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Soliton operators in the quantum equivalence of the”’ P, and O(3) — o models
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We discuss some interesting aspects of the well known quantum equivalence betwékf)thec and C' P, models in3D, working in

the canonical and in the path integral formulations. We show first that the canonical quantization in the hamiltonian formulation is free
of ordering ambiguities for both models. We use the canonical map between the fields and momenta of the two models and compute the
relevant functional determinant to verify the equivalence between the phase-space partition functions and the quantum equivalence in all
the topological sectors. We also use the explicit form of the map to construct the soliton operato®¢8 the o model starting from the
representation of the operator in the? model, and discuss their properties.

Keywords: Soliton quantization; skyrmions.
PACS: 11.10.Ef; 11.10.Lm

1. Introduction and the corresponding covariant derivatidgz = 0,z +
1A, z, as
The non-lineai0(3) — o model is defined by the action g
Lep=g~* [(Dyz)" - (D"2)=A(|z1]* + [22]* = 1)] . (6)

i < [Ounpdtng — A(npny — 1)) >, )

2G?
wheren, are components of @(3) vector field. TheC'P,

The topological current is then,

model is defined in terms of the complex fields a« = 1, 2, o= L.e"’””(D,,z)*(Dpz) 7 @
by the action 2me
ICP = 972 < 8MZ* Mg — (Z* . auz)(aﬂz* . Z) > and the Charge
1
- < A(|Zl|2 + |Z2‘2 - 1) >, (2) QC’P = % /Eij(DiZ)*' (DjZ)dQ.%‘ . (8)

(A and A are Lagrange multipliersy > denotes space time
integration,G andg are coupling constants). They provide
in three dimensions, an interesting example of classical an . fo
quantum equivalence between two field theories [1, 2]. Each n=zoz, ©)

one of these models has interest by its applications in higyheres are Pauli’s matrices. Due to the identi#yq,oped
energy physics, condensed matter physics and statistical me- §,, 5., — 2¢,.€4, One finds thaty,n, = (z-2)> =1 so0
chanics. This interest rests partially in the topological propthat the constraints are equivalent. One may also identify the
erties of these models, notably, the existence of soliton solu-agrangians, the topological currents, the charges and the so-
tions and identically conserved topological currents. For thgutions of both models. In particular the relation between the

Classically, the equivalence between the models is provided
By the map

sigma model the topological current is given by, solitonic solutions in each model has been discussed thor-
1 oughly in the literature [3].
Jb = Ul (e"POy 1 X Opi) ) Quantum equivalence of these models has also been stud-

ied in detail and used routinely in applications to critical phe-
and the charge by nomena and condensed matter physics. This is done usu-
1 = . o ally [4] in the Lagrangian path integral approach, where the
T L (ei;0511 x Ojit)d 4) equivalence of the partitions functions can be easily asserted
up to an arbitrary factor. Although if one is careful this does
where we introduced vector like notatiof(z) for the o not affect the analysis of the physics of the systems, it is
model variables. To define the topological current for theworthwhile to improve the analysis working in the Hamil-
C' P, model one makes use of its gauge invariance. This igonjan formulation which have been shown useful in the case
made explicit writing the Lagrangian in terms of a compositeof other topologically non trivial models [5, 6].
gauge field In the canonical approach the structure of the constraints
gtz — 7 Oz, . and the quantum equivalence of the systems are more in-
Ay =g =Im(d"z"2), (5)  volved, since for theD(3) — ¢ model one has three real
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fields with one constraint, and for t@P; model two com- At the quantum level we face ordering ambiguities. Checking
plex fields and only a real constraint. The analysis of botHor consistence we obtain for the commutators of the quan-
systems using Dirac’s method [7] was presented in Ref. &um operators two possible orderings

(see also [9] for a discussion of the more genét&(n — 1) : s
model) . It was shown that to establish the canonical equivary (@), TT, ()= i (2) Ny (y) —TLg (y) Ny ()10%(Z— )
lence between them, Eqg. (9) should be complemented with L PR i[Ny (y)IL,(2)— N, (2)11, ()] 62 (Z—7)
corresponding relation for the momenta, which emerge from

the procedure. This is reviewed in the next section, wherdvhich (Using[V, (z), Ny(y)] = 0), are equivalent. Also it is
we show how after quantization, the hermiticity requirementderived that

solves the operator ordering ambiguities. Since some of the ST = SN ois2/m o
constraints in both models are of second class, a rigorous ap- N(z) - T(y) = (y) - N(w) = 2i0°(% — 5 , (15)

proach for the equivalence of the partitions functions shouldyhjch implies an ambiguity in the order of the constraint

be pursued starting from the Senjanovic-Fadeev-Popov path . » — (. Using hermiticy of N, and I, the constraint
integral [10]. We develop this point of view and present thejs fixed to be

c_ietails of this computation in .Sec. 3, which qf course con- N-Ti+II-N=0. (16)
firms the result of the Lagrangian approach. Finally in Sec. 4 . )

we discuss how the canonical equivalence between the phad@€ constrainiV, N, = I presents no ordering problems.
space variables of the two models can also be used to estap- V& NOW turn our attention to the , model. Associated

lish the equivalence of the disorder soliton like operators of® 92uge invariance, the system has a first class constraint.
each formulation. Takingg = 1, the canonical momenta are

)

Moy =4y — (2" 2)2,, T =2,—(2-2")2,. (17)

a

2. Canonical Quantization _ _
Observe that since.- = 7} , we may represent the vari-

Let us first consider the quantization of thg3) — o model. ~ ables in the compact forrfz, z*, 7, w*}, wherez = {z,}

The momenta computed from (1) are given by, andw = {r,}, a = 1,2. The latter are distinguished from
SL o model momenta by the indices which are taken from the
mp(x) = Sh = Ny - (10) first letters of the alphabet. When necessary as in Eq. (37)
P

an explicit superscript is used. Writing the equationspiin
We use vector like notatio{vi(x), 7(y)} for the phase space the formz} = (du, — 2z42; )% and taking into account that
variables, také&r = 1 and write the Hamiltonian in the form (6,5, — 2, 2] )z, = 0 we obtain for consistency the constraints
1 1 1 7 -z = 0 or equivalentlyr* - z* = 0. Choosing real combi-
H(r:/ <2|7?||2+2|<9¢ﬁ||2+2>\[||ﬁ||2 - 1]> d*z. (11)  nations of these we have the constraints
1

Time conservation of the constraint 01 =z>-1=0, 6= 5(zawa +z2m)=0.
01 = ||ﬁ(1‘)“2 -1=0 ’ (12) P = 2qTq — Z;’]‘[‘; . (18)
implies L
The Hamiltonian is
Oo=7 - 7=0 . (13)
Conservation of this constraint allows to fix the Lagrange Hep = / (| |? + |0;2]* — |2* 0;2|*) d*x . (19)
multiplier A\ = —|7|?> — 7 - V?i. These constraints are

second class. Dirac Brackets between phase space funido further constraints are obtained from Dirac’s procedure.
tions & andn of a system with second class constraififs ¢ is found to be the required first class constraint. For the
are defined by{¢,n}p = {&,n} — {£,0a}cap{0s,n} with  second class constraints, the mat{i®,,©3} is given by
cap{0s,0s5} = das. The relevant matrix necessary to com- the right hand side of (14).

pute the Dirac brackets is given by, The Dirac algebra is given by [8],
Cap = {0a(x),05(y)} " {za(2), (1)} = 0, {2a(2), 25 (y)}" =0,
0 —6%(Z -7 1 y L
(pep TCTT) ) @m)” = - @5 R E D),
with o, 6 = 1, 2. The Dirac algebra for the system is [8], (2a(@), T (y)}P = 7520(36)%@)52(% —9,
{np(x),nq(y)}D =0, 1

D= Zra(@)2) (y) — mo(y) 22 (2)]0%(Z — §
() — o — o (e (I E — D). (ral@), M)} = 5 a7 ) ~ )2 @IFE ~ ),
1

{mp(@), ()} = [mp(@)ng(y) = m(WInp(@))0*(@ = ). {ma(@),m;(y)}” = 3 [ma(@)2(y) — 25 (@)ms (1))0% (7 — 7) -
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38 J. STEPHANY AND M. VOLLMANN

The commutators associated to the first three relations above
present no ordering problems. For the fourth, checking for
consistency and hermiticity we are lead to the following two
equivalent options

5[Ma(2) Z5 (y) -1y (y) Z; (2)]6% (Z—7)

LZ; (y)Ha(2)— 2 ()M (y) )62 (Z—7) Let us show that this expression give.s the same result for
, . . . _ the two models. For the model the path integral is affected
Also, s_mceZa gndl‘[_a_ are the herTltlap conjugatesZT; and by the factordet{f,, 8z} with the constraints given by (12)
11, using the identitieslL, (), I (y)]" = [y (y), 1L; ()], and (13) and the Poisson matrix by (14). The eigenvalues

dp = 724 [ [ 5(xn)3(n)| det{xm, @p}|

n=1
x [ 60 det{6., 053" (25)
c=1

)

(M (), Iy (2)] = {

the last commutator is written in the alternative forms of the matrix areti and the determinant is The partition
T (2), T (0] {i[Ha(:v)Zb(y)—Z:{(x)H;E(y)](;?(f_g) function is,
a\T), L1 \Y)]|= . oo .
i20(y) o () =TT} (y) Z} (2))6(F~F) Z, = /@ﬁ@ﬁ’é(”ﬁHQ —1)§(7 - 7)e<TTHe> - (26)

Observing that this relations imply o
For theC' P, model we have to choose a gauge condition in

Zo(2) 1, (y) — Ho(y) Za(z) = §i(52(f— 7, (20)  order to determine the Fadeev-Popov [11] term. One suit-
2 able condition is the radiation gauge= 0;A; = 0. This is
the quantum constraints should be taken as combinations oéwritten as
the symmetric ordered terms  V2iz, — 2V,
Zuly + M, Zy =0 Z:T +15Z =0.  (21) X 2i
The factor of the second class constraides{O,, O3} is
again 1. The Poisson brackets pfwith ©; and ©, van-
ish and the remaining Poisson bracket is computed using

=0. (27)

The constraintZ] Z, = 1, the topological charge and the
gauge fieldsA; = iZ10;Z, which are hermitian are free of

ambiguities. 27112 B cY
To establish the canonical quantum equivalence of theV (J2]* — 1) = 0, which implies that
systems it is necessary to complement the map of Eq. (9) V225 (2) 20 (y) + 25 () V2 2e (1) = —2|0i2].

between the fields with a corresponding relation for the mo-

menta [8]. This is obtained classically taking the time deriva-The bracket is given by,

tive of (9) and using (17) and the fact thet z + z* z = 0. 1

It reads, x(@),e(y)} = 5[\3142 +VHS(E-7).  (28)
T = T = TaOiabZb + 24 0iabTp - (22)

. . . . . The patrtition function for th€' P, model is
With these relations it can be verified that the Poisson and

pirac Brackets of any two e>_<pressions in one model, maps Zop, = /@Z@Z*@W@W*5(|Z|2 ~1)
into the corresponding ones in the other.

At the quantum level we have to take care of the order V2z* .z — 72" - Vg z- w7t
ambiguity present in (22). This is done as before, to end up X 4§ < 5 ) o ( 5 )
with the following equivalent maps between the momentum

T —z* .t 1
operators, ) (”2271') ’det <2[|3¢Z|2 + V2]> )
1
{ %(Haaiabzb + Z(];UiabHZ) (23)

i= . xexp i(m-z+7w"-2"—H . 29

H(Zaonally + T} 0300 Z)) < o) (29)
They fulfill the commutation relations. The quantum models
are canonically equivalent.

To compare we modify the expression (26) introducing two
auxiliary variables andrg,

. - | 7, = / P P7 D7, D (jil2 — 1)
3. Equivalence of the partitions functions

The path integral of a system described by coordingtesb- X 8(7i - m)8(5)8(mg)e T (30)
ject tos second class constraints, r first class constraints 4 perform the change of variablég (
om andr gauge fixing conditiong,, constructed by Sen- (z, ) defined by,

janovic [10] takes the form

ﬁ? 7_1:7 577-[-5) -

*
_ TaOiabZb t 250iabTy

Z — /ei/hfoT(Pi‘?i*H(P:‘J))dtdu7 (24) N = ZhTiab2b = 9 (32)

V22 2q — 25V%2, 2qTq — 257"
where the measure is given by §= 0 , M= (32)
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The ¢ functions in (30) map onté functions of the partition function of th€ P, model (29) and the Hamiltonian actions
map into each other. The Jacobian of the transformatign=sdet M with

z3 2] 29 21 0 0 0 0
1235 —i2] —122 121 0 0 0 0
25 —25 21 —Z9 0 0 0 0
M = [V272T]/2’L [V2,z§]/21 [217V2]/2Z [227V2]/22 0 0 0 0 62(57 H)
- /2 /2 73 /2 /2 2/2 a2 %2 22 Y-
ima/2 —im /2 —imy /2 imy/2 —iz9/2 iz /2 iz /2 —izf/2
/2 —mo/2 /2 —m5 /2 21/2  —z/2 /2 —25/2
/24 o /20 —my/2i —my /20 z21/28 2920 —z7/2i —2z5/2i
Using the block structure ot/ we have
25 27 22 z1
| = i dot zzé‘ —iz*i‘ —129 121
2 2 —Z5 21 —29
V227 —21V2 V225 — 25V? V2 = V22 V2 - Viz
29 21 z3 25
1 {1} 3 —izg iz izy  —izf
X —= | = det * *
21 |2 Z1 —Z2 0z —Z2
21 za  —2] =z
Using the identity( V227 z, + 25 (V?2,) = —2[0;2]* we
finally obtain Isoliton operators should apply to the field variables the rele-
1 vant topological behavior of the soliton solutions. For two
|J| = ’det [—8(4)(—40.4@'(|8iz|2 + Vz)} ‘ dimensional models these ideas allow to recover Mandel-

stam’s operator [16] and the standard results abelian [17]
and non-abelian bosonization [18—-20]. They may also be ap-
plied to non-abelian gauge fields [21] and to fermionic cur-
o ) ) ] rents [22]. In 3D, soliton operators of abelian gauge theories
which is the Fadeev Popov determinant in (29). This estabnaye been investigated along this lines [13, 14, 23, 24]. Some
lishes the quantum equivalence of the theories in the sectqfppjications of the” P, model Skyrmions are discussed in
of zero topological charge. The identification of the topolog-Ref. [25, 26]. Here we use the canonical mapping to con-
ical charges which is preserved in the quantum theory by thgtyct ther — O(3) disorder operator from the P, operator.
canonical map, guarantees the quantum equivalence of the e topological properties of th@P; Skyrmion are en-

models in all the sectors. coded in the behavior in space, like infinity and at its center

_ ’det <;[|8Z—z|2 +v2]>

; (33)

given by [3],
4. Soliton operators " o—iara(®)/2 . 0
Topological solitons in field theory models are the signa- 2(T)p=s 0 (@)= etarel®/2 )
ture of a non trivial phase structure of the quantum theory, 1 1
with the phase transition being driven by the condensation ofli () ;== 20 larg(X)]  Ai(@);= — 50 [arg ()],

the quantum solitons. Accordingly, soliton operators may be

constructed in quantum field theory [10-12] as a generalizawherep is the radial variable anfl(Z) = arctan(x;/z2) =
tion of disorder operators in statistical mechanics [15]. Toarg(Z). To apply the asymptotic behavior to the fields, the
interpolate between sectors of different topological chargedisorder operatof(x) should satisfy the order disorder alge-

| bra
| | e reT N 2y () §-T ¢ T(C)
(s e)Zi(y) = { Zy(y)ulz; ©) G—7eT(c)
Z1(y)la; ) y-TET()
w(z;e)Za(y) = { eéiarg(g*f)zl(y),u(z;c) y—Ze€T(c) )

Ai %Biar y— T
u(a:;cmi(y):{[ W)+ 300(9

[4;(y) — 30; arg(yj — &
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40 J. STEPHANY AND M. VOLLMANN

wereT(c) is a spatial region centered ihwhose boundary
is a plane curve. u(z, c) is identified to be

Substituting this in the classical expression of (34) and taking
into account the ordering issues for the quantum operators al-
ready discussed we end up with
/ [21(, 6)TT (i, 1)
R2-Tx i . N N
po(@ ) =exp 4 [ [Na(7.01a(7)
— 11} (i, t) Z] (0, )] arg (@ — &)d*@ R?
1
I [Z2 (U_}a t)HQ (Iﬁ, t)
2 Jr

it

— I (7, t)Na(3, 1) ] arg(¥ — f)de} ,  (38)

which again does not depend ®iic). This operator satisfies

— T (@, ) Z3 (3, - Z)d*w . (34
2(,1) 23 (4, 1)] arg (@ — 7) w} (34) the order disorder algebra (36).

For theO(3) —o model, the direct construction of the dis-
order variable is more complicated to pursue since the topdd. Conclusion
logical properties of the solution depend on the whole space
time configuration. This is overcome by using the canonicaln this paper we use the complete canonical map between

map. In components the map & z5z) is
ny = 2R(2]22) ne = 2IM(z]22)
nsg = |Zl‘2 — ‘22|2.

(35)
Using also tha! = p- 1, itis shown thafu (%), N3 (/] = 0

the Hamiltonians descriptions which results from applying
Dirac’s method [8], of th€ (3)—o model and th&€' P; model

in 3D and show that the quantum theory is free of ordering
ambiguities. We demonstrate, by exhibiting the explicit func-
tional change of variables for the path integral and comput-
ing the Jacobian determinant, that the phase space partition

and the order disorder algebra (34) which is non trivial onlys,nctions of the models computed using the complete Sen-

for N1 and N5 is written as,
1o (Z)N1 () = cos(arg(y — &) N1() o ()

o (2)Na(§) = sin(arg(§ — ) Na(§)pio (7). (36)
It does not depend ofi(c). The inverse of the change vari-

ables (31) is

|Z|: 1+ ng |Z‘: /1 —ng

1 2 ) 2 2 )

z¢_n1+in27 21=|Z1|€w)17
V1—n3

zo = |22]€"??, @ = P2 — 1,

CP_i o 1 o _ o

o= 73 + 5 (nimg —namy)|,
Z1 2

chii fwgfé(n g - 7 37

2 = 3 175 —namy) | - (37)
Z2 2

janovic’s construction, are identical, as expected. Finally, we
apply the results of the canonical equivalence to construct
theO(3) — o soliton disorder operator starting from the cor-
responding operator of thé P, model and verify that it sat-
isfies the defining order disorder algebra.
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