in Eq. (32), the
solutions are

q0(q, p, t) = q

(
cos vt cosΩt +

v

Ω
sin vt sinΩt

)

− p

(
sec vt sinΩt

mΩ

)
, (33)

p0(q, p, t) = q(mΩcos vt sinΩt

−mv sin vt cosΩt) + p(sec vt cosΩt). (34)

The Hilbert space operators ofq0 andp0 are

q̂0(q̂, p̂, t) = q̂

(
cos vt cosΩt +

v

Ω
sin vt sinΩt

)

− p̂

(
sec vt sinΩt

mΩ

)
, (35)

p̂(q̂, p̂, t) = q̂(mΩcos vt sinΩt−mv sin vt cosΩt)

+ p̂(sec vt cosΩt). (36)

We can determine that̂q0 andp̂0 are integrals of the mo-
tion by finding total time derivatives of

dq̂0

dt
=

∂q̂0

∂t
+

i

~
[Ĥ, q̂0] = 0, (37)

dp̂0

dt
=

∂p̂0

∂t
+

i

~
[Ĥ, p̂0] = 0. (38)

Then these operators must satisfy the equations for the
Green functionG(x, x′, t) [3-4]

q̂0(x)G(x, x′, t) = q̂(x′)G(x, x′, t), (39)

p̂0(x)G(x, x′, t) = −p̂(x′)G(x, x′, t). (40)

Now we write Eqs. (39) and (40) explicitly,

(
x

(
cos vt cosΩt +

v

Ω
sin vt sinΩt

)

+
i~ sec vt sinΩt

mΩ
∂

∂x

)
G(x, x′, t) = x′G(x, x′, t), (41)

(
x
(
mΩcos vt sinΩt−mv sin vt cos Ωt

)

− i~ sec vt cosΩt
∂

∂x

)
G(x, x′, t)

= i~
∂

∂x′
G(x, x′, t) (42)

The system of equations for defining the Green function
G(x, x′, t) are
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∂G(x, x′, t)
∂x

= − i

~
[x′(mΩ cos vt csc Ωt)

− x(mΩcos2 vt cotΩt

+ mv sin vt cos vt)]G(x, x′, t), (43)

∂G(x, x′, t)
∂x′

= − i

~
[x(mΩcos vt cscΩt)

− x′(mΩcot Ωt)]G(x, x′, t). (44)

Now we can integrate Eq. (43) with respect to the vari-
ablex to get

G(x, x′, t) = C(x′, t) exp
[

i

~

((
1
2
mΩcos2 vt cotΩt

+
1
2
mv sin vt cos vt

)
x2

−mΩcos vt cscΩtxx′
)]

. (45)

Substituting Eq. (45) into Eq. (44), we obtain the differ-
ential equation forC(x′, t) as

∂C(x′, t)
∂x′

=
i

~
(mΩcot Ωt)x′C(x′, t) (46)

Solving Eq.(46), we obtain

C(x′, t) = C(t) exp
(

i

2~
mΩcot Ωtx′2

)
. (47)

After substituting Eq. (47) into Eq. (45), we arrive at

G(x, x′, t) = C(t) exp
[

i

~

((
1
2
mΩ cos2 vt cotΩt

+
1
2
mv sin vt cos vt

)
x2

1
2
mΩcot Ωtx′2 −mΩcos vt cscΩtxx′

)]
. (48)

To find C(t), we must substitute the Green function of
Eq. (48) into the Schrödinger equation

i~
∂

∂t
G(x, x′, t) = − ~2

2m cos2 vt

∂2G(x, x′, t)
∂x2

+
1
2
m cos2 vtω2x2G(x, x′, t). (49)

After some algebra, we get

dC(t)
dt

= −1
2
(Ω cot Ωt + v tan vt)C(t). (50)

Integrating Eq. (50) with respect to time, we obtain

C(t) = C

(
cos vt

sin Ωt

)1/2

. (51)

Substituting Eq. (51) into Eq. (48) and applying the ini-
tial condition in Eq. (25), the constantC is

C =

√
mΩ
2πi~

(52)

Thus, the Green function for a harmonic oscillator with
strongly pulsating mass can be expressed as

G(x, x′, t) =

√
mΩcos vt

2πi~ sinΩt
exp

[
i

~

((
1
2
mΩcos2 vt cot Ωt

+
1
2
mv sin vt cos vt

)
x2 +

1
2
mΩcot Ωtx′2

−mΩ cos vt cscΩtxx′
)]

, (53)

which is the same result as M. Sabir and S. Rajagopalan [9]
by Feynman path integral method.

4. The Green function for a harmonic oscilla-
tor with mass growing with time

The Hamiltonian operator for a harmonic oscillator with mass
growing with time can be written as

Ĥ(t) =
p̂2

2m(1 + αt)2
+

1
2
m(1 + αt)2ω2q̂2, (54)

whereα is a constant.

H(q, p, t) =
p2

2m(1 + αt)2
+

1
2
m(1 + αt)2ω2q2 (55)

The equation of motion for this oscillator is

q̈ +
2α

(1 + αt)
q̇ + ω2q = 0. (56)

The classical paths in the space under the initial condi-
tionsq(0) = q0 andp(0) = p0 can be expressed as

q(t) = q0

(
α sin ωt + ω cos ωt

ω(1 + αt)

)

+ p0

(
sin ωt

mω(1 + αt)

)
, (57)

p(t)=q0

(
mα2t cos ωt−mω(1− αt) sin ωt−mα2

ω
sin ωt

)

+p0

(
(1+αt) cos ωt−α

ω
sin ωt

)
. (58)
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We can expressq0 andp0 in terms ofq, p, andt by

q0(q, p, t) = q

(
(1 + αt) cos ωt− α

ω
sin ωt

)

− p

(
sin ωt

mω(1 + αt)

)
, (59)

p0(q, p, t)=p

(
α sin ωt+ω cos ωt

ω(1+αt)

)

−q

(
mα2t cos ωt−mω(1 + αt) sin ωt

− mα2 sin ωt

ω

)
. (60)

We define operators acting in the Hilbert space as follows

q̂0(q̂, p̂, t) = q̂

(
(1− αt) cos ωt− α

ω
sin ωt

)

− p̂

(
sinωt

mω(1 + αt)

)
, (61)

q̂0(q̂, p̂, t) = q̂

(
α sin ωt + ω cos ωt

ω(1 + αt)

)

q̂

(
mα2t cosωt−mω(1 + αt) sin ωt

− mα2 sin ωt

ω

)
. (62)

Calculating the total derivatives of the operatorsq̂0 and
q̂0 with respect to time, we obtain

dq̂0

dt
=

∂q̂0

∂t
+

i

~
[Ĥ, q̂0] = 0, (63)

dp̂0

dt
=

∂p̂0

∂t
+

i

~
[Ĥ, p̂0] = 0. (64)

Hence, operators in Eqs. (61) and (62) are integrals of
motion and correspond to the initial position and momentum.
Then these operators must satisfy the equations for the Green
functionG(x, x′, t) [3-4]

q̂0(x)G(x, x′, t) = q̂(x′)G(x, x′, t), (65)

p̂0(x)G(x, x′, t) = −p̂(x′)G(x, x′, t). (66)

Writing Eqs. (65) and (66) explicitly, it can be shown that
(

x

[
(1 + αt) cos ωt− α

ω
sinωt

]
+

i~ sin ωt

mω(1 + αt)
∂

∂x

)

×G(x, x′, t) = x′G(x, x′, t), (67)
(
− i~

(
α sin ωt + ω cosωt

ω(1 + αt)

)
∂

∂x
− x

(
mα2t cos ωt

−mω(1 + αt) sin ωt− mα2 sin ωt

ω

)
G(x, x′, t)

= i~
∂G(x, x′, t)

∂x′
(68)

The system of equations for calculating the Green func-
tion G(x, x′, t) are

∂G(x, x′, t)
∂x

=
(
− imω(1 + αt)x′

sin ωt
+

ix

~
[mω(1 + αt)2

× cot ωt−mα(1 + αt)]
)

G(x, x′, t), (69)

∂G(x, x′, t)
∂x′

=
(

im

~
(α + ω cot ωt)x′ − imω(1 + αt)

~ sin ωt
x

)

×G(x, x′, t). (70)

Now we can integrate Eq. (70) with respect to the vari-
ablex to obtain

G(x, x′, t) = C(x′, t) exp
[

i

2~

(
(mω(1 + αt)2 cot ωt

−mα(1 + αt))x2−2mω(1 + αt)
sin ωt

xx′
)]

. (71)

Substituting Eq. (71) into Eq. (70), we obtain the differ-
ential equation forC(x′, t) as

∂C(x′, t)
∂x′

=
im

~
(α + ω cot ωt)x′C(x′, t). (72)

Solving Eq. (72), we obtain

C(x′, t) = C(t) exp
(

i

2~
(mα + mω cot ωt)x′2

)
(73)

After substituting Eq. (73) into Eq. (71), we obtain

G(x, x′, t) = C(x′, t) exp
(

i

2~

[
(mω(1 + αt)2 cot ωt

−mα(1 + αt))x2+(mα + mω cot ωt)x′2

− 2mω(1 + αt)
sinωt

xx′
])

. (74)

To getC(t), we must substitute the Green function of Eq.
(74) into the Schr̈odinger equation

i~
∂G(x, x′, t)

∂t
= − ~2

2m(1 + αt)2
∂2G(x, x′, t)

∂x2

+
1
2
m(1 + αt)2ω2G(x, x′, t). (75)

After some algebra, we obtain

dC(t)
dt

=
(

α

2(1 + αt)
− 1

2
ω cot ωt

)
C(t). (76)

Integrating Eq. (76) with respect to time, we get

C(t) = C

(
1 + αt

sin ωt

)1/2

. (77)
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Substituting Eq. (77) into Eq. (74) and employing the
initial condition in Eq. (25), the constantC becomes

C =
√

mω

2πi~
. (78)

So, the Green function for a harmonic oscillator with
mass growing with time can be written as

G(x, x′, t) =
(

mω(1 + αt)
2πi~ sin ωt

)1/2

exp
(

i

2~

[
(mω(1 + αt)2

× cot ωt−mα(1 + αt))x2+(mα + mω cot ωt)x′2

− 2mω(1 + αt)
sin ωt

xx′
])

, (79)

which is agreement with the result of S. Pepore and B. Suk-
bot [11] calculating by Schwinger method.

5. Conclusion

The method for deriving the Green functions with the helping
of integrals of the motion presented in this paper can be suc-
cessfully applied in solving time-dependent mass harmonic

oscillator problems. This method has the important steps in
finding the constant of motionsq0 andp0 and implying that
the Green functionsG(x, x′, t) is the eigenfunctions of the
operatorŝq0(x) andp̂0(x).

In fact, this method has many common features with the
Schwinger method, [11-14] but the Schwinger method re-
quires the operator̂q0(x) andp̂0(x) in calculating the matrix
element of Hamiltonian operator in the Green function

G(x, x′, t) = C(x, x′) exp
{
− i

~

×
t∫

0

〈x(t) | Ĥ(x̂(t), x̂(0) | x′(0)〉 |〉
〈x(t) | x′(0)〉 dt

}
. (80)

In Feynman path integral, the pre-exponential function
C(t) comes from sum over all historical paths that depend on
the calculation of functional integration while in the integrals
of motion method this term appears in solving Schrodinger
equation of Green function. In my opinion the method in this
article seems to be more simple from the viewpoint of calcu-
lation.
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