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ABSTRACT: The problem of measuring the degree of concordance between

a malhemarical structure and a sel of experimental data ís

examined. Ir is solved after an iterative fitting of rhe dala

ro a lin('arized formo The merhod permits an easy evaluaríon
of various fiducial boundaries. Inparricular ir is shown that

lhe degree 01 concordance sought can be measured by means

of only one paramerer. The ¡arrer can also be used ro resrrhe
homo,':eneity of a Sfi't af data with respecr ro a ,':iven mathematÍ-
cal strucrure.

I. INTRODUCTlO,,"

i\ IlCW ryp<.' of pwhlem conccrning rhe nurnerical explaitation of experi-
mental d.Ha has he come more and more dCU1(.': rhe problem of rhe Sí ¡eerion,
based on quanrirarive and objectivc cirteria.berween vacious posstbIc marhe-
matical srrucrurcs in arder to represcnt in physical rcrms a gívcn ser of
experilller.tal data. In panicular, it is the fundamental and classicaJ problcm
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of physical research; however a ne\\' dimension i5 added because in man)'
cases only a relati\'cly small Ilumber of poincs is available. This in turn rc-
quires the developrncnt of a \\'ell. aJaptcd fitting procedure.

The neco for slIch a method is bese d('l110nstratcu by a nUlllccical ex-
amplc. The equarÍon which describes che inhibition of an cnzymc by an ('x .•
C('ss of ¡fS substratc has bl'cn givcn by Haldanc I as

v K
max = 1+ ~ + s
v s K SS

t(1)

whcrc v is che inicial v('lucir)' of che rcactlon, s rhe concentration "f [he substratc
and tJ

ma
x' Kj\1and KSS [hree paramctcrs. The basic problem is to determine

thcsc [hree parametcrs. Extrapolation and [rial anJ error mcthods which have
b('cn extcnsiveh" uscd ha\'<: pro\'cd of doubtful \'aluc. On the other hand. an

approximatc me;hOtf: kn;;wn a~ the linear metllOd was described ear1ier3. One
can also rewrite equation (1) as

v t'ma,
+ 5

K t'SS max

+
st'max

( 2)

and interprct (2) as a hilinear regression of the dependent variable l/ti onto
the lWo independent variables s and] / s. In these conditions, a fiuin~ of the
experimental data to (2) by means of a conventional least squares Illctluxl wdl
furnish estimates of lhe three parameters.' But Ilaldane' s ('quatlon can also

be wriuen as

5 :
{Kit + 5

v l' V
max max

(3)

This relarion can he int~rpreted as a quadratic regression of rhe
variable s/v onto rhe independent variable 5; lher('fore a tittlflg of dl(' ('xpen-
Olelltal data lO relarion (3) by m(.¡lIls oLla cOllv('nrional least-square method
will .1lso furnish esumares of thc,tbrec parametcrs .

• The notation u.'i('d here 1:'> diat of Ihay and ~'hite (2)
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TABLE 1. Hydrolysis oí acelylcholine chlolide by
acetylcholinesterase from H eJix blood. These data,
borrowed from Augustinsson" , are expressed in arbi-
trary units and ha ve been corrected íor non-enzymatic
hydlolysis.

s v

14.8 120
49.3 356

148 419
493 413

1479 324
4928 194

TABLE 2. Estimales oí lhe palamelelS oblained by
valious mechods oí íilling ,he dala oí Table 1. The
results are given in the arbitrary un'its us~d by
Augustinsso'n.1 , ;

Fitting v KM KSSm••

Linear method 636 61.6" . . 'J, '2100
To equalion (2) 467 18.3'." 1

?514
To equation (3) 606 56.7 ,,2281
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The result oí [he fiuings oí the data oí Table 1 are presented in
Table 2. The exis[ence oí very large discrepancies between the estimates
¡Ilustrates the need íor careful and more elaborate analysis oí the experi.
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mental data.
cas(' al hand,

This conclusion is rcinforced
rhe (lentecer" \'<1lu(,5 are

w!lcn une notes'"

.\tarmasse

rhar in {he

l' ; 543max

Ir is therefofe cleae d1l:lt rhe straightforward use of a ¡caSI squacc

proccdure is unsatisfacwry, sinee iI Icads only lO a dead-Iock; a mOfe 50-

phisricarcd approach is necessary.
Fiest of a11, one needs a fittin~ procedure which is bodl efficiclH

and unbiased; [he more so as rhe sers of experimental data available ohen
contain hut a rclati\'('ly small number of poines. Under these circumstances,
une cannOI afforó lo le( unccnainties, nol account('d foro creen In(o rhe
calcularíons, as rhe eHcct of [hese uncercainties c(luld be unexpectedly
magnified at a Jalee SICP of rhe analysis.

This is nor, however, lhe eod of lhe matrer. It is extremeIy important ro
obtain fiducial limil~~ for the ('omputed values of the parameters. lo practicc,
this second aspect is crucial. The c{'ntral problem is to assess the degr{'e
of concordance (compatibility) between a givcn set of experimental data and
a given mathematical structurc. A second problem,most commonIy fficoumcred.
is assessing the likelihood that two sets of experimental data come from the
same population,

Finally, a third condition should aIso be met, as far as possible: it is
c1car1y desirable lo design the statistical procedure sought so that it can be
used easily, routinely and as automatically as possible without sacrificing
in any wa)' the efficiency and preserving the absence of bias. In practice,
this m('ans that this rnelhod should be ea s)' to implement 00 a digital com-
puter and in such a way as to require hut liule computiog time.

The first and third criteria point to an interative lincarization pro.
cedure, wcighted if nece~sary. lt will be shown that thls rn-=thod nas.
when [he weights can be calcuiated., th(, great advantage of permit-
ting a quick <,'stimation of those values of the kinelÍc paramcters which are
statistically lhe best, and of leading to the easy construction of fiducial
limits. lo additioo, it p('rmits the characterizalion, by.meaos of one param<>
ter ollly. of the degree of concordance between a given set of experimental
data and a gin'n math('matical structure .

• Se(' paper II of this s('rics and ref. 10.
o
For a ser of n:amplc .••in enzyme kinetics sce ref. S,
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2. FITTING PROCElJURE
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As was pointed out in the last section, the general solution of the
problern at hand is to be found in an iterative linearization procedure. The
origin of such a [echniqu(' can be traced back to Gauss and sorne O[ 1[ .•••

properties are well known. Ilo\\'e\'er as I[s use in the particular con[ex[
brings [O light quite a nurnber of new problems, i[ shall be explici[el)'
tre¡Hed. h will be nored rhar in accordance with rhe [hird cn[ena the
whole analysis is de\'cloped here in such a way rhar it can be easiIy
prograrnrned.

Le[ us consider rhe functiol1 y of [he T variables x

and le[ us assurne [ha[ we already know a ser of approxirnare values

\K l' \K 2' .... , \KN, for ,he sel of paramelers {K,} (f ~ 1, 2, .... , N). The
set of [he "best" vaIu('s in the staristical sen se will he denoted by
{K'}(f ~ 1,2, .... , N). These v,dues slalislieal!y salisfy

( 4)

Dne can always define incrernen[s 6K¡ (J:::; 1,2, .. ,., IV) by rneans of the N
relations

I :::;1,2, .... , IV . (5)

\Ve have, through subs[itution of (5) inro (4),

(4)
It will he no[ed [ha[ \\'h('n [he incrernen[s I1K¡ (/ == 1,2, ... " N) are 7.cro, oc
do nó[ significantly differ from zero, [he pararn('[ers ""K/ (J :::; 1,2, .... , N)

becorne equal [o or do nut significantly differ frorn [he pararne[crs
~
K,(f ~ 1,2, .... ,1'1).
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Under proper conditions oí convergencc, equation (4) can be expanded,
within a dornaio f), as

+
N

~
/ = 1

N

~
/, m =

o (ÓK/ ÓK ),, m
(6)

Equation (6) rewritten as

)' =j{x
1
,x

2
' .... ,xr; AK¡. AK2 • .... ,

N

+ ~ 01 ÓK (7)
/= 1 ~ /

/

can be interpreted as a multilinear regression of the dependent variable y 00
<he (N + 1) independent variables

I(x
l
, x,, . , . , ,x, ; "K" "K"",., "KN) and ~ I = 1,2, ' , . , ,N ,

O K/

By fitting the ser of experimental POIIIlS to relation (6), values of the incre-
ments 8.K/ (1 == 1,2, .... , N) can be obtained and, in turn, better starting

,,+ 1
vatues K, (1 = 1,2, ' .. '. N) ca'1 be obtaincd by

,,+ 1K
/ "K, + ÓK/ I = 1,2, ... , , N ,

The computadon can be icerated and (he increrncnts !1K¡ I == 1,2, .... , N, can
be: rcdliccd to zero oc ncady so, within lile dornaio 1).

However, che regression (6) is not a convencional regression in (he

sense mal the coefficient of the £irsl independent variable, i. r.

"" "¡(xl' .K
2
, .... ,.K,; K

1
, K

2
, .... , KN) must be equal to 1. In order toremove
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this statistical constraint, we shall use the new dependent variable

" "K2, •••• , "KN)r = Yexp-/(x1, x2' ••.• ,x,; K¡,
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where y stands for the observed value of y.exp
In the following developmcnts we shall always suppose, except when

othcrwise spccified, that the structure of the function lis such that it has a
constant -or ncarly constant - variance. Tr'ansfo'rm'ation techniques suitable
for achieving this result will be indicated latero

In these conditions, one cxpects r to have a ncad}' Gaussian distri-
bution; and the c10ser to a Gaussian distribution, the closcr the set of the
parameters {K/}.

The new system to be sol\"cd is then

N
% = ~

i = 1
di .6K ..
'd'i<. ',

,. ,

%=~ -l.-'exp

•Let us define a real symmctric matrix T and a vector p by mean s of

N

t.. ~ (di) (dI \
, 1 a = 1 'd'i<. 'd'i<.

1 a 1 a

h. =,
N

~
a=l

% (dI)
a 'd'i<.

• o

, i, j = 1, N

where n is the number of experimental. points.
I Pt be Ó the vector of general elernent tiK,

take ta.
The normal equations

The reader unfamiliar with re~ression analysis may consul[ [he works by U'illiams6
and/or Kendall-¡.
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T6= D

and rheTefore

3. FIllllCIAL LlMITS

The total suro of squares 15

.\tannasse

As rhe (egression hyperplane is mathematlcalIy compellcd to pass through
rhe origino (here are ooly i\' degrees oí freddom. 011 rhe orher hand rhe suro
of squarcs accounted fOf by rhe regression is 6. • p. Therefore rhe residual
mean squares 52 (variance) is estimated by

n
(n-N)s2= :£ %~-6.p

Q = 1

One will note rhar rhe vanance so dcrcrmined is (he sample variance; wirhin
the frarncwork of rhe maximum likelihood theory, rhe bese estimare of rhe
popuJadon "afiance is Ss2 where i3 io; rhe Besscl eOTrecejon factor

r;= n-t-i
n-N-I

l'he' f l' AK' 2 /1 h i¡, h Ivanancc o t le lncrcrncnt LJ. / 15 S t W CfC t 15 t e genera

('lemene of .,_1. A~ rhe {lY\.¡} are normalIy distributed, f¡<lucial limirs can
be obtaincJ as

6K/ :!: si /1// (7)

where t is the value of the Studcnt t-distribution at the selected lc,,-e1 of
confidence.
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These estimates of the \"arlance of the vartous increments can be
used to cstablish statistically the concorJance of th<. computed values
K. i = 1 2 .... , N, with the experimental dara. Ir is sufficienr to es-. ' "
tablish the statistical lack of significance of the increments f::J< •. ' i = 1,2, .... , N.
Such a {('.'H is exact because tne null hypothesi.'j defines a set uf valucs Ki;

under tla.se circumstances, the rcgression is a S -lincar regression 00 the
a priori given functions Oj/OK¡. In practil"e, howcver. the test descrihcd
hereafter is more efficient and more convenient.

The limirs described by rc1ations (7) are not simultaneous. The
probabilit)" that ~hcs<..limits are simultaneously rcached is smallcr than the
probability corresponding ro the selccted t point.

In ordcr to eliminate this uloss of information", one can ser UD a
statistical test for the simultaneollsdeparture from zero of the N incrl'ments,
following \l'illiams method.6 Let us considcr the quadratic form

{!,¡=
N

L
i = 1

N
~ 8.K.t':.K./.

j = I J ,]

which is a form \\"ith .\' degrees of freedom. Therefore, [he ratio QO/(Ss2) 15

distributed as F with ¡\l and u-N degrees of frcedom ~ lt follows that the
fiducial boundary a[ ,1 gi\.en prohahility level is givcn hy

Clcar1y this rcla[ion also defines rhe fiducial boundary for the set of
the {K¡} at the probability le\'el. The pnysical meaning of this fiducial
boundary can be described as follo\\"s:

Givcn a se[ of approxirnativc values K¡ , i == 1, N a computed S('t of
incremellrs 6. 1\..- that is tu say aIso, a set of values K. . == K. + 6.K. _
. .'. . . • .Improved r J
15 compatible at a glv{'n probabdtty }e\'e1 with the experimental data, with
resp('c[ to a given ma[ht.'maticaI structure. if Ihe)" satisfy the inequality

.
:,"he reason :vhy [hen' are n-N de~rees of freedom in this formula ami oot (n.N-I) as
'n t~e ~Iasslcal f(Hm~la, is that [he regression is mathematically (as opposcd lO
Sf¡ll!stlcally) consualtled to pass [hrou~h [he ori~in.



248 Mannasse

We shall no\\' derive from (he forro Q a oe w form Q ; chis permits [heo x
assessment ol [he compatibility, al a certain probability level, ol a set oí
experimental data with a given mathematical structure by means oí one para-
meter endowed with physical meaning. Lec us firse consider che quadratic
form defined by

N

Q = k
¡""

N

k (6K. - a. )(6K. -a.) 1 ..
j = 1 ' I 1 1 '/

where (he ai represent a priori values oí (he corresponding increments !::.Ki .

An acgument similar in a11 poines to (he one just touched 00 shows chat Q is
distributcd as F with N and n-N degreesof freedom.

Let us now consider (he !ntluencc oí a sirnultaneous variadon oí (he
increments by a certain fraedon x ol (he accepted values ol che corresponding
kinetic parameters. Then

a. = xK.• •

and ,he form Q becomes

Q =
1

N
k
i = 1

N
k (6K. - xK.)(6K. - xK.) l ..

j = 1 t , 1 1'1

Now the iteration is stopped when the I~K,./K,. I are very smal!.
Therefore

when x is not too small, .which is the usual case, and in [hese conditions
the forro Q is not very different froro [he forro Qx defined by

Q =x

N
x2 k

,.= 1

N
k K.K.I ..

j = 1 ' 1 '1
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Ler us pur

N N

ºK - ¿ ¿
¡KiKjtij

i = I ; =
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Here QK is a constant for a given set of experimental data and a given
mathematical strucrure. The fiducial boundaries are then defincd by

Let x be
1

equation.
the value obraineJ by giving to F thl' value one In the preceeding
\\re have

~ow the only meaningful values of ¡: are those equal to or greater
than one. Ir follows that a simultaneous Jeparture of all the paramerers by
a fractional amount less than or equal to Xl is compatible at any level of
confidcnce wirh the set oí experimental Jata and lor the mathematical
structurc considcred. Or, in other words, the values of the parameters cannot
be tru,<;¡tedto have a simu1taneous reIative precision beucr than Xl'

In a genetal war, 5imu1taneous fiducial limits at a given le,-el of
contldence can be ca1culated hy

,.(I:t x)= K.(I:tx In
I I 1

Ibis formula clearly shows that the knowlcdge of rhe parameter xl

15 sufficient ro calculate simultanl.ous fiducial limits at any probability level
thar is ({) sal' rhar xl is a practical param~trr which characrcrizes the degcee
uf compatibility of a set uf experimental dati.l with a glven matnematlcal
srrucrurc.
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4. DISCUSSION

,\1armasse

One wiIl note lhat no restriction. was placed on rhe function 1, save
chat of having homo~cnl.'ous vafiance.

Formally, this Tcstriccion is oot much of a burden. Ler liS denott:
rhe variance, if it (.'xists, oC a function g by vac (g); rhen rhe ocw variable g/vadg)
has an homogem:ous vafiance. It follows thac if ooe substltuces z/var(j) and
[¡/vad /)] OI/OKi for z and ol/OKi, respectivel)', ,he results uf the pre-
ccding scctions are most general. In ordcc ro analyze a physical phenomenon,
cOll:>idcrations of simplicity and convcniencc 10 accordancc w¡eh (he third
fl'quirement la id clown in scction 1, mayscrvc as guidelincs forthe selection
of ao appropriat{' struCturc of l. The estimation of vadj) r('quites a careful
analysis of rhe physical nature of rhe measuremenrs carried out. This is ro
sal' rhar rhe weighrs of dle regression are determined by the physical method
used to obra in rhe data analyzed; (for an example concerning the analysis of
spectrophotometric data, see re£. 8). This point which is, in particular, most
cssential for a correet interpretation uf the xl statistic wiIl be diseussed at
greatcr length in the following papers of this s{'ries.

The parameter •.•. xI can be used, in particular, tu study the homogeneiry
of a set of experimental data with respcct to a given mathematical structure.
Thi~ comes from the fact that this parameter can be interpc<:ted as a measure
of dIe goodness of fir; in rhis condition, If one decreases the importance at-
taehed [O a gl\'cn P0lnt by means of an appropriate weighting factor, the para.
merer xl 1,1,'111 tend to deereasc, a11 other things being {.'qual, if rhe contribution
of rhis point ro the variance is importunr, i.~. ,f ir ismuch differenr from the
orhers. A scanning of rhe experimental data by means of a systematic dc-
prcssion of each puint in tuen, wi11 thus enable ooe to idellrify anomalous dara
(pro\'ided that variance uf z IS c\--,~stant).

The characterization by neaos of the paramctcr xl of the degree of
(."tHTlpatibilitl' bctween one set o. experimcntal data and a given structure is
\'CI)' cffieient and con\'enient when no a priori informarion is available. Ir.
ul1 th{' other hand, possiblc values for one or several of the paramctcrs were
ro hl" tested, the form Q would have ro be used. In particular, this form is
advantageous to test if two sets of experimental dara are distinguishable or

In addition (o implicit assumpdons oí con(inui(y fOI example •
•• ~o(e (hal [he parame[er Xl can also be calcuJa(ed by means oí the reJation

QI(x
1
) =n$2, This permits to relax somcwhat [he condi[ion~ I !lK,./K,. t« I ""hen

{hey le'ld [Q a prohibi[ivc amoun( of computin,:; limc.
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not at a given probability level anJ with
structure. Attributing indices a anJ b to
groups oC data, we ha ve (.'xplicitly
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respect to a given mathematical
the quantities reIated ro the two

N

Q,Cst = Lr, j =
[6K-(Kb-K .»)[6K .-(K¡ .-Ka ¡)]

1 a,' "a,' a,J ),J ,
I ..
a,'J

Le[ [here be a lower limit a oC the level of confidence at which the
relation

Ft•.•',n-S,a
>. QleSl'---

" 2"s

holds. Then a measure of [he degrec oC compatibility expresscJ In % is
glven by

8 = 100 (1 - a)

Coming back ro [he analysis of one set oC data wi[h rcspect to a
given mathematical structure, one wilI note. that one can take into account
the pussibIe stiffness of the mathernatical structure stuJied in sorne para-
me[ers by expressing the a. as,

where Pi is a m(.'asure of [he "desired precision" oC [he parameter K
i

.

Then lhe form Q (anJ lhe form QK if lhe 16Ki /Ki I are sufficiently
small) becomes a Cunction of the p., j • ~. of quanti[ies endowcd with él,
concrete meaning. This would enable one to swdy the cffecrs of the rela-
tiv(' precision uf various s<:!ec[ed paramc[ers on the fiducial boundary for
[he set of [he parameters .

•
The aurhor is indebted ro the referee for rhis su.'!:~estion anJ would like to cake this
opporrunity [o thank him for many commcnts which have helped clarify thi s papero
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Finally one will note (har. as rhe fiuing proc('dure descrih('d abc)\'c
furnishes t11l!-Jias('dand (,fficien( esrima(('s of (he param('(crs. simple sta.
tistical s(Udi<:s on (h<: se( of (he ultima((' {z¡} can give valuahl(' results.
The combinatorial forIllUI,I(' of the theory of runs') are cspecialiy conn:nient.
Such an analvsis can be applied ro til(' scquence of tll(' sions of the {l', }lO:. ~ ,
a rcparririon markedly different from a rtlndom distrihution is indicati\'c of a
s~'st('matic de\'iacioll, In cutain case ..•.(his rype nfanalysis can succ('ssfui-
ly comp:('IIH.'nt a scannin~ ¡!fwlrsis l)('rformcd with [he x -paramccer

. l'
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RESlJ~IE:\

Sl.' analiza el prnbl<:ma de la medida del grado d(, concordancia entre
'Hl.l es!ructura matemática y un conjunto de daros experim('nrales. Es solu-
Lionado después de un ajus((' iterativo de los datos a una forma lilH:arizatia.
El mt?todt' p('rmitc c\"¡lluar \'arias frorH('ras fiduciales. En particular. el wa .
.in de compatibilidad se puede medir por medio de un solo parámetro. que tam-
hién puede ser empleado para F:"obar la homogeneidad de un conjunw de datos
rt-specto a Ulla estructura matemática dada.


