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ABSTRACT:

A solution for the SU(4) external labeling problem, symmetric
within a phase factor, is found by explicit construction of the
general van der Waerden invariant as a product of elementary
scalars. The connection between external and internal multi-
plicity is demonstrated by exhibiting a one-to-one corre-
spondence between product IR’s and internal states. The

.groups SU(2) and SU(3) are similarly treated for illustrarive
purposes.

1. INTRODUCTION

An important problem in the Racah algebra of a compact group is the
construction of its Wigner coefficients (which couple the states of three IR’s
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to give a scalar) or, equivalently, its Clebsch-Gordan coefficients (which
couple the states of two IR’s to give composite states belonging to a third).
ln addition to their role in coupling independent systems the coefficients
are needed, in connection with the Wigner-Eckart theorem, to help evaluate
matrix elements of quantities which transform as components of irreducible
tensors under the action of the group. A difficulty in the definition of Clebsch-
Gordan, or Wigner, coefficients is that of specifying product states unambigu-
ously - the so-called external labeling problem; the group itself does not
generally provide enough labels.

We are chiefly concemed here with the group SU(4). Its interest for
physicists stems mainly from its application to nuclear states as the Wigner
'; it has also been used in speculative classification
schemes for elementary particles?,

supermuitiplet scheme

Moshinsky? has given a prescription for defining product states for
$U(n); in principle general Clebsch-Gordan coefficients are thereby specified.
F'rom this definition, Moshinsky and Renero* have derived recursion formulas
for the actual calculation of the coefficients. Biedenharn, Giovanni and
Louck?® have given a solution of the external labeling problem for SU(3) with
the suggestion that their method can be extended to SU(n).

In this paper we adopt a somewhat different approach, patterned on
that used long ago by van der Waerden® for the group SU(2); he wrote down a
general invariant in the bases of three IR’s in the form of a product of powers
of certain “elementary scalars”. Although van der Waerden’s derivation is a
text-book way of obtaining SU(2) Wigner coefficients’ (expand the general
invariant as a sum of products of basis states of the three IR’s), it has been
little used for higher groups®.

In § 3 the general van der Waerden invariant for SU(4) is given as a
product of elementary scalars. It turns out that Speiser’s? connection between
internal states and external couplings is a valuable heuristic aid in finding
these elementary scalars. In §2 the groups SU(2) and SU(3) are similarly
treated to illustrate the method. The remainder of this section is a description
of the general approach.

We are interested in the states of the general IR of a (compact) group
and their labeling because of their connection with external couplings. Ac-
cording to Cartan'? the general IR can be constructed as the stretched
product of the / fundamental IR’s each taken an integer number of times (/ is
the rank of the group); the / integers are the Cartan labels of the IR. In
this spirit the basis states of the general IR can be represented by products
of powers of the states of the fundamental IR’s. To avoid redundancy certain
combinations of fundamental IR states mustbe regarded as incompatible, and
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may not appear together for the purpose of forming states of higher IR’s.
The resulting basis states are essentially those of Weyl!', but we use a
different solution of the redundancy problemin order to achieve a symmetrical
van der Waerden invariant (and Wigner coefficients); see also Reference 12,
Case 10. The labeling makes no use of subgroups, except perhaps the U(1)
subgroups, / in number, associated with the / weights. The indices of the
powers of the fundamental IR states are the state labels and are % (r+/) in
number (7 is the order of the group); they provide the / IR labels and the
% (r=1) internal labels.

Elementary multiplets (the elementary permissible diagrams of Devi,
Venkatarayudu and Moshinsky!® * have been used by a number of authors to
solve internal labeling problems!2:13: 4. 15 = N, (he external labeling
problem is just a special case of internal labeling - that of the group sub-
group chain G x G D G. An elementary multiplet or coupling (7, jz; ;'_3)
couples two low-lying IR’s ¥ and i, © form a composite IR j. (the IR ij)
conjugate to i3 is used for reasons of symmetry). It is elementary if it cannot
be expressed as the stretched (all Cartan labels additive) product of simpler
elementary multiplets. A set of elementary multiplets is complete if all
couplings can be represented by stretched products of powers of them; in
general relations between elementary multiplets render certain combinations
of them redundant.

According to Speiser” the connection between IR’s in the direct
product J,@ ], and internal states of the IR J, is displayed by placing the
weight diagram for J, with its center on the heaviest state of J,; then each
state in the weight diagram of]l coincides with the heaviest state ofa product
IR (if the states of J spill into the region of non-dominant weights, corre-
sponding to negative values of one or more Cartan labels ?\1 , they must

be reflected in the hyperplanes )xl. = - 1 and counted as positive or negative
according to whether an even or odd number of reflections is required to
bring them into the region of dominant weights; points with A, = -1 are

ignored). This suggests a procedure for setting up an explicit correspondence
between internal states and external product IR’s. Each elementary multi-
plet (7, , 1,; j.) defines a weight determined by subtracting the heaviest
weight of j, from the heaviest weight of j .. This weight is that of a state
belonging to the IR j,» and the elementary multiplet is made to correspond
to that state, written as a product of fundamental IR states. Any external
product IR, represented by a stretched product of powers of elementary multi-
plets, then corresponds to the intemal state represented by the corresponding
product of powers of fundamental IR states. The / elementary multiplets
(0,7,:7,) wherej, is a fundamental IR, are ignored in setting up the corre-
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spondece; their role is to center the i weight diagram. (The spilling of
product IR’s into the region of non-dominant weights with consequent re-
flections and cancellations occur when the Cartan labels of the IR ], are too
small to permit the formation of products of elementary multiplets corresponding
to all internal states of J .) The indices of the powers of the elementary
scalars are the external coupling labels and are % (r + 3/) in number (3/ IR
labels and 5 (r- 30) “missing” labels).

For symmetry we replace the elementary multiplet (] * 13) by the
elementary scalar (] . ]2 ,] ) in the next two sections. Products of powers
of elementary scalars then deflne the general van der Waerden invariant

JpJ,: J,) in place of the corresponding coupling (], J,, ] ):

2. SU(2) AND SU(3)

SU(2) has a single fundamental IR whose two states may be written
= I 1> and &= |2> with weights % and - % respectively. The gencral
internal state is the Wigner monomial'®, a product of powers of , £&. The
elementary scalars are B = =(0,1,1) =7, § {"62773 , = (1:10,:1)4

=(1,1,0). The van der Waerden mvarlant is® a product of powers of the
B’s. The correspondence is B, ~ 7, B, ~ £ B isto be ignoredin setting
up the correspondence.

SU(3) has two fundamental IR’s; the three states of the first may be
written 7) = l\ 1>,&= IZ » L= 13> , with weighes (1/3,1/2),(1/3, - 1/2),
(- 2/3, 0) respectively, and those of the second may be written

* 1 * 1 *
C—|2>» _é: ”‘3>=T) - 3>7

with weights (2/3, 0), (- 1/3, 1/2),(-1/3,1/2). Because 17 +§§ + E?;

is a scalar, states contalmng powers of it are redundant. §§ can be re-
placed by 'r;T) + LI" for the purpose of labeling states and &, f regarded
as incompatible. The general SU(3) state is represented by a power of £
or & multiplied by powers of the other four variables. The elementary

scalars for SU(3) are!?
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Bu = (10,01,00) = TIIT)Z+§1 §;+ C1?;; 2 Bza = (00, 10,01),
B,, = (01,00, 10), B, =(01,10,00), B,, =(00,01,10),
B, =(10,00,01), c* =(01,01,01),

¢ =(10,10,100= |71, 7, n,| .

(1)

They are not all independent: ¢c* can be expressed as a linear combination
of Bg2 823831 and 321832813 ; hence C, C* should be regarded as incompatible
and products involving both discarded as redundant. The general van der
Waerden invariant is represented by a power of C or C* multiplied by arbitrary
powers of the B’s. The connection between elementary scalars and funda-
mental IR states is B, .~ 7, B~ [, Cc~ €, B, = LY B, il c*~ £

[t is apparent that for §U(2) and SU(3) the correspondence between
the general van der Waerden invariant and the general internal state is the
one implied by Speiser’s theorem, at least when, on the one hand, the Speiser
diagram involves no spilling and when, on the other hand, the Cartan labels
of J, are large enough to allow information of products of elementary multi-
plets corresponding to all internal states of Iy (the two conditions can be
shown to be equivalent). The proof that the elementary scalars(1) continue
to give a complete non-redundant set of couplings when spilling occurs is
relegated to an appendix.

3. SU(4)

SU(4) has three fundamental IR’s, (100), (010) and (001). The four
states of the first may be written 71 = '1>, &= IZ>, [=13>, 6= |4 >

with weights (1/4,1/3,1/2), (1/4, 1/3,-1/2),(1/4,-2/3,0),(-3/4,0,0) The
six states of the second may be written
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ISRV IS

the four states of the third may be written

1\ 1 1 2
2 ), L 2 N, &= 3>, Y= 3>-
a/ 4> 4 7 4

1
The woizhts are additive; e. g., the weight of a = I > is the sum of the
4

welghtsofn-—ll>andt9—‘4> .

The scalar nn* + ££ + C?’ + 06" aIlows e, é‘ to be regarded as
incompatible and the scalar aa® + 58 + ’y'y allows f3, ,B to be considered
as incompatible. There is a(001) quartet formed from (010) and (100) and a
(100) quartet formed from (010) and (001) ; because of them the followmg
pairs of states may be regardcd as incompatible: a, £; a, {; 8, {; ﬁ &
U-* f Q B, f ﬁ Q Twelve types of state may be distinguished,
each represented by a produc[ of powers of nine (= % (r+1/)) variables; the
variables are 7, "r; v, 'y g, 9 together with one of the foIlowmg twelve
sets of three: a§a,a§§ af £ afl La" B a *BE, BETL, ad' B,
aa ,8 BELT, ELLT, £ L. It can be verified straightforwardly that the
states thus defined are independent and have the correctnumber, i. e., imply

the correct dimension formula for SU(4) .
The elementary scalars for SU(4) are

A, =1(000,010,010), A2 = (010, 000, 010), A, =(010,010,000),

B,, = (000, 100,001), B,, = (000,001, 100) , = (001, 000, 100),

¢, =(010,001,001), <€  =(001,010,001),

2

B

B , =(100,000,001), B, = (100, 001, 000), B, = (001, 100, 000) ,
c, =(001,001,010),
D

b, =(010, 100, 100), b, =(100, 010, 100), = (100, 100,010),

E, =(101,010,010), E, =(010,101,010), E, =1(010,010,101).

(2)
They are not independent, for C; D is a linear combination of E B, G and
A BkBk ; C;E; is a linear combmauon of C.A B, and C,ALB, o> D,E; 1sa
linear comblnauon of D A B ; and DkA Bk: 3 I'l“"T is a linear combinanon of



SU(4) van der Waerden Invariant 209

A,Cy D, and ‘A‘x’AjBx'ijz' * In the above 7jk are 123 in any order. Accordingly
we regard C;‘Dj » C;E;, D,E, ,E.E. as incompatible pairs; products containing
both members of any pair are to ée discarded. Fourteen types of van der

Waerden invariant may be distinguished, each represented by a product of
powers of twelve elementary scalars; the scalars are the three A’s and six
B’s together with one of the following fourteen sets of three: ¢ C,C

D‘l'DzDs' (‘1 (’2 {?3 g C2(‘3‘["‘71’ {“3 Cl Ez ! 01D2E3 E Dz L?SEl ’ DSDIE2 "C_x DIE?.’
(,lll’)lf?3 . C2[)2!:l y C2 DQE3 » C, DJE] » Cy DsEz . An invariant containing fewer

?

than three C’s, D’s and E’s may belong to more than one type; to make the
types mutually exclusive we assign such an invariant to the first type for
which it qualifies in the above list.

When obvious symmetries are taken into account there are just three distinct
types of van der Waerden invariant. Thus the first two types above differ
only by conjugation. The third, fourth and fifth differ among themselves
only by a relabeling of IR’s and from the sixth, seventh and eight by conju-
gation. The last six differ among themselves by a relabeling of IR’s. The
indices of the powers of the scalars in each product are the needed twelve
(= % (r+3/)) labels, nine IR labels and three degeneracy labels.

The connection between elementary scalars and fundamental [R states
is A,~ ¥, A~7,By~7 B, ~8, B, ,~m, B, ~0", ALY c,~a,
Csm C‘ ? Dz ~ C’ Dlma', Dsw ! Ezw‘ﬁ’ ESNB*; st ! Baz and Al -y
ignored in setting up the correspondence. Then the ten types of van der
Waerden invariant which do not contain the elementary scalar E | are seen to
correspond respecrively to the first ten types of internal state. The elementa-
ry scalar E, is bilinear in th*e (100) and (001) states of IR number 1 and should
be made to correspond to {{ . Since the elementary scalars D_ and C, which
correspond to { and C,* respectively are incompatible, F_is needed to provide
invariants corresponding to states containing both { and . Thus the invari-
ants*of type C, D.E correspond to states of type 55@" in which the degree N
in L is greater than that in {; Those of type D, D E correspond to type &1L
in which the degree in ( is greater than or equal to that in Q*. Similarly
invariants of type C_D E  correspond to states of type f* CC* with degree in
I greater than that in z* and those of type C,C,E  correspond to type §* C,C*
in which the degree in r¥is greater than or equal to that in {. The corre-
spondence between product IR's and internal states is therefore complete,
in agreement with Speiser’s theorem, at least when there is no spilling. The
demonstration that the van der Waerden invariant is com plete and non-re-
dundant even when spilling occurs is given in the appendix.

K. Ahmed and one of us (RTS) are using van der Waerden invariants
as presented here to calculate SU(4) D SU(2) x SU(2) Wigner coefficients for
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certain simple couplings involving no degeneracy. An attempt is being made

to derive van der Waerden invariants for other groups.

10.
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RESUMEN

Se encuentra una solucién para el problema de clasificacion externa
en SU(4), que es simétrica hasta una fase, construyendo explicitamente el
invariante general de van der Waerden, como un producto de escalares ele-
mentales.  Se demuestra la conexién entre la multiplicidad externa y la inter-
na exhibiendo la correspondencia biunivoca entre productos de representacio-
nes irreducibles y los estados internos. Se tratan igualmente, a manerade
ilustracion, los casos de SU(2) y SU(3).
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APPENDIX

The van der Waerden invariants given in the body of this paper for
SU(2), SU(3) and SU(4) were justified by demonstrating, with the help of
Speiser’s theorem, that they imply the correct Clebsch-Gordan series for
Ii® Jsi the demonstration is valid only when the Cartan labels of J, are so
large that the weight diagram of_]1 centered on the heaviest state of e
does not spill into the region of negative Cartan labels, or equivalently, that
products of powers of elementary scalars can be formed corresponding to all
states of by 8 The purpose of this appendix is to extend the proof to the case
where spilling occurs. Because of the desirability of extending the
treatment to higher groups we would like to present an elegant, general
proof; since we have not found one, the following cumbersome, specific
demonstration is offered.

Nothing further needs to be saidabout §U(2), since ifthereis spilling
for J ® ], there is none when the roles of J and J  are interchanged.

Speiser’s reflection and cancellation rules are based on the fact that
the character function, characteristic function, or dimension formula changes
sign when the arguments (Cartan labels, not group transformation parameters)
are reflected in a hyperplane A, = = 1 (A, is a Cartan label). When summing
over the character, characteristic or dimension, then, it is legitimate to re-
flect the lower limit of the sum in a hyperplane /\:. = 0 (only alternate integer
values of A, appear in a line perpendicular to A, = 0); the terms omitted or
added by reflecting the lower limit all cancel. Our proof will consist of
showing that by the use of such reflections all lower limits on sums due to
the smallness of the Cartan labels of J, may be removed and only those ap-
propriate to J retained. It then follows that our van der Waerden invariant
implies a character or dimension for J,® ], given by the same mathematical
formula which holds when the labels of ], are large and there is no spilling;
it is known of course that this formula, just the product of the characters or
dimensions of ]1 and ]2 , 1s the correct one.

Consider SU(3) first. Since the elementary scalar B g (10, 01, 00)
is a scalar in the 3-variables and compatible with all other elementary scalars,
it is apparent that the product IR’s in (pl, q1)®(p2 ; qz) containing it as a
factor are just the IR’s in the product (p, - 1, ql)g(pz, q, - 1); a similar re-
mark applies to le (¢ and 4 are the Cartan labels for SU(3)). Hence we
omit the scalars B and le from our list and recognize that the product [R’s
that remain should be those of 2, ql)a(pz, g =P 1 ql)®(p2, g, ~d)=
(p‘, g9, -De(p, -1, qz) t(p, -1, g l)@{pz- 1, q," 1); this trick simplifies

the proof considerably. Those subtracted van der Waerden invariant con-
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taining the elementary scalar C to the power a vield prcduct IR’s with

(p.q) = (p+p—2a g *q,ta), 0<a\<m1np 2, These IR’s lie on a
line perpendxcular to p = 0 and the IR with’ iowestp 1s either (p, - P 4, a,tp)
or (;:,- b, q,tq,*t pz) which are images of each other in B = i) (to reflect
in' P =0 substxtute - “t, 9 gtp). Similarly the subtracted van der
Waerden invariants with € lie in a line perpendicular to ¢= 0 and the lower
limits on ¢ implied by q, and g9, are images in ¢ = 0. To complete the argu-
ment. one can verify that the elementary factors lead to the correct character
or dimension formula for those boundary cases in which one of P,:9,:2,:4,
vanishes.

Turning to SU(4) we drop the elementary scalars A, B, B, which
are scalars in the 3-variables and consider the appropr;ate tnpiy subtracted
character or dimension formula. For ease of reference we call the fourteen
tvpes of invariant defined in § 3 W, to W, in the order in which they appear
there.

The the product IR’s (Auv) corresponding to W, and W, are those
lying in the hexagonal face

3A+ 2,u.+v=3(?\1+P\2)+2(p1+p2)+vl+v2

of the Speiser diagram. Their distribution on the face and their properties
under reflection in &t = 0 and v = 0 are identical to those of an SU(3)
Speiser diagram with u, v playing the role of p, 4. We conclude that W
and W_ taken together have the reflection properties required by Speiser’s
thc—orem W, and W, behave like W and L with the roles of X\ and v inter-
changed.

We divide the remaining ten types of invariant into two sets of five
each, the first set including Wﬁ H’s, W Wm’ _— the second W W7 ; 11 ;
W+ W, - Each of the ten types dehnes a three-dimensional sub region of
Auv space in which the points Auv form a regular lattice with unit multi-
plicity. The five sub-regions of each set fit together with no over-
lapping to form a single region of fairly simple shape. Since the two regions
go into each other on interchanging the IR’s 1 and 2, it is necessary to
discuss in detail only the first region, R, ,comprising A

R, consists of the region of ALY space common te two volumes, whose
lower boundaues are determined by the Cartan labels of the first and second
IR’s respectively and whose upper boundaries are common. The common
upper boundaries are the three planes
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At2utvEAtA F2(p tp)ty ty,,
)\+2,u.+31/\<h]+?\.2+2(,LLI+;42)+3(V‘ +v2),

At 2utvS3(At Apt2(p, tp)ty Ty,

The lower boundaries set by P\l ) fyy V, BIE
At2u 33Uz At A b2, ) t3v,-y,
3Nt 2utvr2 3?&2—>\1+ 2(u, +,u2)+v] tv,,

AtvEA tA t2u ty Ty,
while those set by A, i, , v, are

?\+2;J,—VSP\]+P\2+2(,u.1+,u2)+3v2—v1,
-At2utvg 3?\2—)\1+ 2(u tp )ty Ty,

P\+2,u+v3)\l+)\2+ 2,ul+vl+v2.

We want to show that either set of lower boundaries may be dropped.

First consider dropping the second set of lower boundaries, those
determined by A, u , v, - Reflect the first of the three planes in v =10
(A=A, p—=puty, v -v). Itgoes into the first lower boundary plane of
the first set; moreover the other two planes of the second set are invariant
under this reflection (i.e., perpendicular to v = 0) and may be extended if
necessary to the new boundary. Next reflect the second boundary of the
second setin A=0(A~-A, u ~putr, v—v). It goes into the
second boundary of the first set, while the remaining third plane is invariant
and may be extended. Finally reflect the third boundary of the second set
in = OA=AY L, u, u—=-pn, ¥V +Hi); it goes into the third of the
first set. To justify dropping of the first set (and retaining the second) the
same three reflections are performed in reverse order. The second region,
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R, , need not be discussed separately, for it differs from the first only in the
exchange of IR labels 1 and 2.

Since we are considering a subtracted character or dimension function,
or Clebsch-Gordan series, it is necessary for completion of the proof to
verify those boundary cases with one of )\1, Hoyo Vs ?\2 My o Y, equal to
zero. This can be done by methods similar to those used above. The de-
tails are considerably simpler and are omitted here.



