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IMPURITY IONIZATION BY HOT ELECTRONS"
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ABSTRACT: The ionization of impurities by hot electrons is examined.
Several expressions for the occupancy number of impurities
are calculated using different assumptions on the form of the
ionization cross section. The displaced Maxwellian distri-
bution is used throughout., The expressions are applied to
p-Ge with shallow and deep impurities in order to calculate

the electron temperature under high electric field.

I. INTRODUCTION

At low temperature, before the so called exhaustion region in semi-
conductors, there is an important residual part of the impurities of donor or

"Part of this paper was presented in the First Latinamerican Physics Meeting.
Oaxtepec, México, 1968.
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acceptor type that have not been ionized. The action of an electric field
applied to the semiconductor is to accelerate the electrons (or holes) in the
conduction (or valence) band so that they are able to ionize new impurities.
Hence, we expect the number of electrons to increase with the applied field.
The most dramartic example of this effect is given by the so called low-tempera-
ture reversible breakdown!. A semiconductor at 4 or S°K has only a few
electrons in the conduction band. When a field of a few volts per cm is ap-
plied, these electrons are able to ionize a large number of shallow impurities
and an enormous increase in the conductivity is observed. At a somewhat
higher temperature the shallow impurities are almost fully ionized and such
a large increase is not observed, but if the sample has deep impurities an
increase in conductivity is observed again at a larger field?. For p=Ge the
field is of the order of 10° volts/cm.

The above phenomena can be described using hot electron theory,
together with various assumptions commonly employed therein, to calculate
the number of ionized impurities as a function of the applied field.

II. THE IONIZATION TERM IN THE BOLTZMANN EQUATION

The Boltzmann Equation for the problem takes the form*:
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where the different terms repre sent changes in the distribution function f
due to field, phonons, elastic collision with impurities, electron-electron
collisions and ionization of impurities, respectively.
The first four terms in the right hand side of the equation represent
particle-preserving interactions. The last one takes the explicit form:

(%) =[dp"d%"{~fp)n, B (p;p",P" )+ [(p") [ (p")n; Py (p",P"; P)
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where P, (p; p',p") is the probability per unit time that an electron with
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momentum p collides with a neutral impurity and as a result of the collision

there appear electrons with momenta p’ and p”; #, and n, are the densities of
neutral and ionized impurities, respectively. Pp (p p" p) is the probability

per unit time of the reverse Auger recombmanon process. We have used the

properties:

P (p;p',p")=FB(p;p"p")
(I1.3)
Pa(p',p";P)=Ph(p",p';p).

Using equation (II.2) to describe the thermodynamic equilibrium
between conduction band and an impurity level with an energy E,, below the
bottom of the band one finds the elementary results:

n, exp [-ED/la’IE)] :

(I1.4a)
0
Co n;
and
By (p',p";P)=B(p;p',p") - (11.4b)
To obtain these results we have used:
I, ()= G, exp [~ E(p)/AT,] (I1.52)
and
E(P)=E(p" )t E(p")*+ B, - (11.5b)

The index zero indicates quantities in thermodynamic equilibrium.

Using our previous statements in the Boltzmann equation (I[.1) we
obtain the conservation relations. For the details of the calculation refer-
ence may be made to the Lecture Notes by de Alba®. We obtain

%"fgf d’p=[Gp;p'p" d%pdp'd’p" (I1.6)
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where

Gp:p'p)=Gp;pp')={f(p)m, = [(®") f(p")m } Py(p;p"spP") -

In the steady state situation, energy conservation for each collision implies
that the conservation equation (II.7) remains unaltered with respect to a situ-
ation in which the ionization process is not present.

Up to here, we have found results that are of general applicability,
we now make some usual assumptions to treat the problem in greater derail.

III. CALCULATIONS
In order to do explicit calculations of the ionization term we have to
consider explicit forms for the probability rate P, .  Exact expressions are

very difficult to treat and not very well known for electrons in solids. We can

use two extreme simplifying assumptions.

1) Isotropic collisions:

P (p;p',p") =B, (0) S [E~E' = E - Ey] (I11.1)
2) Momentum conservation:

B(p;p',p") =B, (p) (p=p'= p')S(E=E'-E"- E) (IIL.2)

where B, (p) and B, (p) are the squares of the interaction matrix
i " W
elements, and E= E(p) E = E(p') E = E(p").
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The first assumption implies that there is no angular correlation
between the particles, and the probability depends only on the energy of the
incoming particle (an isotropic energy band is assumed). The second as-
sumption is likely to be valid for fast conduction electrons and shallow im-
purities.

In certain circumstances approximate forms of the distribution function
are justifiable and these are now considered in turn.

a) Linear theories in the drift.

When dealing with situations in which the ratio of drift to thermal
energy is small, we can develop the distribution function in spherical har-
monics and keep only the zero and first order terms. In this case, all theories
imply the general form?

f(p)= c exp [~ E (p)/RT,] + (p) cos O (111.3)

where ¢ = nb 3/2(217ka¢ )34 . is the electron temperature under field, n is
the electron density, /,(p) is the drift component to be calculated from the
theory and @ is the angle between p and the field direction.

" Keeping only terms linear in the first harmonic we obtain, using (II1.1)
and (II1.3) in equation (II.6) (steady state situation, isotropic case):

J{cexp [=E(p)/RT,1n, = 2 exp [~ (E(p')+ E(p")/RT,]n;} B (p)

x S(E~E'-E"=Ep)p?p' p"* dpdp'dp” =0 .

Hence, the population of the impurity level is simply that of equilibrium
between the level and electrons in the conduction band at a temperature T, :

n_ exp [=- ED/kTe] -1
Cn'.

(111.4)

b) General case.

6

There are several substances (p=Ge®, polar semiconductors® for

which, at intermediate and high electric fields, the assumption of small drift
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versus thermal energy ratio is not valid. For these situations either the
distribution function must be specified numerically or, if strong interelectronic
scattering is present, a shifted Maxwellian distribution” may be assumed.
If we restrict ourselves to the latter case then, for parabolic bands,

f(p) = C exp [~ |P‘P0|/2kae] : (111.5)

Complete knowledge of the steady state situation is given by the
simultaneous equations

dn _o .  9E _g and ® =9

dt ’ dt dt

in the parameters n, T, and P, -

When the assumption of conservation of momentum (II1.2) is used, the
set of equations for T, and P, reduces identically to those obtained when
impact ionization is not present. Hence the mobility as a function of field is
not modified by the impact ionization mechanism and the population can be
independently calculated by means of the equation (I1.6):

_J-G(p;P',P") dsp dap‘d'ap”: 0 (111.6)

where we have to use the form (II1.5) of the distribution function.
After some calculation, equation (III.6) reduces to:

pZ
n_ exp [-(E, -2 )/kT]
n P D 2m) e

= I (I11.7)
Cn,;

That is, the electron population is that of electrons in the conduction
band in equilibrium at temperature T, with impurity levels at a pseudo-energy

E,, =Ep=_2 =E,=2[p(P F]2 (111.8)
2

where 1 (F) represent the carrier mobility and F the electric field strength.
In many cases the lowering of the effective ionization energy is small,

but non-zero.
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Now , when instead the isotropic assumption (III.1) is made, equation
(II1.6) reduces to:

T 2
R ; II1.
=y Gex s y) .( 9)
where
- ' 2 i x’ 2
g((xoz,*y) = i{ﬂ-dx'dxxzxfﬂ(x)[e i xo) - ( +x°) ]
X
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x { [x(x? =¥ B(x) e - ] dx}

The function B (x) appearing in SL(rj ,¥) ig defined as the square of the inter-
action matrix element and X, =P, (kaTe)- *; ¥= By /kT, . The result is a
complicated expression in the hot-electron parameters p and T, .

In order to see the differences between results (III.7) and (Iil.9) , let
us develop Q(xg ,) up to the second order in x5 that is, the first significant
correction to “linear in the drift” theories. After some manipulation, we find:

n
P~ (1=2x2)e”
Cn, — 0

or, valid to the same order,

2
|4

2 = exp [( Ep = _0) /}aTe]
n 2m

The pseudo-level has now an ionization energy reduced by twice the drift
energy of the distribution.

On the other hand, in the isotropic case the ionization mechanism
gives a non zero contribution to the momentum balance and hence the mobility
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is directly dependent on the cross section for this mechanism.

IV. A SIMPLE APPLICATION

In this paragraph we will apply the previous results to calculate the
electron temperature of p=Ge at 20.9 °K for fields higher than 1400 V/cm.

The graphs of figure 1, show the results of Bray et al? for the con-
ductivity of p--Ge as function of electric field at 20.9°K. One of the samples
has Ga (1.5x10'/cm?) as shallow impurity andthe other sample is the same
crystal with Cu (1.6x 10%/cm?) added as deep impurity.

[ 1 l l l
_ 0% —
© ;
H - R.Bra er‘alm
! = Ge nlwmq‘ :
= ® Ga(1.5X10'Ycm’)
e 8 X Cu (1.6X10'%¢m®) ADDED
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S ot =
Rl
b [
S ©
R |
L
3 P BT i sl PG | ] | ]
IO il A i A A i lld A L " A i
0.l | 10 102 10’ o
ELECTRIC FIELD STRENGTH (V/em) Fig: L

Except for the discrepancies due to added impurities at low electric
fields both curves behave similarly up to 1700 V/cm. For small fields an
increase in conductivity is observed due to exhaustion of shallow impurities.
When the shallow impurities have been exhausted (~ 17 V/cm) a decay in
the mobility with field forces produces a decay in the conductivity. The
conductivity curves for both samples remain together from this field up to
1400 V/cm, where the ionization of deep impurities begins to play a role.
From this field up to 6000 V/cm the deep impurities are ionized and the
conductivities of the two samples diverge.



Impurity lonization by Hot Electrons

It has been shown® that collisions with ionized impurities tend jo be
less important when the field is increased; hence, we assume that at these
large fields the variation in conductivity is due only to the variation in the

number of carriers.

The behavior of the conductivity in the presence of only shallow im-
purities gives us the values for combining the result with the diftereat be-
havior in the higher region in the presence of deep impurities; we are then

8 g P P ;

able to calculate T and n; using previously described formulae.

In figure 2 we show the variation in the number of carriers versus
electric field in the region of interest. In this region we can sece that

2
Ep >> kT >> ;_m (u(F)F)
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Fig. 2.
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where F is the electric field; hence, all our previously treated forms for the
variation of number of carriers with field, reduce to the equilibrium form at a
temperature T, (equation III.4).

Applying this formula to the present sitmation we calculate the tempera-
ture of the electrons versus field obtaining the results shown in figure 2.

Our semi-empirical results based on deep impurity ionization, origi-
nates electron temperatures that are lower than those obtained from calcu-
lations using hot electron theory without impact ionization. The difference
gives additional support to the view that the tail of the distribution functions
with larger energy than the optical phonon threshold has a different tempera-
ture than that of the bulk distribution that is found on the usual calculation
procedures.

V. CONCLUSIONS

The number of carriers in the conduction band in the presence of
ionizable impurities and high electric fields can be calculated by means of
the thermodynamic formula:

f’l_ = exp [ED /laTe] (111.4)

(8 n,

provided that: The ratio of drift to thermal energy is small.

When this ratio is not small, we have calculated two possible situ-
ations:

a) If momentum conservation is a reasonable approximation, so

n.

= Ey=LmuF)?)/kr,]
Cn, exp [ (B, " e (I11.7)

b) If the isotropic assumption is the most reasonable one, we
have:

n.
o= L, %) (111.9)
1

where { is given in the text.
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RESUMEN

En este articulo se examina la ionizacién de impurezas por medio de
electrones calientes. Se calculan varias expresiones para el namero de ocu-
pacién de impurezas,utilizando diferentes suposiciones sobre la seccion
cransversal de ionizacion. La distribucién de Maxwell desplazada se usa en
todos los casos. Las expresiones resultantes se aplican al caso p=Ge con
impurezas profundas y poco profundas para calcular la temperatura electroni-
ca en un campo eléctrico intenso.



