GENERALIZATION OF THE ENSKOG'S KINETIC EQUATION TO A MIXTURE OF GASES

J. A. Robles-Domínguez and E. Piña
Instituto Mexicano del Petróleo*

(Recibido: agosto 30, 1971)

Abstract

The Enskog's kinetic equation is generalized to a mixture of moderately dense gases by introducing the same type of ansatz used some years ago by Sengers and Cohen for a one component fluid of hard spheres. A difference with Thorne's kinetic equations is pointed out.

I. INTRODUCTION

The calculation of transport properties for moderately dense systems of one or many species of molecules has been extensively dealt with in the literature. All of these treatments are based on the Boltzmann equation or generalizations of it such as Enskog's equation. In particular the extension of Enskog's method to a binary system composed of rigid spherical molecules was done by H.H. Thorne, although it was never published ${ }^{1}$.

[^0]On the other hand, Sengers and Cohen ${ }^{2}$ have shown in extreme detail how the generalized Boltzmann equation for a one component fluid of hard spheres fits into the general scheme of non-equilibrium phenomena from the standpoint of statistical mechanics.

This paper contains the extension of the previous paper for the case of a mixture composed of molecules of different species (different masses and radii of the spheres). In particular, the kinetic equations for such a binary system of rigid spheres are explicitly obtained.

These kinetic equations are important because they are the starting point to obtain the transport coefficients for a mixture of dense gases, as was made by H.H. Thorne. Actually the Thorne kinetic equations for a binary mixture were never published, although we have evidence that there is a difference between them and the result given in this paper.

II. ENSKOG'S EQUATIONS FOR A MIXTURE

Consider a mixture of ν components, without chemical reactions among them, composed by N particles interacting among themselves via potentials which are spherically symmetric, monotonically decreasing and of finite range. We shall denote by $\phi_{i j}$ the potential between two molecules of species i and j.

The first BBGKY equation for this system is

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{i}\left(\boldsymbol{x}_{i}, t\right)+\mathbf{v}_{i} \cdot \frac{\partial}{\partial q_{i}} f_{i}\left(\boldsymbol{x}_{i}, t\right)=\sum_{j} \int d x_{j} \theta_{i j} f_{i j}\left(x_{i}, x_{j}, t\right) \tag{1}
\end{equation*}
$$

where $\boldsymbol{x}_{i}=\left(\boldsymbol{v}_{i}, \boldsymbol{q}_{i}\right), \boldsymbol{v}_{i}$ and \boldsymbol{q}_{i} denoting the velocity and position of a molecule of the i th species. f_{i} and $f_{i j}$ are the one particle and two particles distribution functions respectively, and

$$
\theta_{i j}=\frac{\partial \phi_{i j}}{\partial \boldsymbol{q}_{i}} \cdot \frac{\partial}{\partial m_{i} v_{i}}+\frac{\partial \phi_{i j}}{\partial \boldsymbol{q}_{j}} \cdot \frac{\partial}{\partial m_{j} v_{j}}
$$

Following the standard procedure due to Bogoliubov ${ }^{3}$ and Green ${ }^{4}$ and Cohen ${ }^{5}$ we shall assume that the two-particle distribution can be written as a time-independent functional of the one particle distribution function.

Thus, we write

$$
\begin{equation*}
f_{i j}=f_{i j}^{(0)}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid f_{l}\right) \psi_{i j}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid f_{l}\right) \tag{2}
\end{equation*}
$$

where $f_{i j}^{(0)}$ contains the contribution which arise from binary collisions only. Thus,

$$
\begin{equation*}
f_{i j}^{(0)}\left(x_{i}, x_{j} \mid f_{l}\right)=\infty_{i j} f_{i}\left(x_{i}, t\right) f_{j}\left(x_{j}, t\right) \tag{3}
\end{equation*}
$$

and

$$
\mathscr{A}_{i j}=\lim _{t \rightarrow \infty} \exp -t\left\{, H_{i j}\right\} \exp t\left\{, H_{i}\right\} \exp t\left\{, H_{j}\right\}
$$

where the curly brackets in the exponentials are the Poisson brackets and H_{i}, H_{j} and $H_{i j}$ are the hamiltonians of one particle of species i, of species j, and of two particles of species i and j respectively.

If we now introduce a pair correlation functional $X_{i j}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid f_{l}\right)$ such that

$$
\begin{equation*}
\psi_{i j}\left(x_{i}, x_{j} \mid f_{l}\right)=\&_{i j} \chi_{i j}\left(x_{i}, x_{j} \mid f_{l}\right) \tag{4}
\end{equation*}
$$

and we substitute equations (2) and (4) into eq. (1) we get that

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{i}\left(\boldsymbol{x}_{i}, t\right)+\boldsymbol{v}_{i} \cdot \frac{\partial}{\partial \boldsymbol{q}_{i}} f_{i}\left(\boldsymbol{x}_{i}, t\right)=\sum_{j} \int d \boldsymbol{x}_{j} \theta_{i j} \dot{\&}_{i j}\left[X_{i j}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid f_{l}\right) f_{i}\left(\boldsymbol{x}_{i}, t\right) f_{j}\left(\boldsymbol{x}_{j}, t\right)\right] \tag{5}
\end{equation*}
$$

which is a closed equation for the one particle distribution function, provided we know the explicit dependence of the pair correlation functional $X_{i j}$ on that function.

Before introducing an additional ansatz which will allow us to obtain the dependence of $\chi_{i j}$ on f_{i} and f_{j} it is convenient to express the right hand side of eq. (5) in a more transparent form, valid for rigid spheres. Calling $r_{j i}=q_{j}-q_{i}$ we have that
$\sum_{j} \int d x_{j} \theta_{i j} \otimes_{i j}\left[\chi_{i j}\left(x_{i}, x_{j} \mid f_{l}\right) f_{i}\left(x_{i}, t\right) f_{j}\left(x_{j}, t\right)\right]=\sum_{j} \int d v_{j} \int d r_{j i} \int d \xi_{i} \int d \xi_{j} \theta_{i j}$
$\mathscr{ぬ}_{i j} \chi_{i j}\left(q_{i}, q_{j}, \xi_{i}, \xi_{j} \mid f_{l}\right) f_{i}\left(q_{i}, \xi_{i}, t\right) f_{j}\left(\boldsymbol{q}_{j}, \xi_{j}, t\right) \delta\left(v_{i}-\xi_{i}\right) \delta\left(v_{j}-\xi_{j}\right)=I$

For rigid spheres the following relations hold true,

$$
\begin{array}{ll}
\oiint_{i j} q_{i}=q_{i} & \&_{i j} q_{j}=q_{j}=q_{i}+r_{j i} \\
\&_{i j} v_{i}=s_{-\infty}^{(2)} v_{i} & \&_{i j} v_{j}=s_{-\infty}^{(2)} v_{j}
\end{array}
$$

where

$$
s_{-\infty}^{(2)}=\lim _{t \rightarrow \infty} \exp -t\left\{, H_{i j}\right\}
$$

Substitution of (7) into (6) yields

$$
I=\sum_{j} \int d v_{j} \int d r_{j i} \int d \xi_{i} \int d \xi_{j} X_{i j}\left(q_{i}, q_{i}+r_{j i}, \xi_{i}, \xi_{j} \mid f_{l}\right) f_{i}\left(q_{i}, \xi_{i}, t\right)
$$

$$
\begin{equation*}
\times f_{j}\left(\mathbf{a}_{i}+r_{j i}, \xi_{j}, t\right) \theta_{i j} s_{-\infty}^{(2)} \delta\left(v_{i}-\xi_{i}\right) \delta\left(v_{j}-\xi_{j}\right) \tag{8}
\end{equation*}
$$

Noticing that

$$
\begin{equation*}
H_{i j}=\frac{1}{2}\left(m_{i} v_{i}^{2}+m_{j} v_{j}^{2}\right)+\phi_{i j}=\frac{1}{2}\left(s_{-\infty}^{(2)} m_{i} v_{i}^{2}+s_{-\infty}^{(2)} m_{j} v_{j}^{2}\right)=s_{-\infty}^{(2)} H_{i j} \tag{9}
\end{equation*}
$$

we have the property,

$$
\left\{\boldsymbol{H}_{i j}, \boldsymbol{s}_{-\infty}^{(2)} \delta\left(\boldsymbol{v}_{i}-\xi_{i}\right) \delta\left(\boldsymbol{v}_{j}-\xi_{j}\right)\right\}=\left\{\boldsymbol{s}_{-\infty}^{(2)} \boldsymbol{H}_{i j}, \boldsymbol{s}_{-\infty}^{(2)} \delta\left(v_{j}-\xi_{j}\right)\right\}=0
$$

which in turn implies the following equation

$$
\theta_{i j} s_{-\infty}^{(2)} \delta\left(v_{i}-\xi_{i}\right) \delta\left(v_{j}-\xi_{j}\right)=\left(v_{i} \cdot \frac{\partial}{\partial q_{i}}+v_{j} \cdot \frac{\partial}{\partial q_{j}}\right) s_{-\infty}^{(2)} \delta\left(v_{i}-\xi_{i}\right) \delta\left(v_{j}-\xi_{j}\right)
$$

Using this result and denoting by $g_{j i}=v_{j}-v_{i}$ the relative velocity, eq. (8) may be written as

$$
\begin{align*}
& I=\sum_{j} \int d v_{j} \int d r_{j i} \int d \xi_{i} \int d \xi_{j} X_{i j}\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{i}+r_{j i}, \xi_{i}, \xi_{j} \mid f_{l}\right) f_{i}\left(\boldsymbol{q}_{i}, \xi_{i}, t\right) \\
& \times f_{j}\left(\boldsymbol{q}_{i}+r_{j i}, \xi_{j}, t\right) \boldsymbol{g}_{j i} \cdot \frac{\partial}{\partial r_{j i}} s_{-\infty}^{(2)} \delta\left(\mathbf{v}_{i}-\xi_{i}\right) \delta\left(\mathbf{v}_{j}-\xi_{j}\right) \tag{10}
\end{align*}
$$

The integrations over the angle dependence associated with the vector $r_{j i}$ are straightforward and are given in the Appendix. The result is

$$
\begin{align*}
I & =\sum_{j} \int d v_{j} \int d \xi_{i} \int d \xi_{j} \int d k \sigma_{i j}^{2} g_{j i} \cdot k\left[f\left(\sigma_{i j} k\right) \delta\left(v_{i}^{*}-\xi_{i}\right) \delta\left(v_{j}^{*}-\xi_{j}\right)-\right. \\
& \left.-f\left(-\sigma_{i j} k\right) \delta\left(v_{i}-\xi_{i}\right) \delta\left(v_{j}-\xi_{j}\right)\right] \tag{11}
\end{align*}
$$

where we see appear $\sigma_{i j}$, the distance between i and j particles at collision.
Thus eq. (5) is finally cast into the form:

$$
\begin{gather*}
\frac{\partial}{\partial t} f_{i}\left(x_{i}, t\right)+v_{i} \cdot \frac{\partial}{\partial q_{i}} f_{i}\left(x_{i}, t\right)=\sum_{j} \int d v_{j} \int d k \sigma_{i j}^{2} g_{j i} \cdot k\left[\chi_{i j}\left(q_{i}, q_{i}+\sigma_{i j} k, v_{i}^{*}, v_{j}^{*} \mid f_{l}\right)\right. \\
f_{i}\left(q_{i}, v_{i}^{*}, t\right) f_{j}\left(q_{i}+\sigma_{i j} k, v_{j}^{*}, t\right)-\chi_{i j}\left(q_{i}, q_{i}-\sigma_{i j} k, v_{i}, v_{j} \mid f_{l}\right) \\
\left.f_{i}\left(q_{i}, v_{i}, t\right) f_{j}\left(q_{i}-\sigma_{i j} k, v_{j}, t\right)\right] \tag{12}
\end{gather*}
$$

where an integration over the ξ 's has been carried out.
Notice that in this expression the corrective-pair correlation functional $X_{i j}$ is still undetermined and an additional assumption is required to extract from it the kinetic equation.

Following Sengers and Cohen ${ }^{2}$ we shall assume that the pair correlation functional $X_{i j}$ is a functional of the same structure as the equilibrium radial distribution function, but with local thermodynamical parameters; thus

$$
\begin{equation*}
\chi_{i j} \simeq g_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{q}, t ; r_{j i}\right) \quad \text { for } \quad r_{j i}=\sigma_{i j} \tag{13}
\end{equation*}
$$

This assumption may be easily understood through a very simple argument.

In equilibrium, eq. (3) reads

$$
f_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid f_{l}^{(\boldsymbol{e})}\right)=\mathscr{\infty}_{i j} f_{i}^{(\boldsymbol{e})}\left(v_{i}\right) f_{j}^{(\boldsymbol{e})}\left(v_{j}\right)=f_{i}^{(\boldsymbol{e})}\left(v_{i}\right) f_{j}^{(\boldsymbol{e})}\left(v_{j}\right) \exp \left[-\phi_{i j} / k T\right]
$$

and also eq. (2) reduces to
$f_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid f_{l}^{(\boldsymbol{e})}\right)=f_{i}^{(\boldsymbol{e})}\left(v_{i}\right) f_{j}^{(\boldsymbol{e})}\left(v_{j}\right) \exp \left[-\phi_{i j} / k T\right] \psi_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}\right)$

Since the radial distribution function in equilibrium $g_{i j}^{(\boldsymbol{e})}\left(r_{j i}\right)$ is defined by

$$
f_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid f_{l}^{(\boldsymbol{e})}\right)=f_{i}^{(\boldsymbol{e})}\left(v_{i}\right) f_{j}^{(\boldsymbol{e})}\left(v_{j}\right) g_{i j}^{(\boldsymbol{e})}\left(r_{j i}\right)
$$

we have that

$$
\exp \left[-\phi_{i j} / k T\right] \psi_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}\right)=g_{i j}^{(\boldsymbol{e})}\left(r_{j i}\right)
$$

for all $r_{j i}$. In the case of rigid spheres the exponential is equal to one for all physical configurations and thus the two functions are equal. Furthermore, since

$$
\chi_{i j}^{(\boldsymbol{e})}=\oint_{i j} \psi_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}\right)=\psi_{i j}^{(\boldsymbol{e})}\left(\otimes_{i j} q_{i}, \oint_{i j} q_{j}\right)=\psi_{i j}^{(\boldsymbol{e})}\left(q_{i}, \boldsymbol{q}_{j}\right)
$$

for $r_{j i}=\sigma_{j i}$ we conclude that

$$
\chi_{i j}^{(\boldsymbol{e})}=\psi_{i j}^{(\boldsymbol{e})}\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}\right)=g_{i j}^{(\boldsymbol{e})}\left(r_{i j}\right)
$$

and thus the validity of eq. (13) is plausible, not too far from equilibrium.
With this assumption eq. (12) can be now written in the following way:

$$
\begin{aligned}
& \frac{\partial}{\partial t} f_{i}\left(q_{i}, v_{i}, t\right)+v_{i} \cdot \frac{\partial}{\partial q_{i}} f_{i}\left(\boldsymbol{q}_{i}, \mathbf{v}_{i}, t\right)=\sum_{j} \int d \mathbf{v}_{j} \int d \mathbf{k} \sigma_{i j}^{2} \boldsymbol{g}_{j i} \cdot k\left[g_{i j}^{(e)}\left(q_{i}+\frac{\sigma_{i i}}{2} k, \sigma_{i j}\right)\right. \\
& \left.f_{i}\left(\boldsymbol{q}_{i}, v_{i}^{*}, t\right) f_{j}\left(\boldsymbol{q}_{i}+\sigma_{i j} k, v_{j}^{*}, t\right)-g_{i j}^{(\boldsymbol{e})}\left(q_{i}-\frac{\sigma_{i i}}{2} k, \sigma_{i j}\right) f_{i}\left(\boldsymbol{q}_{i}, v_{i}, t\right) f_{j}\left(\boldsymbol{q}_{i}-\sigma_{i j} k, v_{j}, t\right)\right] .
\end{aligned}
$$

It is important to notice that for $\nu=1$, a single component system, this is identical to Enskog's equation for rigid spheres. For $\nu=2$ we get a set of coupled kinetic equationa which are explicitly given by

$$
\begin{aligned}
& \frac{\partial}{\partial t} f_{1}\left(\boldsymbol{q}_{1}, \mathbf{v}_{1}, t\right)+\mathbf{v}_{1} \cdot \frac{\partial}{\partial \boldsymbol{q}_{1}} f_{1}\left(\boldsymbol{q}_{1}, \mathbf{v}_{1}, t\right)=\sum_{j=1}^{2} \int d \mathbf{v}_{j} \int d k \sigma_{i j}^{2} \boldsymbol{g}_{j 1} \cdot k\left[g _ { 1 j } ^ { (e) } \left(\boldsymbol{q}_{1}+\right.\right. \\
& \left.\left.+\frac{\sigma_{11}}{2} k\right) f_{1}\left(q_{1}, v_{1}^{*}, t\right) f_{j}\left(q_{1}+\sigma_{i j} k, v_{j}^{*}, t\right)-g_{1 j}^{(e)}\left(q_{1}-\frac{\sigma_{11}}{2} k\right) f_{1}\left(q_{1}, v_{1}, t\right) f_{j}\left(q_{1}+\sigma_{i j} k, v_{j}, t\right)\right] \\
& \frac{\partial}{\partial t} f_{2}\left(\boldsymbol{q}_{2}, \mathbf{v}_{2}, t\right)+\mathbf{v}_{2} \cdot \frac{\partial}{\partial \boldsymbol{q}_{2}} f_{2}\left(\boldsymbol{q}_{2}, \mathbf{v}_{2}, t\right)=\sum_{j=1}^{2} \int d v_{j} \int d k \sigma_{2 j}^{2} \boldsymbol{g}_{\boldsymbol{j}_{2}} \cdot k\left[g _ { 2 j } ^ { (e) } \left(\boldsymbol{q}_{2}+\right.\right. \\
& \left.+\frac{\sigma_{22}}{2} k\right) f_{2}\left(\boldsymbol{q}_{2}, v_{2}^{*}, t\right) f_{j}\left(\boldsymbol{q}_{2}+\sigma_{2 j} k, v_{j}^{*}, t\right)-g_{2 j}^{(e)}\left(\boldsymbol{q}_{2}-\frac{\sigma_{22}}{2} k\right) f_{2}\left(\boldsymbol{q}_{2}, v_{2}, t\right) f_{j}\left(\boldsymbol{q}_{2}+\sigma_{2 j} k, v_{j}, t\right)
\end{aligned}
$$

III. DISCUSSION

These equations could be the starting point of the type of calculation extended by Thorne for rigid-sphere binary mixtures. Although they are the extension of Enskog's equation for a one component gas, it is shown here how they fit into a more basic scheme of the statistical mechanical theory of non-equlibrium systems.

The derivation of transport coefficients from equations (15) for such systems is well known ${ }^{1}$ although Thorne's calculations were never published. A summary of Thorne's results appears in Chapman \& Cowling book. ${ }^{1}$ By repeating Thorne's calculation it was possible to determine the kinetic equations necessary to deduce the results given by Thorne. We found, in our notation, Thorne's kinetic equations to be as follows:

$$
\begin{align*}
& \frac{\partial}{\partial t} f_{1}\left(q_{1}, v_{1}, t\right)+v_{1} \cdot \frac{\partial}{\partial q_{1}} f_{1}\left(q_{1}, v_{1}, t\right)=\sum_{j=1}^{2} \int d v_{j} \int d k \sigma_{1 j}^{2} g_{j 1} \cdot k \\
& {\left[g_{1 j}^{(\boldsymbol{e})}\left(\boldsymbol{q}_{1}+\frac{\sigma_{i j}}{2} k\right) f_{1}\left(\boldsymbol{q}_{1}, v_{1}^{*}, t\right) f_{j}\left(\boldsymbol{q}_{1}+\sigma_{1 j} k, v_{j}^{*}, t\right)-\right.} \\
& \left.-g_{1 j}^{(e)}\left(q_{1}-\frac{\sigma_{11}}{2} k\right) f_{1}\left(q_{1}, v_{1}, t\right) f_{j}\left(q_{1}+\sigma_{1 j} k, v_{j}, t\right)\right] . \\
& \frac{\partial}{\partial t} f_{2}\left(\boldsymbol{q}_{2}, \mathbf{v}_{2}, t\right)+\mathbf{v}_{2} \cdot \frac{\partial}{\partial \boldsymbol{q}_{2}} f_{2}\left(\boldsymbol{q}_{2}, \mathbf{v}_{2}, t\right)=\sum_{j=1}^{2} \int d \mathbf{v}_{j} \int d k \sigma_{2 j}^{2} g_{j_{2}} \cdot k \tag{16}\\
& {\left[g_{2 j}^{(\boldsymbol{e})}\left(\boldsymbol{q}_{2}+\frac{\sigma_{j j}}{2} k\right) f_{2}\left(\boldsymbol{q}_{2}, v_{2}^{*}, t\right) f_{j}\left(\boldsymbol{q}_{2}+\sigma_{2 j} k, v_{j}^{*}, t\right)-\right.} \\
& \left.-g_{2 j}^{(\boldsymbol{e})}\left(\mathbf{q}_{2}-\frac{\sigma_{22}}{2} \boldsymbol{k}\right) f_{2}\left(\boldsymbol{q}_{2}, \mathbf{v}_{2}, t\right) f_{j}\left(\boldsymbol{q}_{2}+\sigma_{2 j} \boldsymbol{k}, \boldsymbol{v}_{j}, t\right)\right] .
\end{align*}
$$

There is a difference between Thorne's equations and our set of coupled equations (15) at the point where one evaluates the correlation functions. This small difference influences all of the Thorne's calculations for transport coefficients. Some pedagogical and fine parts of this work are worth considering but this will be the subject of a forthcoming paper ${ }^{6}$.

ACKNOWLEGEMENT

The authors are much indebted to Professor L. S. García-Colin for suggesting this problem and for many stimulating discussions.

REFERENCES

1. Chapman, S. and Cowling, T. G., The Mathematical Theory of NonUniform Gases (Cambridge University Press, 1970).
2. Sengers, J. V. and Cohen, E. G. D., Physica 27 (1961) 230.
3. Bogoliubov, N. N., Studies in Statistical Mechanics, Vol. I
(North Holland Publishing Co., Amsterdam 1962).
4. Green, M. S. , J. Chem. Phys. 25 (1956) 836; Physica 24 (1958) 393.
5. Cohen, E.G.D., Physica 28 (1962) 1025, 1045 . J. Math. Phys. 4 (1963) 183.
6. Barajas, L., Piña, E., García-Colín, L. S., to be published.

RESUMEN

La ecuación cinética de Enskog se generaliza a una mezcla de gases moderadamente densos introduciendo el mismo tipo de ansatz usado algunos años por Sengers y Cohen para un fluído simple de esferas rígidas. Se encontró una diferencia entre nuestras ecuaciones y las ecuaciones cinéticas de Thorne.

APPENDIX

Consider the integral given in eq. (10) namely

$$
I=\sum_{j} \int d \mathbf{v}_{j} \int d r_{j i} \int d \xi_{i} \int d \xi_{j} X_{i j}\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}+r_{j i}, \xi_{i}, \xi_{j} \mid f_{l}\right) f_{i}\left(\boldsymbol{q}_{i}, \xi_{i}, t\right)
$$

$\times f_{j}\left(\boldsymbol{q}_{j}, \xi_{j}, t\right) \boldsymbol{g}_{j i} \cdot \frac{\partial}{\partial \mathbf{r}_{j i}} s_{-\infty}^{(2)} \delta\left(\mathbf{v}_{i}-\xi_{i}\right) \delta\left(\mathbf{v}_{j}-\xi_{j}\right)$

First consider the integral over $\boldsymbol{r}_{j i}$, namely

$$
I^{\prime}=\int d r_{j i} \mathcal{F}\left(r_{j i}\right) g_{j i} \cdot \frac{\partial}{\partial r_{j i}} s_{-\infty}^{(2)} \delta\left(v_{i}-\xi_{i}\right) \delta\left(v_{j}-\xi_{j}\right)
$$

Introducing cylindrical coordinates (b, φ, l) chosen so that the l axis is in the direction of $g_{j i}$ (see figure A.1) we have that

$$
I^{\prime}=\iiint b d b d \varphi d l l^{\prime}\left(r_{j i}(b, \varphi, l)\right) g_{j i} \frac{\partial}{\partial l} s_{-\infty}^{(2)} \delta\left(\mathbf{v}_{i}-\xi_{i}\right) \delta\left(\mathbf{v}_{j}-\xi_{j}\right)
$$

In figure A.l we show two collisions between the rigid spheres i and j and the se are denoted in the same manner as Chapman and Cowling ${ }^{1}$.

The behaviour of the integrand along the l-axis can be obtained from the figure so that

$$
s_{-\infty}^{(2)} \delta\left(\mathbf{v}_{i}-\xi_{i}\right) \delta\left(\mathbf{v}_{j}-\xi_{j}\right)=\left\{\begin{array}{cl}
\delta\left(\mathbf{v}_{i}-\xi_{i}\right) \delta\left(\mathbf{v}_{j}-\xi_{j}\right) & \text { in }\left(-\infty<l<l_{2}, b, \varphi\right) \\
0 & \text { in }\left(l_{2}<l<0, b, \varphi\right) \\
0 & \text { in }\left(0<l<l_{1}, b, \varphi+\pi\right) \\
\delta\left(v_{i}^{*}-\xi_{i}\right) \delta\left(v_{j}^{*}-\xi_{j}\right) & \text { in }\left(l_{1}<l<\infty, b, \varphi+\pi\right)
\end{array}\right.
$$

where v_{i}^{*} and v_{j}^{*} are the velocities after the collision takes place with coordinates $\left(l_{2}{ }^{j}, b, \varphi\right)$.

Integration over l yields

$$
\begin{aligned}
I^{\prime}=\iint g_{j i} b d b d \varphi & {\left[\mathcal{F}\left(\boldsymbol{r}_{j i}\left(l_{1}, b, \varphi+\pi\right)\right) \delta\left(\mathbf{v}_{i}^{*}-\xi_{i}\right) \delta\left(\mathbf{v}_{j}^{*}-\xi_{j}\right)-\right.} \\
& \left.-\mathcal{F}\left(r_{j i}\left(l_{2}, \dot{b}, \varphi\right)\right) \delta\left(\mathbf{v}_{i}-\xi_{i}\right) \delta\left(\mathbf{v}_{j}-\xi_{j}\right)\right]
\end{aligned}
$$

Writing

$$
r_{j i}\left(l_{2}, b, \varphi\right)=-r_{j i}\left(l_{1}, b, \varphi+\pi\right)=-\sigma_{i j} k
$$

where $\sigma_{i j}$ is the radius of the associated sphere we have that,

$$
\begin{aligned}
I^{\prime} & =\int d k \sigma_{i j}^{2} g_{j i} \cdot k\left[\mathcal{F}\left(\sigma_{i j} k\right) \delta\left(v_{i}^{*}-\xi_{i}\right) \delta\left(v_{j}^{*}-\xi_{j}\right)-\right. \\
& \left.-\mathcal{F}\left(-\sigma_{i j} k\right) \delta\left(v_{i}-\xi_{i}\right) \delta\left(v_{j}-\xi_{j}\right)\right]
\end{aligned}
$$

which is the sought result.

[^0]: *Address: Av. Cien Metros N . 500, México 14, D. F., México.

