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Soliton operators in the quantum equivalence of theCP1 and O(3)− σ models
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We discuss some interesting aspects of the well known quantum equivalence between theO(3) − σ andCP1 models in3D, working in
the canonical and in the path integral formulations. We show first that the canonical quantization in the hamiltonian formulation is free
of ordering ambiguities for both models. We use the canonical map between the fields and momenta of the two models and compute the
relevant functional determinant to verify the equivalence between the phase-space partition functions and the quantum equivalence in all
the topological sectors. We also use the explicit form of the map to construct the soliton operator of theO(3) − σ model starting from the
representation of the operator in theCP1 model, and discuss their properties.
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1. Introduction

The non-linearO(3)− σ model is defined by the action

Iσ =
1

2G2
< [∂µnp∂

µnp − λ(npnp − 1)] > , (1)

wherenp are components of aO(3) vector field. TheCP1

model is defined in terms of the complex fieldsza, a = 1, 2,
by the action

ICP = g−2 < ∂µz∗ · ∂µz− (z∗ · ∂µz)(∂µz∗ · z) >

− < Λ(|z1|2 + |z2|2 − 1) > , (2)

(λ andΛ are Lagrange multipliers,< > denotes space time
integration,G andg are coupling constants). They provide
in three dimensions, an interesting example of classical and
quantum equivalence between two field theories [1, 2]. Each
one of these models has interest by its applications in high
energy physics, condensed matter physics and statistical me-
chanics. This interest rests partially in the topological prop-
erties of these models, notably, the existence of soliton solu-
tions and identically conserved topological currents. For the
sigma model the topological current is given by,

jµ
σ =

1
8π

~n · (εµνρ∂ν~n× ∂ρ~n) , (3)

and the charge by

Qσ =
1
8π

∫
~n · (εij∂i~n× ∂j~n)d2x , (4)

where we introduced vector like notation~n(x) for the σ
model variables. To define the topological current for the
CP1 model one makes use of its gauge invariance. This is
made explicit writing the Lagrangian in terms of a composite
gauge field

Aµ =
∂µz∗·z− z∗·∂µz

2i
= Im(∂µz∗·z) , (5)

and the corresponding covariant derivativeDµz = ∂µz +
iAµz, as

LCP =g−2
[
(Dµz)∗ · (Dµz)−Λ(|z1|2 + |z2|2 − 1)

]
. (6)

The topological current is then,

jµ
CP =

1
2πi

εµνρ(Dνz)∗ ·(Dρz) , (7)

and the charge

QCP =
1

2πi

∫
εij(Diz)∗· (Djz)d2x . (8)

Classically, the equivalence between the models is provided
by the map

~n = z†~σz , (9)

where~σ are Pauli’s matrices. Due to the identityσpabσpcd

= δabδcd − 2εacεbd, one finds thatnpnp = (z · z)2 = 1 so
that the constraints are equivalent. One may also identify the
Lagrangians, the topological currents, the charges and the so-
lutions of both models. In particular the relation between the
solitonic solutions in each model has been discussed thor-
oughly in the literature [3].

Quantum equivalence of these models has also been stud-
ied in detail and used routinely in applications to critical phe-
nomena and condensed matter physics. This is done usu-
ally [4] in the Lagrangian path integral approach, where the
equivalence of the partitions functions can be easily asserted
up to an arbitrary factor. Although if one is careful this does
not affect the analysis of the physics of the systems, it is
worthwhile to improve the analysis working in the Hamil-
tonian formulation which have been shown useful in the case
of other topologically non trivial models [5,6].

In the canonical approach the structure of the constraints
and the quantum equivalence of the systems are more in-
volved, since for theO(3) − σ model one has three real
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fields with one constraint, and for theCP1 model two com-
plex fields and only a real constraint. The analysis of both
systems using Dirac’s method [7] was presented in Ref. 8
(see also [9] for a discussion of the more generalCP (n− 1)
model) . It was shown that to establish the canonical equiva-
lence between them, Eq. (9) should be complemented with a
corresponding relation for the momenta, which emerge from
the procedure. This is reviewed in the next section, where
we show how after quantization, the hermiticity requirement
solves the operator ordering ambiguities. Since some of the
constraints in both models are of second class, a rigorous ap-
proach for the equivalence of the partitions functions should
be pursued starting from the Senjanovic-Fadeev-Popov path
integral [10]. We develop this point of view and present the
details of this computation in Sec. 3, which of course con-
firms the result of the Lagrangian approach. Finally in Sec. 4
we discuss how the canonical equivalence between the phase
space variables of the two models can also be used to estab-
lish the equivalence of the disorder soliton like operators of
each formulation.

2. Canonical Quantization

Let us first consider the quantization of theO(3)− σ model.
The momenta computed from (1) are given by,

πp(x) =
δL

δṅp
= ṅp . (10)

We use vector like notation{~n(x), ~π(y)} for the phase space
variables, takeG = 1 and write the Hamiltonian in the form

Hσ=
∫ (

1
2
‖~π‖2+1

2
‖∂i~n‖2+1

2
λ[‖~n‖2 − 1]

)
d2x . (11)

Time conservation of the constraint

θ1 = ‖~n(x)‖2 − 1 = 0 , (12)

implies
θ2 = ~n · ~π = 0 . (13)

Conservation of this constraint allows to fix the Lagrange
multiplier λ = −|~π|2 − ~n · ∇2~n. These constraints are
second class. Dirac Brackets between phase space func-
tions ξ andη of a system with second class constraintsθα

are defined by{ξ, η}D = {ξ, η} − {ξ, θα}cαβ{θβ , η} with
cαβ{θβ , θδ} = δαδ. The relevant matrix necessary to com-
pute the Dirac brackets is given by,

cαβ = {θα(x), θβ(y)}−1

=
(

0 −δ2(~x− ~y)
δ2(~x− ~y) 0

)
, (14)

with α, β = 1, 2. The Dirac algebra for the system is [8],

{np(x), nq(y)}D = 0 ,

{np(x), πq(y)}D = [δpq − np(x)nq(y)]δ2(~x− ~y) ,

{πp(x), πq(y)}D = [πp(x)nq(y)− πq(y)np(x)]δ2(~x− ~y).

At the quantum level we face ordering ambiguities. Checking
for consistence we obtain for the commutators of the quan-
tum operators two possible orderings

[Πp(x),Πq(y)]=

{
i[Πp(x)Nq(y)−Πq(y)Np(x)]δ2(~x−~y)

i[Nq(y)Πp(x)−Np(x)Πq(y)]δ2(~x−~y)
,

which (using[Np(x), Nq(y)] = 0), are equivalent. Also it is
derived that

~N(x) · ~Π(y)− ~Π(y) · ~N(x) = 2iδ2(~x− ~y) , (15)

which implies an ambiguity in the order of the constraint
~n · π = 0. Using hermiticy ofNp and Πq the constraint
is fixed to be

~N · ~Π + ~Π · ~N = 0 . (16)

The constraintNpNp = I presents no ordering problems.
We now turn our attention to theCP1 model. Associated

to gauge invariance, the system has a first class constraint.
Takingg = 1, the canonical momenta are

πza
= ż∗a − (ż∗ ·z)z∗a , πz∗a = ża − (ż · z∗)za . (17)

Observe that sinceπz∗a = π∗za
, we may represent the vari-

ables in the compact form{z, z∗, π, π∗}, wherez = {za}
andπ = {πa}, a = 1, 2. The latter are distinguished from
σ model momenta by the indices which are taken from the
first letters of the alphabet. When necessary as in Eq. (37)
an explicit superscript is used. Writing the equation forπ∗a in
the formπ∗a = (δab − zaz∗b )żb and taking into account that
(δab − zaz∗b )zb = 0 we obtain for consistency the constraints
π · z = 0 or equivalentlyπ∗ · z∗ = 0. Choosing real combi-
nations of these we have the constraints

Θ1 = |za|2 − 1 = 0, Θ2 =
1
2
(zaπa + z∗aπ∗a) = 0 .

ϕ = zaπa − z∗aπ∗a . (18)

The Hamiltonian is

HCP =
∫ (|π|2 + |∂iz|2 − |z∗· ∂iz|2

)
d2x . (19)

No further constraints are obtained from Dirac’s procedure.
ϕ is found to be the required first class constraint. For the
second class constraints, the matrix{Θα, Θβ} is given by
the right hand side of (14).

The Dirac algebra is given by [8],

{za(x), zb(y)}D = 0 , {za(x), z∗b (y)}D = 0 ,

{za(x), πb(y)}D = [δab − 1
2
za(x)z∗b (y)]δ2(~x− ~y) ,

{za(x), π∗b (y)}D = −1
2
za(x)zb(y)δ2(~x− ~y) ,

{πa(x), πb(y)}D =
1
2
[πa(x)z∗b (y)− πb(y)z∗a(x)]δ2(~x− ~y) ,

{πa(x), π∗b (y)}D =
1
2
[πa(x)zb(y)− z∗a(x)π∗b (y)]δ2(~x− ~y) .

Rev. Mex. Fis.64 (2018) 36–41



38 J. STEPHANY AND M. VOLLMANN

The commutators associated to the first three relations above
present no ordering problems. For the fourth, checking for
consistency and hermiticity we are lead to the following two
equivalent options

[Πa(x), Πb(x)]=

{
i
2 [Πa(x)Z∗b (y)−Πb(y)Z∗a(x)]δ2(~x−~y)
i
2 [Z∗b (y)Πa(x)−Z∗a(x)Πb(y)]δ2(~x−~y)

,

Also, sinceZ∗a andΠ∗a are the hermitian conjugates ofZa and
Πa using the identities[Πa(x), Π†b(y)]† = [Πb(y), Π†a(x)],
the last commutator is written in the alternative forms

[Πa(x),Π†b(y)]=

{
i[Πa(x)Zb(y)−Z†a(x)Π†b(y)]δ2(~x−~y)

i[Zb(y)Πa(x)−Π†b(y)Z†a(x)]δ2(~x−~y)
.

Observing that this relations imply

Za(x)Πa(y)−Πa(y)Za(x) =
3
2
iδ2(~x− ~y) , (20)

the quantum constraints should be taken as combinations of
the symmetric ordered terms

ZaΠa + ΠaZa = 0 Z∗aΠ∗a + Π∗aZ∗a = 0 . (21)

The constraintZ†aZa = I, the topological charge and the
gauge fieldsAi = iZ†a∂iZa which are hermitian are free of
ambiguities.

To establish the canonical quantum equivalence of the
systems it is necessary to complement the map of Eq. (9)
between the fields with a corresponding relation for the mo-
menta [8]. This is obtained classically taking the time deriva-
tive of (9) and using (17) and the fact thatż∗· z + z∗· ż = 0.
It reads,

πi = ṅi = πaσiabzb + z∗aσiabπ
∗
b . (22)

With these relations it can be verified that the Poisson and
Dirac Brackets of any two expressions in one model, maps
into the corresponding ones in the other.

At the quantum level we have to take care of the order
ambiguity present in (22). This is done as before, to end up
with the following equivalent maps between the momentum
operators,

Πi=

{
1
2 (ΠaσiabZb + Z†aσiabΠ

†
b)

1
2 (ZaσibaΠb + Π†aσibaZ†b )

. (23)

They fulfill the commutation relations. The quantum models
are canonically equivalent.

3. Equivalence of the partitions functions

The path integral of a system described by coordinatesqi sub-
ject tos second class constraintsθα, r first class constraints
ϕm and r gauge fixing conditionsχm constructed by Sen-
janovic [10] takes the form

Zσ =
∫

ei/~
∫ T
0 (piq̇i−H(p,q))dtdµ , (24)

where the measure is given by

dµ = DpDq

r∏
n=1

δ(χn)δ(ϕn)| det{χm, ϕp}|

×
s∏

c=1

δ(θc)| det{θα, θβ}|1/2 . (25)

Let us show that this expression gives the same result for
the two models. For theσ model the path integral is affected
by the factordet{θα, θβ} with the constraints given by (12)
and (13) and the Poisson matrix by (14). The eigenvalues
of the matrix are±i and the determinant is1. The partition
function is,

Zσ =
∫

D~nD~πδ(‖~n‖2 − 1)δ(~n · ~π)e<~π·~̇n−Hσ> . (26)

For theCP1 model we have to choose a gauge condition in
order to determine the Fadeev-Popov [11] term. One suit-
able condition is the radiation gaugeχ = ∂iAi = 0. This is
rewritten as

χ =
∇2z∗aza − z∗a∇2za

2i
= 0 . (27)

The factor of the second class constraintsdet{Θα,Θβ} is
again 1. The Poisson brackets ofϕ with Θ1 and Θ2 van-
ish and the remaining Poisson bracket is computed using
∇2(|z|2 − 1) = 0, which implies that

∇2z∗a(x)za(y) + z∗a(y)∇2za(x) = −2|∂iz|2.
The bracket is given by,

{χ(x), ϕ(y)} =
1
2
[|∂iz|2 +∇2

~x]δ(~x− ~y) . (28)

The partition function for theCP1 model is

ZCP1 =
∫

DzDz∗DπDπ∗δ(|z|2 − 1)

× δ

(∇2z∗ · z− z∗ · ∇2z
2i

)
δ

(
z · π + z∗ · π∗

2

)

× δ

(
z · π − z∗ · π∗

2i

) ∣∣∣ det
(

1
2
[|∂iz|2 +∇2]

) ∣∣∣

× exp i〈π · ż + π∗ · ż∗ −HCP 〉 . (29)

To compare we modify the expression (26) introducing two
auxiliary variabless andπs,

Zσ =
∫

D~nD~πD~πsDπsδ(|~n|2 − 1)

× δ(~n · π)δ(s)δ(πs)e〈~π·~̇n−Hσ〉 , (30)

and perform the change of variablesM (~n, ~π, s, πs) ↔
(z,π) defined by,

ni = z∗aσiabzb , πi =
πaσiabzb + z∗aσiabπ

∗
b

2
(31)

s =
∇2z∗aza − z∗a∇2za

2i
, πs =

zaπa − z∗aπ∗a
2i

. (32)
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Theδ functions in (30) map ontoδ functions of the partition function of theCP1 model (29) and the Hamiltonian actions
map into each other. The Jacobian of the transformation isJ = det M with

M =




z∗2 z∗1 z2 z1 0 0 0 0
iz∗2 −iz∗1 −iz2 iz1 0 0 0 0
z∗1 −z∗2 z1 −z2 0 0 0 0

[∇2, z∗1 ]/2i [∇2, z∗2 ]/2i [z1,∇2]/2i [z2,∇2]/2i 0 0 0 0
π2/2 π1/2 π∗2/2 π∗1/2 z2/2 z1/2 z∗2/2 z∗1/2
iπ2/2 −iπ1/2 −iπ∗2/2 iπ∗1/2 −iz2/2 iz1/2 iz∗2/2 −iz∗1/2
π1/2 −π2/2 π∗1/2 −π∗2/2 z1/2 −z2/2 z∗1/2 −z∗2/2
π1/2i π2/2i −π∗1/2i −π∗2/2i z1/2i z2/2i −z∗1/2i −z∗2/2i




δ2(~x− ~y).

Using the block structure ofM we have

|J| =
1
2i

det




z∗2 z∗1 z2 z1

iz∗2 −iz∗1 −iz2 iz1

z∗1 −z∗2 z1 −z2

∇2z∗1 − z∗1∇2 ∇2z∗2 − z∗2∇2 z1∇2 −∇2z1 z2∇2 −∇2z2




× 1
2i

[
1
2

]3

det




z2 z1 z∗2 z∗1
−iz2 iz1 iz∗2 −iz∗1
z1 −z2 z∗1 −z∗2
z1 z2 −z∗1 −z∗2


 .

Using the identity(∇2z∗a)za + z∗a(∇2za) = −2|∂iz|2 we
finally obtain

|J | =
∣∣∣ det

[
− 1

8.(4)
(−4i).4i(|∂iz|2 +∇2)

] ∣∣∣

=
∣∣∣ det

(
1
2
[|∂iz|2 +∇2]

) ∣∣∣ , (33)

which is the Fadeev Popov determinant in (29). This estab-
lishes the quantum equivalence of the theories in the sector
of zero topological charge. The identification of the topolog-
ical charges which is preserved in the quantum theory by the
canonical map, guarantees the quantum equivalence of the
models in all the sectors.

4. Soliton operators

Topological solitons in field theory models are the signa-
ture of a non trivial phase structure of the quantum theory,
with the phase transition being driven by the condensation of
the quantum solitons. Accordingly, soliton operators may be
constructed in quantum field theory [10-12] as a generaliza-
tion of disorder operators in statistical mechanics [15]. To
interpolate between sectors of different topological charge

soliton operators should apply to the field variables the rele-
vant topological behavior of the soliton solutions. For two
dimensional models these ideas allow to recover Mandel-
stam’s operator [16] and the standard results abelian [17]
and non-abelian bosonization [18–20]. They may also be ap-
plied to non-abelian gauge fields [21] and to fermionic cur-
rents [22]. In 3D, soliton operators of abelian gauge theories
have been investigated along this lines [13,14,23,24]. Some
applications of theCP1 model Skyrmions are discussed in
Ref. [25, 26]. Here we use the canonical mapping to con-
struct theσ−O(3) disorder operator from theCP1 operator.

The topological properties of theCP1 Skyrmion are en-
coded in the behavior in space, like infinity and at its center
given by [3],

z(~x)−−−→ρ→∞

(
e−i arg(~x)/2

0

)
z(~x)−−→

ρ→0

(
0

ei arg(~x)/2

)
,

Ai(~x)−−−→ρ→∞
1
2
∂i[arg(~x)] Ai(~x)−−→

ρ→0
− 1

2
∂i[arg(~x)] ,

whereρ is the radial variable andθ(~x) = arctan(x1/x2) ≡
arg(~x). To apply the asymptotic behavior to the fields, the
disorder operatorµ(x) should satisfy the order disorder alge-
bra

µ(x; c)Z1(y) =

{
e−

1
2 i arg(~y−~x)Z1(y)µ(x; c) ~y − ~x /∈ T (c)

Z1(y)µ(x; c) ~y − ~x ∈ T (c)
,

µ(x; c)Z2(y) =

{
Z1(y)µ(x; c) ~y − ~x /∈ T (c)

e
1
2 i arg(~y−~x)Z1(y)µ(x; c) ~y − ~x ∈ T (c)

,

µ(x; c)Ai(y) =

{ [
Ai(y) + 1

2∂i arg(~y − ~x)
]
µ(x; c) ~y − ~x /∈ T (c)

[
Ai(y)− 1

2∂i arg(~y − ~x)
]
µ(x; c) ~y − ~x ∈ T (c)

,
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wereT (c) is a spatial region centered in~x whose boundary
is a plane curvec. µ(x, c) is identified to be

µ(~x, t; c) = exp

{
1
2

∫

R2−T~x

[
Z1(~w, t)Π1(~w, t)

−Π†1(~w, t)Z†1(~w, t)
]
arg(~w − ~x)d2 ~w

− 1
2

∫

T~x

[
Z2(~w, t)Π2(~w, t)

−Π†2(~w, t)Z†2(~w, t)
]
arg(~w − ~x)d2 ~w

}
. (34)

For theO(3)−σ model, the direct construction of the dis-
order variable is more complicated to pursue since the topo-
logical properties of the solution depend on the whole space
time configuration. This is overcome by using the canonical
map. In components the map (~n = z†~σz) is

n1 = 2<(z∗1z2) n2 = 2Im(z∗1z2)

n3 = |z1|2 − |z2|2. (35)

Using also thatµ†σ = µ−1
σ , it is shown that[µ(~x), N3(~y] = 0

and the order disorder algebra (34) which is non trivial only
for N1 andN2 is written as,

µσ(~x)N1(~y) = cos(arg(~y − ~x))N1(~y)µσ(~x) ,

µσ(~x)N2(~y) = sin(arg(~y − ~x))N2(~y)µσ(~x) . (36)

It does not depend onT (c). The inverse of the change vari-
ables (31) is

|z1| =
√

1 + n3

2
, |z2| =

√
1− n3

2
,

eiφ =
n1 + in2√

1− n2
3

, z1 = |z1|eiϕ1 ,

z2 = |z2|eiϕ2 , φ = ϕ2 − ϕ1,

πCP
1 =

1
z1

[
πσ

3 +
i

2
(n1π

σ
2 − n2π

σ
1 )

]
,

πCP
2 =

1
z2

[
−πσ

3 −
i

2
(n1π

σ
2 − n2π

σ
1 )

]
. (37)

Substituting this in the classical expression of (34) and taking
into account the ordering issues for the quantum operators al-
ready discussed we end up with

µσ(~x, t) = exp

{
i

∫

R2

[
N1(~y, t)Π2(~y, t)

−Π1(~y, t)N2(~y, t)
]
arg(~y − ~x)d2y

}
, (38)

which again does not depend onT (c). This operator satisfies
the order disorder algebra (36).

5. Conclusion

In this paper we use the complete canonical map between
the Hamiltonians descriptions which results from applying
Dirac’s method [8], of theO(3)−σ model and theCP1 model
in 3D and show that the quantum theory is free of ordering
ambiguities. We demonstrate, by exhibiting the explicit func-
tional change of variables for the path integral and comput-
ing the Jacobian determinant, that the phase space partition
functions of the models computed using the complete Sen-
janovic’s construction, are identical, as expected. Finally, we
apply the results of the canonical equivalence to construct
theO(3)− σ soliton disorder operator starting from the cor-
responding operator of theCP1 model and verify that it sat-
isfies the defining order disorder algebra.
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