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ABSTRACT: In this note we introduce the first-order terms of the electro-
magnetic potentials for an extended electron into the stochastjc
scheme of quantum mechanics; thus we derive in a simple and
straightforward form the corresponding observable corrections,
as, for example, the anomalous magnetic moment of the electron.
The final results are expressed in terms of some structure
parameters, whose value may be only estimated at present;
also, effects arising from the quantization of the radiation
field are excluded a priori by our use of classical electro-

dynamics.

*
Work supported in part by Comisién Nacional de Energia Nuclear, México.



192 Cetto and de la Pena

I. INTRODUCTION

In a recent paper’', we have introduced the radiation reaction force
2

into a stochastic formulation of non-relativistic quantum mechanics® with
the aim of studying its effect on the energy levels of a quantum system.
From the results of the calculation explicitly performed for the lower levels
of the hydrogen atom, we are led to conclude that this self-action effect
constitutes a major contribution to the Lamb shift. Although such a nonrela-
tivistic spinless treatment cannot be expected to predict exact numerical
results, it has the advantage of offering a clear and consistent physical
picture throughout.

Making use of this advantage once more, we propose in this paper to
introduce the first-order self-action terms for an extended electron with spin,
into the stochastic formulation generalized adequately to include the
treatment of spin on the basis of the rigid-body model”. In this way, we
expect to obtain the nonrelativistic equivalent of the first-order radiative
corrections of quantum electrodynamics, which account for such measurable
effects as the anomalous magnetic moment of the electron; effects arising
from the quantized field, such as vacuum polarization, are a priori excluded
by the use of classical electrodynamics.

II. INTRODUCTION OF SELF~-ACTION TERMS

In this section we introduce the first-order self-action term of the
electron into the set of fundamental equations of the stochastic theory?:

m(.@cv-ﬂsu)=f“) (1a)

w Wv+ 8 =) (1b)

Here, as in the previous papers, v and v are the systematic and stochastic
components, respectively, of the total velocity ¢ = v+ u; £*) and £ are

the components of the extemnal force, the + and - signs referring to their

parity under time reversal, and Dc ) .Ds are derivative operators which in the
markoffian approximation, i. e., the approximation leading to quantum me-
chanics, take on the form
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Bc=%+v'v (2a)
t

=
Il

2

s =u*V+DV (2b)

Egs. (1) may be combined to yield
m@qvq = fq : (3)

where the following definitions have been used:

<

1l
<

]
~.
[

f, = F) - ()

In the electromagnetic case, the force fq has been shown to be* ®

f =e[E+ Ly xH+_i2v2A] (4)
9 c 19 c

In the present paper we propose to add to this external force, the
self-action forces which way be derived from the first-order terms of the
Liénard-Wiechert series development of the electromagnetic potentials®:

= & R-w (5a)
2(2 R

A=ty (5b)
c R

Here v and w are the velocity andacceleration of the charge, respecti-
vely, and R = I r- r'l is the distance between the charge, located at r’, and
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the field point r. Hence, the field at r due to the entire charge distribution
is given by:

rf)':-rlijﬁ:,ic"d’r' (6Ga)
2¢? R
Al = lf Yo'dr' (6Gb)
c R

where @' = o (r') is the charge density.

The self-force acting on the electron is thus obtained by substituting
the stochastic generalizations of Eqs. (6) into Eq. (4) and integrating once
more over the change distriburion, i. e.

3

F = (IE'+ 1 vl + DV A" ] c : )
. = JLE . W e g1 79T ; }
R - w
¢-' = .. .1 f 4 et gt (8a)
7‘_—2 R

v
A =118 g*gr! (8b)

c R

where v/ = v +Q x © . Here Q and p have the same meaning as in Ref.

(3), t.e., pis the distance of the point charge to the center of mass of the
particle, and Séq = w =i represents the complex angular velocity, w and 7
being its systematic and stochastic components, respectively.  For further
details, sce the references.

Since in Eq. (7) the derivations are with respect to O, 1t is con-
venient to write the functions to be derived in terms of this coordinate.

Omitting higher-order terms in Séq. v'e may write
'
( Y = ( - () x
g P Rl =0, mR

' _ {
wqrp )_wq‘p).
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Upon deriving with respect to £ and further making a Taylor series
development around the center of mass, we arrive at the following resules:

vaq(p)=vaq

N i_‘V(VXVq)_ R x v _ Rx(p-vvq)

R R R RJ RJ
Vx(Q xR) Rx(Q xR
V(0,5 R) | Rx(2,< ) o
R R
S v’ v
v2vq(p): vq+p ( Vq)__ZR'Vq_
R R R R
2
) ZRI-pjaiajvq ) % (qu R) " 2R 'V(qu R) +qu2 1 3
R’ R’ R’ R
v} R'wq(p') =W P 'qu & R 'qu 5 Rl.pjal.ajwq s
R R R R R

L RTxm) Rx[p P (Vxu)] (R-w )R R-(p-Vw,)R
R R

R® R’

(9¢)
which, together with Egs. (8), allow us to write the different contributions to
Eq. (7) as double integrals over o and o’. The expressions obtained are
simplified considerably by assuming a spherically symmetric charge distri-
bution. If further we introduce the following definitions

-l__jfoor'd"rdT':li 6_ (10a)
&2 R aO 5

1 [froc'drdr' =a = e X

i
e

(10b)

[[= P?ootdrdr’
__R =1 -2 (10¢)
[[pPoc ! drar’ a A
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the self-force acting on the electron takes on the final form:

€
f; =a{-3/2¢f + 61[5/2V(mv; j = iV’ (qu)] -

€
+1/2€mv, x Q. * l_‘2ﬁ2VV e SR [, (Vxv )1} (b

where the gyromagnetic ratio is defined through®

2]
3/2 g_Hem = [[p*co'drdT" . (12)

In writing Eq. (11), we have omitted the last term of Eq. (9b) whose integral
would represent the action of a point charge over itself, and therefore would
not be associated to effects due to the extended structure of the particle.

In Eq. (11), fq way be considered equal to the external force, since
we are working in a first-order approximation. Hence, Eq. (3) takes on the

form:

€
mlyv, = (1-3/2a6) f+a {2 [5/29 (mv}) - mvz(qu)] 4

€
5]
¥+ I/ZEOmVQXQq‘F._I_;'R \YAY, 'fq- 1/2eng[sq '(vaq)]} ;

(13)

The factor which appears multiplying the external force way be absorbed by a
redefinition of the mass. In fact, defining the mass to first order by

mr=(1+3/2a60)m=m+3m. (14)

we obtain from Eq. (13) an equation of motion for a particle with the new
mass m_. For the sake of simplicity, we shall omit the index r and write m

for the renormalized mass in what follows.
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III. INTEGRATION OF THE EQUATION OF MOTION

We proceed to study the effects due to the remaining self-action terms
by considering the particular problem of an electron in a hydrogenlike atom
subject to an extemal magnetic field. The external force acting on the ex-
tended electron is given in this case by?

f, =e(E+ 1 v, xH+'DV A)+ 82V (s, *H) (15)

2mc

if higher-order terms due to the structure of the particle are not taken into
account. The change of variable leading to Schrodinger’s equation with

minimal electromagnetic coupling is®

v =-2iDVw -2 A; V-A=0.

mc

In the present case, we propose to integrate Eq.(15) upon the change
of variable

Vg=-2iDVw - £ (A+ta€B) (16a)
mc
where Bq is such that
Z'VxB . VB =0. 16b
= q ; q ( )

In deriving Eqs. (9), we have assumed that Q does not depend on
the center-of-mass coordinates, which is equivalent [0 assuming that the
spinning motion of the particle is essentially independent of its translational
motion. In this case, Qq can indeed be written as a rotational function, as
in Eq. (16b), and hence we may treat Bq as a correction to A, as is shown in
Eq. (16a).

Introduction of Eq. (15) into Eq. (13) modified by the mass renormali-
zation, and further inte gration upon the change of variable indicated by Eq.
(16a), yields the equation
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) .5 2 ae 2
—iﬁ?&+i[-i5\7w—i(A+aeB)J P (1-2)Vw +
ot 2m c 0g 2m 6
ae 2 .
+y+__ 1229 v- 5 aemv:- &° (1+ae)s, *H=0
12 12 Y 9 2mc

which upon the new change of variable |/ = " takes on the form:

b a‘lb - ipV=- __(A+a€ B )] L,b+(V+5V 'H)k/J (17a)
t 2m
where
5V= 1‘K2V V+tae, ﬁ_v w- 2 ae mv: (17b)
12 0 2m 12 o4
and
=(1+ae ; BE w.. (17¢
= 2);"‘0 ‘u'o Ime sq )

According to Eqs. (14) and (17), the first-order self-action effects on
an electron endowed with structure are the following:

a) A correction to the theoretical mass parameter, whose value is given
by Eq. (14), i.e., of order ae .

b) An anomalous magnetic moment which, according to (17¢), is given by
Ko/l = O€,

¢) A correction to the potential energy, whose value is given by Eq. (17b):

[543 2 2
55:_12_17\<Vv>. (18)

d) Additional corrections to the kinetic energy, given by the remaining
terms in Eq. (17b), and a correction to the vector potential A, due to
the spin of the electron (see Eq. 17a).
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IV. SOME COMMENTS ABOUT THE PARAMETERS

Since, as is shown by Eqs. (10), the parameters € € €, depend
strongly on the charge distribution, we are unable to predict their values as
long as we do not have any knowledge about the electromagnetic structure
of the electron. We may, however, make some general statements, assuming
that o(p) is a decent function. Let us define, on the one hand, a mean
mechanical radius @ in terms of the moment of inertia of a sphere with uniform

mass distribution, I = (2/5) ma?; from Eq. (12) we then obtain

3/5 geta? = [[p?oc drdT' . (19)
If, on the other hand, we define a mean electrical radius b by

e%? = [[p*oc'drdr’ (20)

we see that this is of the some order as g if g is around unity. We may
therefore expect the parameters a,a,a, introduced in Eqs. (10) to be of a
similar order of magnitude, although their numerical values and even their
signs depend on the specific form of the function o ().

It has been repeatedly shown® 7 ® that the rigid-body model for the
spinning electron may yield a satisfactory nonrelativistic description, but
then the radius must be assumed to be not smaller than the Compton wave-
length for the electron. If, in fact, we assume @ ~ X, and furthermore take
g = 2, we may conclude from the above arguments that the three adimensional
parameters introduced in Eqgs. (10) do not depart considerably from unity. On
the other side, when the electron is considered as a point particle, € goes
to zero, while €, and € go to infinity, thus yielding, in particular, an infinite
value for the mass correction.  We may therefore state, in analogy with
quantum electrodynamics, that mass renormalization is equivalent to assigning
a finite value to &m, i.e., to € according to Eq.(14), which means endowing
the particle with structure. From the above considerations it seems sensible
to assume that €™ 1, and hence, € v E, ™ 1. In other words, if &m is of
order @, then the anomalous magnetic moment is of the same order, and the
correction given by Eq. (18) is

2
5 ~ A <y > (21)
12
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thus representing a structure dependent contribution to the Lamb shift, which
is to be added to the main term obtained in Ref. (1).

We thus see that, although this nonrelativistic treatment cannot
provide exact numerical results, it yields, nevertheless, consistent values
for the three corrections it predicts: mass renormalization, anomalous
magnetic moment and structural component of the Lamb shift; it shows,
furthermore, the dependence of these effects upon the electrical structure of
the electron, in the nonrelativistic approximation.

In concluding, we wish to call attention to Eq. (10c), according to
which we are assuming 0 (0) to have special properties; in particular, for
€, to be positive, & should have at least one change of sign. Restrictions
such as this might furnish some general information about the charge distri-
bution of the electron.
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RESUMEN

En esta nota se introducen dentro del esquema de la mecanica cuan-
tica los téminos de primer orden en los potenciales electromagnéticos para
un electron extenso; se derivan las correcciones observables como por ejem-
plo, el momento magnético anémalo del electrén en forma simple y directa.
Los resultados finales se expresan en téminos de algunos parametros de es-
tructura cuyos valores, en este momento sélo se pueden estimar; también, de-
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bido al uso de la electrodinamica cldsica, se excluyen los efectos debido a
a la cuantizacion del campo de radiacion.



