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MONTE CARLO STUDIES OF A CLASS OF REAL SYMMETRIC MATRICES
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ABSTRACT: A class of ensembles of real symmetric matricesH is defined by
H = A..‘:Al + 52‘4;‘%2 where the A are real asymmetric matrices

whose elements are independent Gaussian random variables.
By means of Monte Carlo calculations we study the density and
spacing distributions of the eigenvalues. For all values of fz
considered, except for a statistically insignificant fraction,
the eigenvalues all lie within a finite interval, near the ends of
which the behaviour of the level density disagrees with what is
observed for nuclear levels., On the other hand, the nearest-
neighbour spacing distribution correspondstothe Wigner surmise.

The results for higher-order spacings are also discussed.
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[. INTRODUCTION

For the study of the spectra of complex quantum-mechanical systems
an ensemble of Hermitian random matrices is introduced, with the hope that
such an ensemble can represent the statistical properties of the Hamiltonian? .
Averaging over the ensemble, one obtains the level density —a global property —
and the spacing distributions — local properties.

Many different ensembles of random matrices have been proposed? . So far,
however, none fits the experimental data more than partially, nor is there an
adequate theoretical basis for choosing among them. In this paper we ana-
lyze numerically the properties of a further ensemble recently proposed by
Wigner?.

A weakness common to most of the ensembles suggested up to now
is that they do not take into account the fact that a quantum-mechanical
Hamiltonian has a lower bound to its eigenvalues. Wigner's proposal reme-
dies this defect, by defining the ensemble of matrices

#=Red A (1)

where A is an asymmetric complex matrix, the real and imaginary parts of
whose elements are independent random variables, taken from a normal distri-
bution of width one . If A, is the real and A, the imaginary partof A, H can

also be written as
o =ATA A X (2)
TR 2 2

where A'T is the transpose of A, .
In the next section we giv. the results of a Monte Carlo calculation
for the ensemble (2). We discuss both the level density (which we compare

. ¢ *xk w 1 » z
with the theoretical resules” ") and the spacing distributions.

2 P 2
In the SIAM Review, Wigner4 had proposed a simpler form: H = A” where A belongs
to the Gaussian orthogonal ensemble. However, the density follows the iaw

. % , 5 . .
(B 15 , which is not equal to the quarter-of-circle law and does not agree with

the experimental da:
" B the following paper by F.]J. Dy son®.
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In section III we consider a gcneralization of this ensemble, where

H = ATAlJ» gy

= 2

TA; . (3)

This corresponds to selecting the matrix elements of Al from a normal distri-
. ¥ !
bution of standard deviation 1, and those of A, = £A from one of standard

deviation £ .

1. MONTE CARLO CALCULATIONS FOR & =1

We first generate a number of matrices according to the prescription
(2) and then diagonalize them by the Housecholder—Givens method.

To determine a suitable value for the dimensionality N, the density
distributions for various choices of N were fitted to the theoretical curve®
for N — oo ; the probabili[ies of the corresponding values of X2 are shown in
Fig.1l. Since Dyson’s theory predicts abrupt limits to the region where the
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Fig. 1. P(X?) § w2 fi ;
g L i t ,_“) from the %" fit of Dyson’s theoretical distribution to the level-
density histograms for different dimensionalities N
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theoretical frequency differs from zero, we have used only the eigenvalues
falling within this region for the calculation of x%. The two tails falling

outside the allowed region

3 =22 . & EE AT (4)

correspond for all N 2 5 to approximately 0.12 eigenvalues per matrix; this

number is independent of N. This, as asserted by Dyson5 , 1s in qualitative
agreement with the result found by Bronk® for the semi-circle distribution of
the Gaussian orthogonal ensemble, except that the probability is in our case
twice as high. It is this fact which enables us to ignore the tails and to ob-
tain the data of fig. 1, from which we may conclude that N = 30 is already

and excellent approximation to the limit N = o . The Kolmogorov-Smirnov7

test applied to the data confirms this conclusion. We have therefore used

this value N = 30 for more extensive calculation.

We show in fig. 2 the histogram for the level density from a set of
800 matrices with N = 30. The units used were € = E/(2N). We can sece
that the Monte Carlo data follow the theoretical curve rather well.

We now turn out attention to the k-th neighbour-spacing distributions
p (k; s) for the same data as above. The histograms for p (k;s) were ob-
tained numerically by selecting only one k-th neighbour spacing from each
matrix of the set of 800.

For £ = 0 three different cases were considered. In the first one,
we constructed 2 (0 ;s), with s being the difference in energy between the
ground and first excited states of each matrix. The result is shown in fig.
3, where the histogram is compared to the Wigner distribution

P(O;s):?sexp[—;_wsz], (5)

which is obeyed very closely by the Gaussian and circular ensembles® . For
our data, the fit is such that P(%?) = 0.15. (Most of the discrepancy arises
from the first two classes; if they are joined, P (%2) = 0.82.) As a second
case we consider the spacing between the first and second excited states,
which yield a similar result (see fig. 4).

As a third case we have evaluated p(0; s) in the region near € = 1/6,
which corresponds to the maximum in the level density. The distance con-
sidered was the one between the two eigenvalues immediately above € = 1/6
for each matrix. Again the Wigner distribution is followed rather closely,
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as shown in fig. 5. Hete P(X?)=0.64. Over the 800 matrices considered,
the spacing is that between the (3.05 +0.65) th state and the next one.

For the highest-density region we have also analyzed p(k;s) for
k=1,2,3 and 4. Larger values of £ were not considered since then the
density varies appreciably. 7ne resulting histograms are given in fig. o,
where they are compared with the theoretical distributions for the Gaussian
orthogonal ensemble. For all £, the spacings were adjusted by a parameter
k so that their average value is equal (o % + I, as it should be were the

density constant. The values of ’)‘k are also given in fig. 6.
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Fig. 3. Nearest-neighbour spacing distribution p(0; s) for 800 matrices with
N = 30 and s equal to the difference between the ground and first
excited states in units of the mean spacing. The smooth curve is
the Wigner distribution (5).
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Fig. 4. The distribution p(0 ; s) for the same set of matrices as in fig. 3 but o
with s equal to the difference between the first and second excited o
states, The smooth curve is the Wigner distribution (5). =
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Fig. 5. The distribution 2(0;s) for the same set of matrices as in fig. 3. The
smooth curve is the Wigner distribution (5). Herep(0:9) s evaluated
in the highest-density region, as defined in the text,
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The distribution p(k;s), k = 1,2, 3,4, for the same set of 800 matrices
as in fig. 3; the theoretical distributions correspond to the Gaussian
orthogonal ensemble. Here p(k; s) is evaluated in the highest-density
region and A, is a parameter whose value is adjusted to correct for vari-

ations in the density.
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III. MONTE CARLO CALCULATIONS FOR £=1

Two cases, £=2 and £ = 5, are considered. For both a set of 400
matrices with N = 30 was analyzed. Infigs.7 and 8 we show the eigenvalue
density for £ = 2 and £ =5, respectively. The density is shownas a function

of €, where

e=_E (6)
N(1+&%)

which was found to give the centroid at € = 1. We can see that the general
behaviour of the density is like that for £ = 1, except that the maximum of
the density increases and shifts towards smaller values of €, as & increases.

Values of £ < 1 have not been considered, since the results for &
are equivalent to those for 1/£ except for a change of scale in the abscissa.
Hence the conclusions obtained from &= 2 and £ = 5 hold also for £ = 0.5
and £ = 0.2, respectively. Furthermore, as &~ oo the density tends to the
same limit as for £ = 0, a case for which theoretical results have been de-
ri\'cds.

We hay e also analyzed the nearest- neighbour spacing distribution for
the two values of £, for the region around the second eigenvalue. The
results are shown in figs. 9 and 10. As we can see, the Wigner distribution

is followed quite well.

IV. CO..CLUSION

As can be seen from the results we have given here, the ensemble
of matrices (3), for all values of &£, does not reproduce the nuclear global
density of levels. The local properties, on the other hand, are similar to
those predicted by the Gaussian orthogonal ensemble which, it seems, are

; . . 9
in reasonable agreement with the experimental data”.
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Fig. 7. Level density for a set of 400 matrices with N = 30 and £ = 2.
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Fig. 8. Level density for a set of 400 matrices with N = 30 and £ = 5,
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Fig. 9. MNearest-neighbour spacing distribution p(0; s) for a set of 400 matrices
with N = 30 and £ = 2, compared with the Wigner distribution
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F.c. 10. Histogram for #(0; 3) obtained for a set of 400 martrices with N = 50
and £ = 5, compared with the Wigner distribation.
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