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GENERALIZATION OF THE ENSKOG’S KINETIC EQUATION
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ABSTRACT: The Enskog's kinetic equation is generalized to a mixture of
moderately dense gases by introducing the same type of ansatz
used some years ago by Sengers and Cohen fora one component
fluid of hard spheres. A difference with Thorne's kinetic

equations is pointed out,

I. INTRODUCTION

The calculation of transport properties for moderately dense systems
of one or many species of molecules has been extensively dealt with in the
literature. All of these treatments are based on the Boltzmann equation or
generalizations of it such as Enskog’s equation. In particular the extension
of Enskog’s method to a binary system composed of rigid spherical molecules
was done by H.H. Thorne, although it was never published®.
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On the other hand, Sengers and Cohen? have shown in extreme dctail
how the generalized Boltzmann equation for a one component fluid of hard
spheres fits into the general scheme of non-equilibrium phenomena from the
standpoint of sratistical mechanics.

This paper contains the extension of the previous paper for the case
of a mixture composed of molecules of different species (different masses
and radii of the spheres). In particular, the kinetic equations for such a
binary system of rigid spheres are explicitly obtained.

These kinetic equations are important because they are the starting
point to obtain the transport coefficients for a mixture of dense gases, as
was made by H.H. Thorne. Actually the Thorne kinetic equations for a binary
mixture were never published, although wehave evidence that there is a differ-
ence between them and the result given in this paper.

II. ENSKOG'S EQUATIONS FOR A MIXTURE

Consider a mixture of v components,without chemical reactions among
them, composed by N particles interacting among themselves via potentials
which are spherically symmetric, monotonically decreasing and of finite
range. We shall denote by d‘;,‘ the potential between two molecules of species i
and j.

The first BBGKY equation for this system is

S 04w 2

7

where x; =(v;, q;), v; and g, denoting the velocity and position of amolecule
of the ith species. /. and ;‘t.]. are the one particle and two particles distri-
bution functions respectively, and

RN
7 dg; om, v, aq]. am]. vi

Following the standard procedure due to Bogoliubov3 and Green*

and Cohen® we shall assume that the two-particle distribution can be written
as a time -independent functional of the one particle distribution function.
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Thus, we write

(0)
i = i G Dt 5 1) ¥

(0)
where f:';‘ contains the contribution which arise from binary collisions only.

Thus,

t)fj(xj, 1) (3)

and

2..= lim cxp-—t{.H;.j} cxpf{\!!!.} exp r{.Hj}

& § = o0

where the curly brackets in the exponentials are the Poisson brackets and
H, H and H,. are the hamiltonians of one particle of species 7, of species
I and of two parucles of species 7 and j respecuvely.

If we now introduce a pair correlation functional X,.].(xt. ) % |f[) such
that

kpff(xi‘lef[):é:’jxij(xi‘xjhl) (4)

and we substitute equations (2) and (4) into eq. (1) we get that

3 3
S vt BN o = lzfdx,.e,.j B Uy (xs % 1) 1050 0 £ (55, 0]

(5)

which is a closed equation for the one particle distribution function, provided
we know the explicit dependence of the pair correlation functional X4; on that
function.

Before introducing an additional ansatz which will allow us to obtain
the dependence of Xj on /; andf it is convenient to express the right hand
side of eq. (5) in a more traneparen[ form, valid for rigid spheres.  Calling

Py = Gy~ §; We have that
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:;fdx]. S R ATAYAC YA =§fdv].fdrjifd§ifd§j6£’.

é,‘j X,-]-(ql-,qj,§£,§i|fz)f,-(qi,'f,-,t)f]-(qj,fj,!) 5("1- -fl) S(V].- §j)=l

(6)
For rigid spheres the following relations hold true,
éi;‘ 9% =9; é:’;‘ = gy =
(7)
3G = 5(20)0 v; 6:.]. 3 e S(Za)o v;
where
s = lim exp -t{, H.}
{ — oo 7
Substitution of (7) into (6) yields
I =Izj-dvffdrﬁfd§,fd§j Xij(q;" qs'+'rj,' 7‘5"1‘;:]' ,f[)f"(q,':f,_':t)
- (8)
Lgutr,, L " e - £
* [t £, 00,800 8(v, - £) 8y, - &)
Noticing that
= 4 2 2 = 1 pe2) 24 ((2) 2y 1g(2)
Hy= 2(m o} tm v, )+ = E(SENm,-vi +s@ mv?)=sCLH, (9

we have the property,

{Hi]": SEZD)Q B(V,‘ -5’:)5(0]. = fr)}= {392‘, H” ’ 5(,.2).” S(VI o ‘51,)} =0

which in turn implies the following equation
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( =(y 9 . 0
9,.].5_22,05(v’.—§f)5(v’.-§j)—(v‘. i a—¢)’9195f”;*§,-)5(";"§f)
]

H

Using this result and denoting by gi:. = v]. -v; the relative velocity,
€q. (8) may be written as

L= Iz_fd"jfd'jifdfffdéj X (9 G0, 6,6 IAYACN )

(10)
9

or..

it

% l’.j(qf+ rji":;]',f) gji' 3(.2,),0 5(",‘ —él-)S(Vj ‘"5])

The integrations over the angle dependence associated with the vector
r}.’. are straightforward and are given in the Appendix. The result is

1= zfdvj fd.fl.fdé'jfd’koﬁ 9;;* k [/(o;;k) é(v;-;.)s(v;-gj) -
7

—f(—a‘.jk) B(Vi-.fl.)S(vj —fj)] (11)

where we see appear 0., the distance between / and j particles at collision.
Thus eq. (5) is I]inally cast into the form:

9 .0 _ ) o
é?fi{xi’t)*‘vi é_a“'fi(xi’t)*?jdvjjdkoﬁgji k[X,-]-(Q-,qf"' G;-jk,\’f;v?‘ llg)

* *
[i(9;, v 0 (9, oy kv, 0 - X,-}-(q,-,q,--ozjk, ¥ia ¥ Ifl)

f:-(q’-‘vx-,f)f]-(qi"o':-jk.\f]-,l)] (12)

where an integration over the £’s has been carried out.

Notice that in this expression the corrective-pair correlation functional
X:‘j is still undetermined and an additional assumption is required to extract
from it the kinetic equation.
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Following Sengers and Cohen? we shall assume that the pair corre-
lation functional X:’j is a functional of the same structure as the equilibrium
radial distribution function, but with local thermodynamical parameters; thus

e.)(q,t;r].i) o ¥ = 0y (13)

(
Xi Ngi] ji ij

7'__

This assumption may be easily understood through a very simple
argument.
In equilibrium, eq. (3) reads

ft.(],e) (x;, x; UI(E)) = éij ff(e)(vj)f]'(e)(vj )= fi(e)(vg‘ ) f}'(e)(vj) exp [~ (15:.]. /RT]
and also eq. (2) reduces to

17 o L = 19(w) 10w, exp [- &, /RTIY ;0 47)

Since the radial distribution function in equilibrium g,.(;)(rj:.) is de-

fined by
f,(je)(’:;' x]- 1[1(8)) = ffe)(v!') fj,(e){v]) g,(}e)(fﬂ)
we have that

EXp) [_ gb,‘f/kT] llb,'g:e)( q;, q]')= g,'(je)(rﬁ)

for all ... In the case of rigid spheres the exponential is equal to one for
all physical configurations and thus the two functions are equal. Furthermore ,
since '

WD =B, 9) = Wi 9, B e =D, 9

for r].;. = crf.t. we conclude that
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XE;) = l1b(,_]e)(q1 » q]' = g,—;e)( rij )

and thus the validity of eq. (13) is plausible, not too far from equilibrium.
With this assumption eq. (12) canbe now written in the following way:

9

S8 0y,

9 _ ; 2 . (e) %4
’Fqifi(qi’vi’t)_?:fdvijdkgﬁgﬁ k [gij (qi+7k’aﬁ)

*® 5 00
TAC TRV AC AR v;,t) = gff)(q,-v %k,ogj)f,-(q-, ADIACIEE A AR

It is important to notice that for v =1, a single component system,
this is identical to Enskog’s equation for rigid spheres. For v =2 we get a
set of coupled kinetic equationa which are explicitly given by

2 3 2
‘Fth(ql’vl’t)-'-vl ' E“EA(q]J Vl,t)EjE ljd‘gfdko-z;-gjl * k [gl(je)(ql +
1

o i * * o
t 2K (a0 18t ok v 0 - g8, TR (9, v, 0 /4, 4k v, 0]

Htv . 9

2
= 2 § (e)
2 a—quz(qy szi)"‘j{']fdvjfdko-zjgjz k [32]- (q2+

P

2 ¥ £ (e). _ T
+7k)f2(q2, v (9, o, kv 0 - g,00a, Tl'<)/2(q2,vg,t)f]-(C:szcgjn‘:,v,.,t)

(15)
III. DISCUSSION

These equations could be the starting point of the type of calculation
extended by Thorne for rigid-sphere binary mixtures. Although they are the
extension of Enskog’s equation for a one component gas, it is shown here
how they fit into a more basic scheme of the statistical mechanical theory
of non-equlibrium systems.



Robles-Dominguez and Pina

The derivation of transport coefficients from equations ( 15) for such
systems is well known! although Thorne’s calculations were never publish-
ed. A summary of Thorne's results appears in Chapman & Cowling book.?
By repeating Thorne’s calculation it was possible to determine the kinetic
equations necessary to deduce the results given by Thorne. We found, in

our notation, Thorne’s kinetic equations to be as follows:

3 LA - 20 .
(v )ty /1{"’1*Vlv')‘jélfd"jfd"o}jgj] k

k] 1 Wl
(e(q + T kyf (g, v 01(q +o kv 0)-
g”- 'ql ? jl qu 1" ,',1' q'l 1]' 2 ]'1
~eq -k (g, v, 0fq o kv, 0l
17 15 sl R R e | 1
d ( A e 3 .9 il Vi f) = 22. jdvjdkcrz vk (16)
‘aj.fz LPRACY == a9, Y50 =T 2j 92 A

in * *
[g;§)(q2+_;_fk)fz(qj_,vz,t)fj(qz‘i'ggjk,vf,f)*
-2 - 22kyf (g v, 0f.(q. +0 .k v., )]
£2i'9, =g el g Ypn BLER R T g W 5 B

There is a difference between Thorne’s equations and our set of
coupled equations (15) at the point where one evaluates the correlation
functions. This small difference influences all of the Thorne’s calculations
for transport coefficients. Some pedagogical and fine parts of this work are

worth considering but this will be the subject of a forthcoming paper®.
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RESUMEN

La ecuacién cinética de Enskog se generaliza a una mezcla de ga-
ses moderadamente densos introduciendo el mismo tipo de ansatz usado al-
gunos anos por Sengers y Cohen para un fluido simple de esferas rigidas. Se
encontré una diferencia entre nuestras ecuaciones y las ecuaciones cinéti-
cas de Thorne.
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APPENDIX

Consider the integral given in eq. (10) namely

1 IIEIdV]fdfﬂfdfzId-f] Xij(qi’qj+rji ,fi,é} |f;)f,-(q,-,§,-,t)

119,60 9 9 5@ B0, - £) 50y, - £)
it

First consider the integral over Fiis namely

INVERSE COLLISION
Qi

*
—

FIGURE —~ A - |
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"= fdr].i S(rﬂ.) 9, gﬁ_s(_z) S(V!. - fz.)é(vj -£)

r.. > "7

1t

Introducing cylindrical coordinates (b, @, /) chosen so that the /axis
is in the direction of 9. (see figure A.1) we have that

1'= J[fbdbdydi 3(r; (b, ¢, 1)) g, %[_ s2) 8y - §) 8(v, - )

In figure A.1 we show two collisions between the rigid spheres 7 and
j and these are denoted in the same manner as Chapman and Cowling .
The behaviour of the integrand along the /-axis can be obtained from

the figure so that
[ 8y, =€) 8(v - &) in(-w<I<L b, )

0 in (1, <I<0,b, @)
(2) _ =

s 8(v; 51.)5(\,]. §].) = <
0 in(0</</ . b, ¢+m)

5(v:—§1.)8(v;-§j) in (1 <I<w, b, i +m)

* * A b il
where v; and v, are the velocities after the collision takes place with
coordinates (12, b, ¢).

Integration over / yields

L= I-I-gji bdbd(p j:B(r;':'([] , b, P +17)) S(V:_ 61) S(V;— éj) =
=3 (r, Uy, b79)) (v, = &) Blv; = &)]

Writing
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where 0. is the radius of the associated sphere we have thart,
’ * *
1'= [dkoyi g, * k [S(o; k) 8(v; = &) 8(v; - &) -
-J(- 0, k) §(v, - &;) 5(v]. - & )]

which is the sought result.



