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ABSTRAer: A solutiotl for the SU(4) external labeling problem. symmetric

within a phase factor. is found by explicit consuuceion of the
general van der Uo'aerden invariant as a produce of elementary

scalars. The connection between external and internal multi.

plicity is demonsuated by exhibiting a one.to.one corre-

spondence between product IR's and internal states. The

.groups SU(2) and SU(3) are similarly treated for illustrarive

purposes.

1. lNTRODUCTION

An important problem in me Racah algebra of a compact group is the
construction of its \i:/igner coefficients (which couple the states oí three IR' s
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to give a scaiar) oc, equivalenrly, its Clebsch~Gordan coefficients (which
coupl e che st3leS oi [WQ IR I s to gi ve compos ite states belonging to a third).
In additiún to eheie role in coupling ¡ndependent systems che coefficients
ate nceded. in connection with che Wigner-Eckart theorem, lO help evaluare
matrix elements oí quantities which transforrn as components oí irreducible
tensors undee che aCIion Di (he group. A difficulty in che definicion oí Oebsch-
Gordan. oc Wigner, coefficients is (har oí specifying product SImes unambigu-
ousi~' - the so-cal1ed external labeling problem; (he group itseIf does nOI

~en<rally pro"ide enou~h labels.
We are chiefly concemed he re with the ~roup SU(4). Its interes[ for

physicists Stems mainly írom its application to nuclear statcs as the Wigner
supermultipler scheme 1; le has also beeo used in speculative classification
schemes ior elementary parcicJes2.

!.•.JoshinskyJ has given a prescripcion ior defining product states tor
SU(n): in principIe general Clebsch-Gordan coefficients are thereby specified.
rrom rhis definirion, Moshinsk>' and Renero'" have derived recursion formulas
(or rhe actual calculadon of the coefficients. Biedenharn, Giovanni and
Louck5 have ~i"en a solution of ,he external labeling problem for SU(3) with
the suggestion that meir method can be extended to SU(n).

In rhls paper we adopt a somewhat diHerent approach, patterned on
chat used long ago by van der Waerden6 ior rhe group SU(Z); he wrore down a
general invariant in the ~ases of meee IR' s in me form Di a product of powers
of cerrain "elemenrary scalars". Although van der Waerden's derivation is a
lext.book way of obraining SU(2) U'igner coefficients' (expand rhe general
tnvariant as a sum Di products of basis srates of me rhree IR's), it has been
li,de used for hi~her ~roups'.

In S 3 the general van der Waerden invariant for 5U(4) is given as a
producr of elementary scalars. Ir ruros our mar Speiser's9 connectlon between
internal srares and external couplings is a valuable heuristic aid in finding
these elemcntary scalars. In ~ 2 [he groups SU(2) and SU(3) are similarly
treated to ¡Ilustrate the method. The remainder oi chis section is a description
of the general approach.

\\'e are inrerestcd in the states of che general IR of a (compact) group
and thejr labeling because of thejr connection with external coupli':J;J':,s. Ac-
cording to Cartan 10 the general IR can be constructed as the stretched
product of (he I fundamental IR's each taken an integer number of times (/ is
the rank oC the group); (he I integers are the Cartan labels of the IR. In
this spirit the basis stares of rhe general IR can be represented by products
of powers of the states of the fundamental IR' s. To avoid redundancy certain
combinations oi fundamental IR states must be regarded as incompatible, and
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may n()[ appear together for the purpose of forming states of higher IR's.
The resulting basis states are essentially those of \t'eylll, but \Ve use a
different solution uf the redundancy problem in arder to achit:ve a symmetrical
van der Wa('rden invariant (and \t'igner coeffici('ms); see also Reference 12,
Case ID. The labeling makes no use of subgroups, exccpt perhaps the U( 1)
subgroups,1 in number, associated with the 1 weights. The indices of the
powcrs oC the fundamenral IR states are the stat(' labels and are Js (r + 1) in
number (r is th(, order of the group); they provide [he 1 IR labels and the
~ (, - 1) internal labels.

Elementar)' multiplets (the elementary [X'rmissible diagrams of Devi,
Vcnkatarayudu and ~toshinsky13. 104 have bCCII us{'(i by a numbcr oE authors to
solvc internal labeling problems 12.13. H. lS, Now the external labcling
problem is ¡ust a special case oE imernallabeling - tha[ of thf." group sub.
group chain G x G:) G, An elementar)' multiplet or coupling (1 , i ; T)

1 1 ,
couples two low-Iying IR's i and i to form a composite IR I (the IR I )

1 2 e 3
conjuga te [0;3 is used for reasons of symmetry). It is elementary it it cannot
be expressl"d as the suetched (alJ Canan labels additive) product of simplcr
elementar)' multiplets. A set of elementar)' multiplets is complete if all
couplings can he represented by stretchcd products of powers of them; in
genl"ral re1ations 0etween elementary muitiplets render certain combinations
of them [('dundan t.

According [O Speiser9 the connection between IR's in the direct
product 1}181/2 amI in[('rnal states of the IR JI is displaycd by placing the
weight diagram for JI with its centcr on thl" heaviest state of /2; then each
sta te in the w('ight diagram of /1 coincides with the hcaviest state ofa product
IR (if the stat('s uf / I spill into the region of non-dominant weights, corre-
."ponding to negati\'e values of one or more Cartan labels 'A. , the)' must

1
be reflect(,d in the hyperplanes 'A..= - 1 and coulltcd as positive or negativc,
according lO \\:helher an even or odd number of refiections is required to
bring lhem into the region of Jominant weights; points wirh 'Ai = - 1 are
ignored). This suggests a procedurc for SC[[i~lgupan ('xplicitcorrcspondence
betwecn intC'mal states ano external prodllct IR's. Each elementary multi-
pIet (jI' i2; T) defines a weight determincd by subtractiug rhe heaviest
wcight of i2 fiom the heaviest weight uf i 3. This weight is that of a state
bclonging lO the IH.; , and the elementary multiplct is m,lde to correspond

1
to [hat state, writu:n as a product of fundamental IR states. AnyexternaI
prodllCl 11{, represt.nted by a .stretched produet uf powt'rs of elementary mlllti-
plels, Ihen corrcsponds lo the internal ."tate reprt'.'iented by Ihe corrcsponding
produC[ of powcrs of fundamental IR st.Hes, Thc 1 ('il"melltary multiplcts
(O.i2;;2) \\'her(';2 is a fundamental IR. arc ignored in scuing up the corre-
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spondece; their role is to center the jI weight diagram. (The spilling oí
product IR's into the region oí non-dominant weights with consequent re-
flections and cancellations occur when the Cartan labels oí the IR 12 are too
small to permit the formation of products oí elementary multiplets corresponding
to aH internal states of 1

1
,) The indices oí the powers of the elementary

scalars are the external coupling labels and are 1(r + 3/) in number (3/ IR
labels a.nd ~ (r - 3l) "missing" labels).

For symmctry we replace the elementary multiplet 01 ' j 2; ~) by the
elementar}' scalar (j ,j ,j ) in the next two sections. Products oí powcrs

1 , 3
of elementar)' scalars then define the general van der W'ae~den invariant
(JI' J" J,,) in place of the cortesponding coupling (J l' J" J3).

2. SU(2) AND SU(3)

SU(2) has a single fundamental IR whose two states mal' be written
r¡= 11> and ~= 12> with weights 1and -1 respectively. The general
internal state is the Wigner monomial16, a product oí powers of r¡, .;. The
elemen,ary scalars are 1\ = (O, 1, 1) = 7),1; 3 - 1;6' 7)3' B, = (1, 0,1),
B 3 = (1,1, O). The van der Waerden invariant is a product of powers of the
B' s. The correspondence is B "'""T), B "" ~ ; B is to be ignorcd in setting

2 3 1
up the correspondence.

SU(3) has two fundamental IR's; the three states of the first mal' be
written 7) = : 1>,1; = 12> ,= 13>, with weights (1/3,1/2), (1/3, - 1/2),
(_ 2/3, O) respectiveIy, and those of the second mal' be wfltten

I~> _ 1;" = I 1 > '
3

"7)

wi,h weights (2/3, O), (- 1/3, 1/2),(-1/3,1/2). 13ecause 7)7)"+1;1;" + ,C
"is a scalae, states containing powers 01 it are redundant. ~r; can be rc-. " "plaeed by 7)7) +" for ,he purpose of labeling states and 1;,1; regarded

as incompatible. The general SU(3) state is represented by a powee oí .;
"or ~ multiplicd by powers oí the other foue variables. The elementary

scalars for SU(3) are 17
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'" t:. •
1l'2 = (10,01,00) = TI, Tl2 +~'''2 + ~l ~2'

Il
J
, = (O 1,00, 10), 1J

2
, = (O 1, 10,00),

Il" = (00, !O, Ol),

/JJ2 = (00, O 1, !O),

207

/J'J = (10,00, Ol), c. =(01,01,01).

e = (lO, !O, !O) = TI, Tl2 TlJ

~, ~2 ~J

~,~2 ~J

( 1)

They are noe all indep('ndcne: ce. can be expressed as a linear combination

of BI2B23BJI and B21BJ2B13; hencc e, c. shouldbe rcgardedas incompaeible
ano produces involving bueh Jiscarded as redundanr. The general van der
Wacrdcn invarialH is represemed by a power of C or C. multiplied by arbitrar)'
powcrs of che B' s. The conneceion bceween elementary scalars and funda-

1 R. r ~ r' .,~.menea 1 staecslsBIJ íJ,BI2"'s.C s,BJI S , 8
21

•.•..•.T} ,C s .

It is apparem eha( for SU(2) and SU(3) the corresponJencc beeween

che general van der \X/aerden invariane and the general ineernal state is thc
ooe implicd by Speiser' s ehcorem, a( leas( when, 00 che one hand, (he Speiser
diagram involves no spilliog ano when, on che other hand, che Cartan lahcls
of 1

2
are large enough (O allo", informadon of produces of elementar)' multi-

rices corresponding to all ineernal staees of 1 (the two conditions can be,
shown to he equivalene). The proof tha( (he elementar)' scalars(l) continue
to give a complete non.redundant s{'t of couplings when spilling occurs is

relegated to an appendix.

3. SU( 4)

SU(.i) has three fundamenlallR's, (100), (010) and (001). The fuur

states uf the firSl mal' be written TI = 11> , ~ = 12>, ~ = 13>, e = 14 >
with weights (1/4, 1/3, 1/2), (1/4, 1/ 3, - 1/2), (1/4, - 2/3, O) ,( - 3/4, O, O) 11,e
six sta(es of (he second ma)' be written
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11 • 1
I

• 1
2> 1

1
) 1

2
1
3y'= ),f3= ),a= ,a= ,/3= ),y= >

2 3 3 4 4 4

rhe four sta tes af rhe rhird Ola)' be wr¡([cn

~).
4

1
The ~ :-"!,ghts are additivc; c. g. , rhe wcight of a = [ > is rhe sum of rhe

.j
weights of r¡ = 11> antl e = 14> . .

• • •• •The scalar r¡r¡ +.;.; + ~~ +eo allows.;,.; to be regarded as
• /'13' • (3 /3'incompatible and rhe scalar aa + + yy allows, to be coos idered

as incompatible. There is 0(001) qua"et formetl from (010) and (lOO) and a
(lOO) quanet formed fmm (010) and (001); because of them the following

•paies of sta [es may be regardcd as incompatible: a, ~; a, s; /3, e f3 ,~;
• ¡:. • r* n • p* y. . .. .a ,s ; a , s ; /-" .; ; /-' • S . 1wel\'(' 'Ypes of state marbe dlstmgulshed,

each represented by a produCl aE powcrs of nioc (= 1(,+/» variables; rhe
variables are T}, ..,.,*. y. y., e. 0* togerher with one oE lhe following twelve
sets of three: a¿;'C, a'¿;" a(3'¿;', a(3~', a'(3'" a'(3¿;,(3';'~,aa'(3,
aa' (3' , (3; ~' , ¿;~~', ¿;' ~' ~. It can be veri fietl straightforwardly Ihat the

states thus defincd are ¡ndependent and have lhe correetnumber, i. e., imply
rhe correel dimension formula foc 5U(4) .

'rhe elementary scalars fOf SU(4) ar<.'

Al = (000, 010,010), A, = (010,000,010), ti = (010,010,000),,
B" = (000, 100,001) , IJ" = (000,001, 100) , IJ" = (001,000,100),

BI> = (100,000,001), IJ" = (100, 001,000), IJ2I = (001, 100,000),

el = (O 10, 00 1, 00 1) , c, = (001. 010, OO!), e = (001,001,010),"

lJ = (010,100,100), /), = (100, 010,100), lJ = (lOO, 100,010),1 ,
I! = (lOI,OIO.OIO), [1 =(010,101,010), [1 = (010,010,101).'1 ., .,

( 2)
Thev are no[ indcpcnden[, for C.D. is a linear combinaüon of Ek H .. and

. J ! J!
AkIJ¡kBkj; C¡E£ is a linear combina[ion of CjAjBij. and ~kAkB.k; ~)il!i is a
linear combina[ion of /),A./J., and DkAkIJk,' E.E. as a Illlear combana[lon of

J ! !r l' J !
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AkCkIJk and A.A.IJ . .Jl.. In the above i,'k ate 123 in anv otder. Aeeordinglv
' J JI I t '.

wc regard CiD¡ , e"E,. , [)"t:,. ,E,.t-} as incompatible pairs; products containing
borh members of any pair art' to be discarded. Fourtecn rypes of van der
'X'acrden invariant Ola)' be disringuished, each represented by a producr of
powers of twclvc elemenrar)' scalars; the scalars are the rhree A's and six
B's rogether wirh 00(' of rhe following fourteen sets of three: e e e ,, , ,
D,1J,IJ" C,C,I!,, C,C,",' C,C,""IJ,1J,",' 1J,IJ,"" IJ,1J,",, C,1J,""
C1/\I:." C2 [)/:' I , C2f)l~." C3f)3El' C3D382, An invaríant contaioing fewer
than three e' s. J)' ,•.•and E' s may bclong to more than one type; to Make me
typcs mutually exclusiv(' we assign such an ¡nvariant to the first typc (or
whích it qualifies in thc abovc lisr.
'X'hen obvious symmerrics are taken ioto account there are just three distinct
rypes of van dcr Wat'rd('n invariant. Thus rhe first two types above differ
onl)' by conjugation. The third, fourth and fifrh differ among thcmselvcs
only by a rc"labcling of IR's and from the sixth, seventh and eight by conju-
garion. 'rhe la,•.•r six differ among rhcmselves by a relabeling of IR's. The
indices of the powers of rhe scalars in each product are rhe needed rwel"e
(= 1(r + 3')) labels, nine IR labels and three degeneracy labels.

The connection between elementar)' scalars and fundamental IR states...... ....
ís Al"': y ,A3 '" y, 821; TJ ,8)2"- e, 813 "" 7],831'" e , C

2
'" ~ , el"" a,

C3"" S '/)2"" S, /JI"" a , D3"" S, E
2
"" /3, £3 '" /3\ B

23
, B

32
and Al are

ignored in setting up rhe correspondence. Then the ren types of van der
\\'acrdcn invariant which do nOl contain the elementan' scalar E are se en to

• 1
correspond respecrive!y ro lhe first ten types of internal state. The elementa-
r\' sea lar Ii is bilinear in the (100) and (001) states of IH number 1 and should., .
bc made to correspond ro S~ . Since the elementar)' scalars [) and e whích. , ,
correspond ro S and S respectively are incompatible, I! is needed to provide

1 •
invarianlS corresponding to srates containing bOlh S and S . Thus the invari-

•ants of lype e J) I! correspond to states o[ rype ~ SS in which the degree
••• 3 .3 I •••

in' i s greater [han [hal in /;; Those of type [) [) J: correspond lo lype ,; ~~
2 .3 I •

in which rhe degrc(' in S is greater than or equaI ro that in S . Similarly• •invariants of rypc e /J E correspond ro states of type t SS with degree in
2 ~ .••1 • •S greatcr than thar in ~ and those of type e e E corrc'spond ro tyP(' ~ S~

••• 2 3 1
in which [he degrce in S is greater than or equal to that in S. The corre-
spondence bt'twcen product IH's and internal slares ís tht:rcfore complete,
in agreemen( with Speiser's theorem, al leasr when rhere is no spilling. 'loe
demonstration [ha( the van der \\'aerden invarianl is complett' and non-re-
dundan( e\'en when spilling occurs is given in the appendix.

K. :\hmed and one of us (RTS) are using van der \\'acf{ic'n in\'arianls
as presentcd hefe to calcularc' SLJ(4) ~ SU(2))( SU(2) \X'igner codficíents for
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ccrtain simple couplings involdng no degeneracy. An aucmp[ is being made
[() derive van deT Waerdcn invarian[s for o[her groups.
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REsmlEN

Se encuentra una solución para el problema de clasificación exeerna
en SU(4). que' es simétrica hasta una fase, cons[ruyendo explícitamente el
invariante general de van der Waerden, como un producto de escalares ele.
mentales. Sc' demuestra la conexión co[re la multiplicidad ex[erna y la ioter.
na exhibiendo la correspondencia biunívoca e"[re produc[os de representacio.
nes irreducibles y los estados internos. Se eraean igualrncnee, a manera de
¡lusrración, lus casos de SU(2) y SU(3).
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APPENDIX

Sharp and Lee

The van der \Xlaerden invariants glven In rhe boJ)' oC (his papee foc
SU(2), SU(3) and SU(4) "'ere justified by demunstrating, ",irh ,he help uf
Speiser's rheorem. thar rhe)' ¡mpl)' me corrcer Clcbsch-Gordan series fOf

Jl~ 1
2
; rhe demonstrarion is valid onl)' when (he Cartan labels of 1

2
are so

large [h~[ lhe weight diagram of 1
1
cenrered 00 rhe heaviesr state of /2'

cioes nol spill jnco rhe regioo of negarive Cartan labcls, oc equivalendy, rhar
producrs oC powers DE elementar)' scalars can be formed corresponding {Q a1l
scates of ] . The purpos{' of (his appendix is to extend me peoor ro rhe case

I
where sptlling Decurs. Because of rhe desirability of extending (he
treatment to higher groups we would like tu present ao elegant, general
peoor; since we ha\'e not founo one, the following eumbersome, specifie
demonstration is offered.

No[hing funher neeos tu be saidabout SU(2). sinee if[here is spilling
for J ~ 1 there is non e when the roles of J and 1 are interehanged.

I 2 I 2
Speiser's rdleetion ano eanccllation rules are based 00 the faet that

the charaCler funelion, eharacteristic hlOction, or dimension formula ehanges
sign when [he argumcnts (Canan labels, not group transformarion parameters)
are rerIeered in a hypcrplane I\i = - 1 (I\i is a Can<U1 label). When summiog
over [he characrcr. characrerisric or dimension, then, it is legitimate [Q re.
flect [he lower limit of rhe sum in a hyperplane t...i = O (onlr al temate integer
values of t.... appear in .1 line perpendicular to t.... = O); the terms omitted or, ,
aoded by reflecting the: lo\\'er limi[ all cancel. Our pronf will consist of
showing that by rhe use of such reflecliuos al! 10wcr limits 00 sumoSdue to
the smalloess uf me Cartan laocls of 1

2
ma}' be removed ano onl}' [hose ap-

propriate to 1
1
r('[ained, Ir rhen follo\\'s mal our van der \Vaerden invarianr

implies a character or dimcnsion for 1I ~ 1
2
given by rhe same marhematieal

formula whieh holds whcn [he labds uf 1
2
art' large and there is no spilling;

it is knowll of course thar [his formula, just rhe producr of rhe characrcrs or
dimensiolls of 11 and 1

2
' is lhe corrccr onc'.

Considc'r SU(3) firsl. Sinc(' rhe ('¡ementar)' scalar B
12
= (la, 01, 00)

is a scalar in rhe 3-variahlcs and comparible wirh all olher elementary scalars,
ir is appar"c'nt thar rhe prooucr IR's in (p , q )~(p , q ) conraining ir as a

1 1 2 2
factor are jusI the fR's in rhe produc[ (p -1, q )~(p , q -1); a similar re-

I 1 2 2
mark applies lO B (p ano q arc' the Cartan labels for SU(3». lIe'nce we
omit rhe scalars lil and H from our li.sr aud recognize rhar [he proJuet IR' s

12 21
ma, remain shuuld be ,hose of(p, q )@(p, q )-(p -1, q )@(p, q -1)-

I 1 2 2 1 1 2 2
(PI' q¡-1)8(p,-l, q,)+(PI-l, qr-I)II,(P,-l, q,'I); ,his trick simplifies
che rroof considerably. Those subrracted van der \\'aeroen invarian[ con.
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lainin~ the elementary sealar C to the power a yield prcduct IR's with
(P,q)=(P.+P2-2a~q,..;.q +a),O~a.$.minp ,p. TheseIR's lieona

• 2 1 2
line perpendicular 'o p = O and rhe IR wi,h"léwest pis eirher (p _ p , q + q + p )

~ 1 1 2 1
or (p, - P" q .•.q, .,.p ) , which are images 01 each o,her in p = U ('o re/lect. , ,
in p = O substi'ute p ~ - p, q ~ q + p)" Similarly ,he subtrac'ed van der
Waerden invariants with C'" lie in a line perpendicular ro q = O and che lower
limits on q implied by qt and q2 are images in q = O. To complete che argu-
ment. one can verif}' thac [he elementar~' faetors lead to the correet character
or dimension formula for tbose boundarv cases in which one of p , q , p • q

. 1 1 2 2vanishes.

Turnin~ to SU( 4) we drop the elementary scalars A , B ,B which
J 12 21

are scalars in rhe 3-variables and consider [he appropriate tripIy subtracted
eharacter or dimension formula. For ease of reference we caH the fourteen
tvpes of invariant defined in ~ 3 w to W in the order in which thev appear. t 1~ •
there.

The the product IR's (/vLv) corresponding to 11', and 11', are those
lyin,g in the hexagonal face

3A.+2j1.-+v

oi che Speiser diagram. Tbeir discribution on tbe face and their properties
under ref1ection in J.L = O and V = O are idencical to [hose oE an SU(3)
Speiser diagram with JL, v playing the role oí p, q. Ule conclude that W

1
and W1 takeo together have the reflection propercies required by Speiser's
theor':m. 11' and W behave like 11' and 11' with the roles 01 A and v inter-2.. 1 3
changed.

We divide the remaining ten types of invariant into two sets oí five
each, the firs[ set ineluding W

6
, Ws' W

9
, W

10
' W

13
, the second Ws, "-7 ' W

11
W12, W14. Each of [he ten types defines a tbree-dimensional sub~ region of
'A.¡.J.v spaee in which [he poines ¥v form a regular lauice witb unic multi-
plicity. The five sub- regions of each ser fit together wieh no over-
lapping to form a single region of fairIy simple shape. Sin ce the rwo regions
80 ioto ea eh other 00 interchanging che IR's 1 and 2, it is neeessary ro
discuss in detail onl)' the first region, R¡ ,comprising W

6, S, 9, 10,13
R¡ consiscs of the region oí 'ly..Lv space common to (WQ volumes, whose

lower boundaries are determined by the Cartan labeIs oí che first and second
IR's respectively and whose upper boundaries are common. The common
upper boundaries are [he mree planes
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iI.+2"+v~iI. +iI. +2(fJ- +" )+v +V,r- 1 2 1 '2 1 2

iI.+2fJ-+3v~iI. +iI. +2(" +fJ- )+3(v +V),
1 2 '} 2 1 2

3i1.+2fJ-+v':::3(iI. +iI. )+2(fJ- +" )+V +V .
1 2 1'2 1 2

The lower boundaries set by Al' J-L1, VI are

3i1.+ 2fJ-+ V ~ 3i1. - iI. + 2 (" +" ) + V + V2 1 r-l""-2 1 2

iI.+ V'::: iI. + iI. + 2" + V + V1 2 '-1 1 2

while those set by 'A
2

' fL2 ' v2 are

iI.+2"-v<;;iI. +iI. +2(fJ- +" )+3v-vr- 1 2 1 r2 2 1

- iI.+ 2fJ-+ V <;; 3i1. - iI. + 2 (" + fJ- ) + V + V2 1 I} 2 1 2

iI.+ 2fJ-+ V ~ iI. + iI. + 2fJ- + V + V .
1 2 1 1 2

Sharp and Lee

We want ro sho~' thar either set of lower houndaries may be dcopped.
Fíest consider dropping (he second ser of lower boundaries, mose

determined by A
2
, f-L

2
, 1/

2
• Rcflcct che fírst of che three planes in V = O

(iI. - iI., fJ- - fJ-+ v, V - - v). Ir goes into me firsr lower boundary plane of
the fiest SC(; moreover the other (wa planes of the second set are invariant

undee {his reflection (i. c. , perpendicular to V = O) and may be extended if
necessary to the new boundary. Next re£leer (he second boundary of (he

seeond set in iI.; O (iI. - - iI., fJ- - fJ- + iI., V - v). It goes into rhe
sccond boundary of the fíest set, while the remaining third plane is ¡ovariant
and may be. extended. Finally reflect the third boundary of the second set

in fJ- ; O( iI. - iI.+ fJ- , fJ- ' fJ- - - fJ-, V - V + fJ- ); ir goe s in r o rh e th i rd o f rh e
first seto 1'0 justify dropping of the first set (and retaining the second) the
same dHee reflections are performed in rcverse order. The second region,
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R/J' 11('('d no[ be discusscd separarely, foc ir diHc'cs from [he fíesr only in [he
exchange of IR labeIs 1 and 2.

Since we are considcring él subuacred charactcr Of dimension function,
Of Clebsch-GorJan series, ir is neccssary fOf completion of the proof (Q

v crif)' [hose boundarv cases \\.'irh one of A , jL , V , A. ,f-L ,v ('qual tu
. 1 1. I 2 2 2

Zcro. This can be done by Illcthods similar to those uscd above. The de-
rails are considcrably simpler and are omittcd here.


