Revista Mexicana de Fisica 20 (1971) 231- 237 231

DISTRIBUTION OF EIGENVALUES
FOR A CLASS OF REAL SYMMETRIC MATRICES

Freeman J. Dyson

Institute for Advanced Study, Princeton, New Jersey

{Recibido: noviembre 18, 1971)

ABSTRACT: An ensemble of real symmetric matrices H is defined by

H = Re(M+M), where Mis an asymmetric complex matrix whose
elements are independent Gaussian random variables. Using
the theory of Brownian motion, the probability-distribution of
the eigenvalues of H is determined exactly. When the order of
the matrices tends to infinity, the density of eigenvalues in the
neighbourhood of E tends to x™ ! (6x -1 -xz)%, where x = 3(E/E)
and E is the mean of the eigenvalues. The density is zero in

the interval 0 < E <(3/2 = \/3) E.

I. STATEMENT OF RESULTS

Bohigas et al (see the preceeding paper! have calculated numerically
the eigenvalues of matrices chosen by a Monte Carlo technique from an en-
semble suggested by Wigner? as a possible statistical model for a nuclear
Hamiltonian. We here analyze Wigner's ensemble by constructing a Brownian

motion model for it, following the method of Dyson:’. The Brownian model
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leads to a simple and exact determination of the distribution of eigenvalues.
The results agree in detail with the calculations of Bohigas et al.
Wigner’s ensemble consists of matrices H of the form

#H=ReM'My=aT4+87B (1.1)

where
M=A+iB , (1.2)

and A, B are real asymmetric matrices whose elements are independent
Gaussian random variables with equal variance v. The ensemble (1.1) is the
case k = 2 of the ensemble Wk defined by

k
H= % (A A), (1.3)
= r r

where & is a positive integer and the A are £ independent real asymmetric
Gaussian random matrices. Let N be the order of the matrices A and H.
Our results are as follows. The joint probability distribution of the eigen-

values (_El, R EN) of a matrix H in Wk is

N
7 7 = ?a' - F = A
p(hl,...,kN)—(kNjgl{Lj exp f:j/zy)}‘_l;[j|r_’. E |
where
az-;[(k—l).’\wl] (1.4)

and ¢, is a normalization constant. The limiting form as N = = of the single
single-eigenvalue density distribution for W, is

I/

O(E) = 2mux)" ' 2k +D) x=(k-1)2-x2) " a<x<b,

pP(E) =0, x<ag or xX2b, (1.6)
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whiee
x=(E/Nv), (1.8)
a=E-1", (1.9)
b=(E+D)" . (1.10)

The distribution (1.6) has its centroid at

E = kNy (1.11)

and its peak at

E__=G-1"E/kk+1) . (1.12)

m

For k = 1 the density decreases monotonically from infinity at E = 0 to zero
at E = 4E . In this case, which was also briefly discussed by Wigner*, the
eigenvalue distribution is identical to that found by Bronk® for the ensemble
of complex Hermitian matrices

H=MM . (1.13)

When expressed in terms of the variable F# instead of E, the distribution be-

comes a quadrant of a circle. For k£ = 2 (the case suggested by W!gner2 the

distribution is still extremely unsymmetrical with its peak at Epax= 176 E.

When k is large the d:smbunon tends to a semi-circle with cen ter at
=(k+1)Nv and radius Zk Nu.

According to Bronk®, the probability that a single ecigenvalue lies far
outside the limits of the allowed interval (1.6) tends to zero extremely rapid-
ly as N = = . Bronk proved this for the usual Gaussian matrix ensemble for
which the distribution of eigenvalues is a semicircle. His argument extends
with only minor modification to the cases considered here. Hence the ratio
of the largest to the smallest eigenvalue of the matrix(1.3) tends with proba-
bility 1 to the definite limit
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(b7a) = (VE+ 1 Ve -1)"" (1.14)

as N oo . In particular, for the Wigner ensemble (1.1) this ratio is

(b/a) = (V2+1)* = 33.97. (1.15)

II. PROOFS

The matrix elements of H are given by (1.3) as quadratic forms

(2.1)

in the random variables Amm The ensemble Wk is the unique stationary
state of the Brownian process in which each Amm is independently fluctu-

ating according to the rules

<SA__ > =-ylA_ & , (2.2)

rmn

>=28 8. 8. 6t . (2.3)

rs im jn

<8A .. 8A

rif smn

The fluctuation of the eigenvalue I:’j of H is given by second-order pertur-

bation theory,

-1 s
1 (I:]. - E;) SH}.‘. of,. (2.4)

= o T ;
SE]. SHN i3 Jj

in the representation in which H is diagonal. We substitute (2.1) into (2.4)
and calculate the ensemble averages to first order in &f using (2.2) and (2.3).

In this way we find

2
(E; - B (E; t Ep]

<8E. >=25 [EN-v'E.+ 3
I Tt (2.5)
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< SEI.SP.‘]. >=85 I:‘]. 8’.]. (2.6)

The Brownian process defined by (2.5) and (2.6) can equivalently be de-
scribed by the Ornstein-Uhlenbeck equation

B |

% -35_9_[28m %
ot OF, L f?f—.‘j

oy . o 5 tigaedl
~(k-DN+1-0" 20 3 (8B p)

1#£
{2.7)
for the time-dependent joint distribution function p | E ..., Ey,t) of the
eigenvalues of H. The stationary solution of (2.7) must satisfy
=1 1 1
/E)=(aE. -1+ 3 k. _E) ;
( p/aF]) (aF} 2 o ~E) e, (2.8)

i

with a given by (1.5). The distribution (1.4) is uniquely determined by
(2.8) . This proof of (1.4) succeeds because the ensemble averages (2.5)
and (2.6) involve only the eigenvalues of H and not the individual matrices
Ar. If for example the various Ar had occurred in (2.1) multiplied by un-
equal coefficients, we could not have eliminated the A_from (2.5), and
this method of deducing the eigenvalue distribution would have failed.

The distribution (1.4) is the canonical equilibrium state at tempera-
ture T =1 of a classical Coulomb gas of N point charges, with the potential
energy

8
Il
M =z

((E;/2v) —alog E.)- 3% log |E, - E.| , (2.9
j=a ! Py ! 2
frce to move on the semi-infinite line 0 < E, <o . As N = s the Coulomb
gas car be approximated by a continuous charge-distribution p (E) with
('ll(‘rg_\'



236 Dy son

w = ;_f(u"E-r_k-l)N log E) p(E) dE

= ;—Ulog |E- E'| o(E) p(E')dEdE" . (2.10)

The single-eigenvalue distribution-function p(F) is the unique non-negative
function which minimizes (2.10) subject to the constraint

Jp(EYdE =N . (211}
Suppose that p(F) is non-zero in the interval

Nva <E <Nuvb . (2:12)

In this interval it must satisfy the condition obtained by minimizing (2.10) ,
namely

_I-(E-z)'lzp(z)dz=;_v'lE—I_(k+1)N : (2.13)
2

But (2.13) is precisely the equation which defines the semi-circle distribution
for the function Ep(F), regarded as a function of the variable (F - (k+1)Nv),
(see Wigner’). Thus

oly)= [(y- z)'lz,o(z) dz

! |

b o
e [y -(y - Nuvh) Z(y - Nva) 2]

-Lk+DN (214
Z 2

is an analytic function of the complex variable y in the plane cut along the
interval (2.12) . Its imaginary part on the cut is

Im p(E tie)= ¥ mEp(E) . (2.15)
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Letting y — = in (2.14) we find

a+tbh=2{k¥1) = (2.16)
Letting y = ( and using (2.11) we find
(ab) =k-1. (2.17)

Eq. (2.16) and (2.17) imply (1.9) and (1.10) . From (2.14) and (2.15) it follows
that p(F) has the form (1.6) . This complcies the proof of the statements
made in Section I and in the bastract of this paper.
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