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I. GENERAL THEORY

C. Marmasse

Facultad de Ciencias,

Laboratorio de Biofisica, UN AM

{Recibido: agosto 3, 1971)

ABSTRACT: The problem of measuring the degree of concordance between
a mathematical structure and a set of experimental data is
examined. It is solved after an iterative fitting of the data
to a lincarized form. The method permits an easy evaluation
of various fiducial boundaries. Inparticular itis shown that
the degree of concordance sought can be measured by means
of only one parameter. The latter can also be used to testthe
homogeneity of a set of dara with respect to a given mathemati-
cal structure.

I. INTRODUCTION

A new type of problem concerning the numerical exploitation of experi-
mental data has become more and more acute: the problem of the selection,
based on quantitative and objective cirteria,between various possible mathe-
matical structures in order to represent in physical terms a given sec of

experimental data. In particular, it isthe fundamental and classical problem
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of physical research; however a new dimension is added because in many
cases only a relatively small number of points is available. This in turn re-
quires the development of a well- adapted fitting procedure.

The need for such a method is best demonstrated by a numerical ex-
ample. The equation which describes the inhibition of an enzyme by an ex-
cess of its substrate has been given by Haldane ¥ as

v K
max 14 .M % 5 (1)
v s ss

where v is the initial velocity of the reaction, s the concentration of the substrate
and v, Ky and K¢ ¢ three paramcters. The basic problem is to determine

these three parameters. Extrapolation and trial and error methods which have
been extensively used have proved of doubtful value. On the other hand, an
approximate method, known as the linear method was described earlier®. One

can also rewrite equatlon ) as

K
Loy A & & _ & % (2)
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and interpret (2) as a bilinear regression of the dependent variable 1/v onto
the two independent variables s and1/s. In these conditions, a fitting of the
experimental data to (2) by means of a conventional least squares method will
furnish estimates of the three parameters. But Haldane's equation can also

be written as

K 2
s "M 4+ s 4+ 5 ) (3)

v v v K

max max max SS
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This relation can be interpreted as a quadratic regression of the
variable s/v onto the independent variable s; therefore a fitting of the exper:-
mental data to relation (3) by means of.;a conventional least-square me thod

will also furnish estimates of the: three parameters.

.
The notation used here is that of Bray and White (2)
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TABLE 1. Hydrolysis of acetylcholine chloride by
acetylcholinesterase from Helix blood. These data,

borrowed from Augustinsson

4

, are expressed in arbi-

trary units and have been corrected for non-enzymatic

hydrolysis.
s v
14.8 120
49.3 356
148 419
493 413
1479 324
4928 194

TABLE 2. Estimates of the parameters obtained by
various methods of fitting the data of Table 1. The
results are given in the arbitrary units used by

Augustinsson.”

Fitting 1o KM KSS
Linear method 636 61.6 2100
To equation (2) 467 18.3 3514
To equation (3) 606 56.7 ,.2281

The result of the fittings of the data of Table 1 are presented in
Table 2. The existence of very large discrepancies between the estimates
illustrates the need for careful and more elaborate analysis of the experi-
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mental data. This conclusion is reinforced when one notes” that in the
case at hand, the “correct” values are

biax =543 Ky = 2430 Kgg = 345

m

It is therefore clear that the straightforward use of a least square
procedure is unsatisfactory, since it leads only to a dead-lock; a more so-
phisticated approach is necessary.

First of all, one needs a fitting procedure which is both efficient
and unbiased; the more so as the sets of experimental data available often
contain but a relatively small number of points. Under these circumstances,
one cannot afford to let uncertainties, not accounted for. creep into the
calculations, as the effect of these uncertainties could be unexpectedly
magnified at a later step of the analysis.

This is not, however, the end of the matter. It is extremely important to
obtain fiducial limits for the computed values of the parameters. In practice,
this second aspect is crucial. The central problem is to assess the degree
of concordance (compatibility) between a given set of experimental data and
a given mathematical structure. A second problem, most commonly encountered,
is assessing the likelihood that two sets of experimental data come from the
same population.

Finally, a third condition should also be met, as far as possible: it is
clearly desirable to design the statistical procedure sought so that it can be
used easily, routinely and as automatically as possible without sacrificing
in any way the efficiency and preserving the absence of bias. In practice,
this means that this method should be easy to implement on a digital com-
puter and in such a way as to require but little computing time.

The first and third criteria point to an interative linearization pro-
cedure, weighted if necessary. It will be shown that this method has,
when the weights can be calcuiated”™, the great advantage of permit-
ting a quick estimation of those values of the kinetic parameters which are
statistically the best, and of leading to the easy construction of fiducial
limits. In addition, it permits the characterization, by means of one parame-
ter only, of the degree of concordance between a given set of experimental

data and a given mathematical structure.

L
See paper Il of this series and ref. 10.
*

For a set of examples in enzyme kinetics see ref, 5.
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2. FITTING PROCEDURE

As was pointed out in the last section, the general solution of the
problem at hand is to be found in an iterative linearization procedure. The
origin of such a technique can be traced back to Gauss and some ot 1ts
properties are well known. However as 1ts use in the particular context
brings to light quite a number of new problems, it shall be explicitely
treated. It will be noted that in accordance with the third criteria the
whole analysis is developed here in such a way that it can be easily
programmed.

Let us consider the function y of the r variables x

r;Kl’KZ"""KN)

and let us assume that we already know a set of approximate values

A A ?\

Kl, K,,...., Ky ; for the set of parameters {K Yu=1,z2, ..., N). The
set of the “best” values in the statistical sense w1ll be denoted by
{R}u = L, 2 , N). These values statistically satisfy
, o o

y=jfxl,x2,....,xr;kl,Kz,....,KN) : (4)
One can always define increments AK! (l=1,2, ., N) by means of the N
relations

~
AKI+}‘K[=K, PE L iy N (5)

We have, through substitution of (5) into (4),

) A A
y = f(xl,xz,....,xr; K1+AK1, K, +AK2, s 7‘KN +AKN) .
(4)
It will be noted that when the increments AK (73— P, (. , N) are zero, or
do not significantly differ from zero, the parameters K W=1,2, :5 N)

become equal to or do not significantly differ from the parameters

K(/—-IZ ..... N).
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Under proper conditions of convergence, equation (4) can be expanded,
within a domain ¥, as

_ AL A )
.y—[(xj,xz,....,xr; Kl, Kz""" Ky)
N N
+ X _f_ AKI+ 3 0K LK) . (6)
= a I,m = e
Equation (6) rewritten as
A, M A
)‘=[(x1,x2,....,xr; Kl, K2,...., KN)
N
X 9f
+ “‘A_AK 7
Pl (7)

'K

can be interpreted as a multilinear regression of the dependent variable y on

the (N + 1) independent variables

A
Pl A eennes B 1 Ky Ryggnensy Kyghuud _3%1——'1,2,....,1\:.
_ 3"k,

By fitting the set of experimental pomts to relation (6), values of the incre-

ments AKI (I=1,2,...., N) can be obtained and, in turn, better starting
+1
values » Kiu=12...., N) can be obtained by
Ml < O, S ERG 1= 1R wns s M-
The computation can be iterated and the increments AKI = 1,2, ., N,can

be reduced to zero or nearly so, within the domain 0.
However, the regression (6) is not a conventional regression in the
sense that the coefficient of the first independent variable, 7, e,

[lx o %y ey X5 K K K, ) must be equal to 1. In order to remove

12 2;""7
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this statistical constraint, we shall use the new dependent variable
z=yexp-f(xl,x2,....,x; K, K,...., KN)

where y_ _ stands for the observed value of y.

In the following developments we shall always suppose, except when
otherwise specified, that the structure of the function f is such that it has a
constant —or nearly constant — variance. Transformation techniques suitable
for achieving this result will be indicated later. rer B

In these conditions, one expects z to have a nearly Gaussian distri-
bution; and the closer to a Gaussian distribution, the closer the set of the
parameters {Kl} .

The new system to be solved is then

N
1]
n =
0)'0)
K""\
>
Re

zzyexp—f.

*
Let us define a real symmetric matrix T and a vector p by means of

N
L 9 of
b= I e IS

B 7 a

where n is the number of experimental points.

T et be A the vector of general element AK! . The normal equations
take tu

.
The reader unfamiliar with regression analysis may consult the works by Williams®
and/or Kendall’.
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TA =np
and therefore

1
L=T""p.

3. FIDUCIAL LIMITS

The total sum of squares is

a=1

As the regression hyperplane is mathematically compelled to pass through
the origin, there are only N degrees of freddom. On the other hand the sum
of squares accounted for by the regression is A * p. Therefore the residual
mean squares s? (variance) is estimated by

(n-N)s?= %lzi-ﬂ'p .

One will note that the variance so determined is the sample variance; within

the framework of the maximum likelihood theory, the best estimate of the
. . - ) - -

population variance is Bs? where o is the Bessel correction factor

Mn_ _n=N
n-N-1

The variance of the increment AKI is s° t” where lii is the general
element of T°'. As the {AKI} are normally distributed, fiducial limits can

be obtained as
AK, + st V1l (7)

where ¢ is the value of the Student t-distribution at the selected leve!l of
confidence.
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These estimates of the variance of the various increments can be
used to establish statistically the concordance of the computed values
K;,i=1,2,...., N, with the experimental data. It is sufficient to es-
tablish the statistical lack of significance of the increments AK,. ,i=1,2,....,N.
Such a test is exact because e null hypothesis defines a set of values K
under these circumstances, the regression is a N-linear regression on the
a priori given functions af/al(l.. In practice, however, the test described
hereafter is more efficient and more convenient.

The limits described by relations (7) are not simultaneous. The
probability that these limits are simultaneously reached is smaller than the
probability corresponding to the selected f point.

In order to eliminate this “loss of information”, one can set up a
statistical test for the simultaneousdeparture from zero of the N increments,
following Williams method.® Let us consider the quadratic form

N
0 = §=; s, L\KiAK]. tii s

P ojE1

which is a form with N degrees of freedom. Therefore, the ratio QQ/(st) is
distributed as F with N and n-N degrees of freedom. It follows that the
fiducial boundary at a given probability level is given by

Qn = Ns?F .

Clearly this relation also defines the fiducial boundary for the set of
the {KI.) at the probability level. The physical meaning of this fiducial
boundary can be described as follows:

Given a set of approximative values K,,i=1,N a computed set of
increments A K. - that is to say also, a set of values K. . =K. +AK. -
_ _ v _ g i,improved ] 1
1s compatible at a given probability level with the experimental data, with

respect to a given mathematical structure, if they satisfy the inequality

L]

The reason why there are n-N degrees of freedom in this formula and not (n-N-1) as
in the classical formula, is that the regression is mathematically (as opposed to
statistically) constrained to pass through the origin.



248

Marmasse

We shall now derive from the form Q,a new form Q_; this permits the
assessment of the compatibility, at a certain probability level, of a set of
experimental data with a given mathematical structure by means of one para-
meter endowed with physical meaning. Let us first consider the quadratic
form defined by

(OK; - a, )(AK,. -a; ) i

where the a; represent a priori values of the corresponding increments AK‘. ;
An argument similar in all points to the one just touched on shows that Q is
distributed as F with N and n-N degrees of freedom.

Let us now consider the intluence of a simultaneous variation of the
increments by a certain fraction x of the accepted values of the corresponding
kinetic parameters. Then

and the form Q becomes
(AK’. - xK’.)(AK]. - xKI.) b -

Now the iteration is stopped when the |AK:. /K’. | are very small.
Therefore

AA". < xK;

when x is not too small, which is the usual case, and in these conditions
the form Q is not very different from the form Q_ defined by
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Let us put

Here Q; is a constant for a given set of experimental data and a given
mathematical structure. The fiducial boundaries are then defined by

x? Ox = NFs?
Let x, be the value obtained by giving to F the value one in the preceeding
equation. We have

Now the only meaningful values of F are those equal to or greater
than one. It follows that a simultaneous departure of all the parameters by
a fractional amount less than or equal to %, is compatible at any level of
confidence with the set of experimental data and tor the mathematical
structure considered. Or, in other words, the values of the parameters cannot
be trusted to have a simultaneous relative precision better than x - '

In a general way, simultaneous fiducial limits at a given level of
contidence can be calculated by

GAtx)=K;(1tx VF)

1

This formula clearly shows that the knowledge of the parameter x,
is sufficient to calculate simultaneous fiducial limits at any probability level
that is to say that X, is a practical parameter which characterizes the degree
of compatibility of a set of experimental data with a given mathemarical
structure,
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4, DISCUSSION

One will note that no restriction® was placed on the function [, save
that of having homogeneous variance.

Formally, this restriction is not much of a burden. Let us denote
the variance, if it exists, of a function g by var (g); then the new variable g/var(g)
has an homogeneous variance. It follows that if one substitutes z/var(f) and
[1/var(])] aj/aK!. for z and af/aKi. , respectively, the results of the pre-
ceding sections are most general. Inorderto analyze a physical phenomenon,
considerations of simplicity and convenience in accordance with the third
requirement laid down in section 1, may serve as guidelines for the selection
of an appropriate structure of f. The estimation of var(f) requires a careful
analysis of the physical nature of the measurements carried out. This is to
say that the weights of the regression are determined by the physical method
used to obtain the data analyzed; (for an example concerning the analysis of
spectrophotometric data, see ref. 8). This pointwhich is, in particular, most
essential for a correct interpretation of the x statistic will be discussed at
greater length in the following papers of this series.

The parameter" x can be used, in particular, to study the homogeneity
of a set of experimental data with respect to a given mathematical structure.
This comes from the fact that this parameter can be interpreted as a measure
of the goodness of fit; in this condition, if one decreases the importance at-
tached to a given point by means of an appropriate weighting factor, the para-
meter x will tend to decrease, all other things being equal, if the contribution
of this point to the variance is important, , e, if it ismuch different from the
others. A scanning of the experimental data by means of a systematic de-
pression of each point in turn, will thus enable one to identify anomalous data
(provided that variance of z 1s constant).

The characterization by means of the parameter x of the degree of
compatibility between one set o. experimental data and a given structure 1s
very efficient and convenient when no a priori information is available. If,
on the other hand, possible values for one or several of the parameters were
to be tested, the form Q would have to be used. In particular, this form is
advantageous to test if two sets of experimental data are distinguishable or

-
In addition to implicit assumptions of continuity for example.
»

L]
Note that the parameter x_ can also be calculated by means of the relation

1
Qi(xl) =ns?, This permits to relax somewhat the conditions 'AK', /Ki |<<1 wh en

they leud to a prohibitive amount of computing time.
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not at a given probability level and with respect to a given mathematical
structure. Attributing indices @ and b to the quantities related to the two

groups of data, we have explicitly

oK, !.)][AKQ .—(Kb’].-K )]

27 a,j a,ij

Let there be a lower limit @ of the level of confidence at which the

relation

F > Q[C‘E
N,m=N,a 7— 3
Ns

holds. Then a measure of the degree of compatibility expressed in % is
given by

8=100(1-a)

Coming back to the analysis of one set of data with respect to a
given mathematical structure, one will note® that one can take into account
the possible stiffness of the mathematical structure studied in some para-
meters by expressing the a; as

a = xp, K!.

where o, is a measure of the “desired precision” of the parameter K, .

Then the form Q (and the form Qk if the |AK:’ /K!. | are sufficiently
small) becomes a function of the P;, i.e. of quantities endowed with a
concrete meaning. This would enable one to study the effects of the rela-
tive precision of various selected parameters on the fiducial boundary for
the set of the parameters.

-
The author is indebted to the referee for this suggestion and would like to rake this
opportunity to thank him for many comments which have helped clarify this paper.
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Finally one will note that, as the fitting procedure described above
furnishes unbiased and efficient estimates of the parameters, simple sta-
tistical studies on the set of the ultimate {z'.} can give valuable results.
? are especially convenient.

. : : : 0
Such an analysis can be applied to the sequence of the signs of the {zl.} -

a repartition markedly different from a random distribution is indicative of a

The combinatorial formulae of the theory of runs

systematic deviation. In certain cases, this type of analysis can successful-
ly complement a scanning analysis performed with the ¥, -parameter.
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RESUMEN

Se analiza el problema de la medida del grado de concordancia entre
una esrructura matematica y un conjunto de datos experimentales. Es solu-
cionado después de un ajuste iterativo de los datos a una forma linearizada.
El método permite evaluar varias fronteras fiduciales. En particular, el gra-
{o de compatibilidad se puede medir por medio de un solo parametro, que tam-
bién puede ser empleado para probar la homogeneidad de un conjunto de datos
respecto a una estructura matematica dada.



