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ABSTRACT : Lie’s method of finding the invariants of differential equations
is generalized and the generalization is applied to the time-
dependent and time-independent Scroedinger equations. Invari-
ants containing both finite and infinite order derivatives with
regpect to the coordinates ate obtained. A physical classifi-
cation of the invariants, and of their groups is outlined. The
method is illustrated by applying it to several physically
interesting differential equations involving one space cooardi-

nate.

1. INTRODUCTION

Recently we have developed a generalization of Lie's method! for
finding the infinitzsimal invariants and continuous groups of differential
equations which makes it possibie ro sy stematically determine the conrinuous
groups of partial differential equations? . o this and the following paper we
use a farm of the method thar is particularly appropriate for lincar equations
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ourselves for the time being to systems involving one non-relativistic particle
whose spin may be neglected. For such systems the most general linear

operator {) can be written in the form

&)

k ki =
=glx)tgq (x)akJrq (x)9, 0 +... (1.1)

. . . 3 . .
This is possible “because for such systems the representation of the canoni-

cal commutation relations
r T P
lx~Pk]~15k,f,k*1.---,n (1:2)

is irreducible in L° (R"). Moreover, the set of all finite linear combinations

of elements
; i L
exp(:a}.x ) explib p,)

of this representation is strongly dense in the space of all continuous linear
operators® in L?(R"). Since this linear combination of elements can be
formally expanded in the series (1.1) this form of O is general.

We will deal in this and the next paper with the determination of invari-
ants Q that contain zero, first, and second order terms, and we will also
describe and use a special method for determining a class of Q operators,
°°Q , whose expansion (1.1) is infinite.

It is our purpose to demonstrate that these methods allow one to
systematically determine invariants that are of known physical importance,
invariants which have not previously been known, and invariants that though
previously known, were not found by a systematic and general method. Some
of these invariants will be shown to be explicit functions of time, and some
of these generate the spectrum of the Hamiltonian.

The principal limitation of the methods illustrated here is that the
special method used for finding invariants ¥Q of the time-dependent
Schroedinger equation requires one to first determine the spectrum of the
Hamiltonian.
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2. GENERAL CONSIDERATIONS

Let i be the Hamiltonian operator describing a given dvnamical

svstem 1n the position space representation. Then we have
{H(x,9,)-i0, }W(x, t)=0 (2.1)

for all allowed state vectors W. In practice ¥ may have several components
and be a function of more than one set of space-time variables, generally
denoted by (x,t) i.e., equation (2.1) is in general a set of partial differenti-
al equations involving » 2 1 unknown functions in m > 1 independent variables.

Now all operators Q which correspond to constants of the motion of
the system satisfy the relations

0=[H,Q|¥-id,Q¥=[H-i3),0]¥ (2.2)

for all allowed state-vectors W. Because H - iat is self-adjoint it follows
that if @ is a solution of (2.1} so is its adjoint Q+. The operator

X=%(Q-0" (2.3)

is then skew-adjoint, and the operator iX is se[f-adjoint.* Furthermore, the
set of all skew-adjoint or self-adjoint operators representing constants of the
motion forms a closed Lie algebra.“ From the product of skew-adjoint
invariants one can form further such invariants. It sometimes happens that
these product elements close with the original elements and so can serve as
generators of a finite Lie group larger than that generated by the simpler
elements. In other cases these product elements may not close under commu-
tation.

Thus 1t may happen that the set of all polynomial invariants consti-
tutes the basis for the enveloping algebra of one or more finite-parameter Lie

groups, i.e., there may exist finite sets of invariants which close under

-
Henceforth we will use the letter Q to denote any infinitesimal invariant of a differ-
ential equation, and usc the letter X only when we wish to emphasize that we choose

to deal with skew-adjoint invariants, and hence with real Lje algebras,
s

It is necessary to allow the so-called “infinite parameter” Lie algebras.
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commutation and give rise to enveloping algebras co-extensive with the set
of all invartants of the differential equation.  Furthermore, trning the argu-
ment around, we see that if there exists a finite Lie algebra of invariants
L(G}, this also implics that the elements of the enveloping algebra of 1 (G)
constitute the generators of an infintte dimensional group of invariants,
Hence, it is apparent that the concept of the “largest group” of a differential
equation is not a particularly helpful one.  Rather, what is to be sought is
the smallest Lie group whose enveloping algebra contains all polynomial
invariants of the equation — or perhaps all polvromial invariants with some

special property of interest.

3. FHYSICAL CLASSIFICATION OF THE LIE GROUPS

There are three distinct types of continuous groups that are often
discussed in the literature dealing with the symmetry properties of individual
dynamical systems. These are the degencracy, geometrical, and dynamical
groups. We shall adopt detinitions ol these groups which limit their size.
Given a system described by (2.1), a Lie group G of operators g, the associ-

ated Lie algebra £(6G), and a representation {'I'g} of ¢ then
1. The degeneracy group is the smallest group G acting on an
eigenspace of by, eH where by = { ll"l, | H‘l’E = If‘{"b} such that
o > \J) k
i) for g€@G, IL{ Vi (x, 1) ek, and
t1) the gencrawis of any larger group are members of the enve-
loping algebra of 1.(G).
2. The geomettical symmetry group is the smallest group acting on
the space-time manifold such rhat

1) for geG, 'I;{li'fx,f)‘—‘ q’!g-"(x'\ﬂ)

11} The generators of any larger group satisfying i) are members
of the enveloping algebra 1 (G).
3. The dynamical group is the smallest group G acting on the Hilber
space ol state vectors such thar

1y if 536(‘. -!p‘]‘rf\,f'i": rbf\‘l}-?s}{

ii) it contain= the degeneracy group

1i1) the generavors of any larger group satisfving i), ii). are

lgebra of [L{G)

members of the enveloping a
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Note that the definition of the dynamical group of a system implies that the
Hilbert space of the state vectors of the system is a carrier space for a
single irreducible representation of the dynamical group.

t. PHYSICAL CLASSIFICATION OF THE OPERATORS OF LIE
ALGEBRAS

If the Hamiltonian operator does not depend explicitly on the time,
then Q, = ial commutes with H - 1'81 and has the same spectrum as H. This
aliows one to make a physically meaningful classification of the operators
of a dynamical algebra analogous to the Cartan classification of the oper-
ators of a semi-simple group. If we let

Qzaigi.le...ﬂ.

(4.1)
we may require the @' to be so chosen that
[9,.Q) =ag, (4.2)
where @ 1s a number. On inserting
k
4
[Qf"v:] T Qk (4.3)
into this equation one obtains
k = 4
((t:' - CLS:E) a, = 0 . (4.4)

[’ . - - . . -
If the @ are lincarly independent this equation 1s equivalent to a set of

homogeneous linear cquations that may be satisfied only for those

values of
1 for which

det (rﬁ. = O’.Sk) =40 . (4.5)

1
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If the secular equation gives rise to several roots with @ =0 then the system
may admit a nontrivial degeneracy group if the corresponding 0, 2°. .. .. do
not all commute but satisfy conditions (1 - i) and (1 - ii) of Section 3. Then
the degeneracy group is nonabelian and the spectrum of the syscem may
contain degencrate levels simply because of the continuous symmetries that
it admies.  If the secular cquation has a nonzero root = then the system

admits a spectrum generating operator ) such that

1 1 y
[g,.0,0=1[H,0]=a0 (4.6
so that if
Y =y
then
i 1“{&)‘ )vn!lj} ={F &+ m.Ts) W"EQs ]mq]}. ( 4_.\’

In all these cases the encrgy Fois a lincar tuncuon of a set of weights, »,

3 f
= €5+ F
F €n, "0 .

Here I-” and the €' are constants. We shall call such spectra [ipedr speotra.
In short, because a_1s simply a number. the operators Q¢ can only generate
a spectrum of evenly spaced levels.  Thus, it follows that any dme-independent
Hamiltonian with a discrete specirum thathas a spectrum generating invariant
must have a spectrum of equally spaced levels. If there are several oper-
ators Q v Q. the spectrum will consist of equally spaced ladders or
bands of equally spaced (perhaps degenerate) levels, ere.”

If there are non-zero degenerate roots @, then the number of linearly
independent 0. determined by (4.5) may be less than » . In this case not all
lincarly independent Qs may be chesen o sausly (4.0). Some @ must then

be such that

L, . Ql=0"0"+0. (4.8)
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TS ¢, then the effect of Q' on a wave function W, of definite

energy Fous to convert it to a mixture of functions of different energy

QW =6, . (1.9)

n i

We term such an invariant a mixing operator.

I the dynamical group contains an operator () such that
(4.10)

then @ 15 the generator of a continuous spectrum because (4.10) implies
that

H Atexp he)) 'I]. s :'r:<r lexp bYW = fexp »’;,-':’F“ ){f(-xp /)Q}ll‘” }o4.11)

]
0 &

Fo sum up, when the Hamiltonian does not depend cxpliciely on the
tume, constderation of the root vectors of far leads to a useful classification
of the invariants of a dynamical algebra into: a) generators of the degencracy
group; b) disecren -spectrum gencrating operators: ¢) cun[inunu\-\;u-(‘zrum
generating operators: d) mixing generators.  Of course, it does not follow
that simply hecause the time  evolution cquation admits a continuous  or
discrete-spectrum generating operator, that the wave functions that are ob-
tained from a properly behaved ¥ by operation with this spectrum-generating
aperator will themselves satisfy the boundary conditions appropriate to the
system. For example, the free particle and the particle in a box, or the
partrcle on a circle, all give rise to the same continuous group il onc ignores
the boundary conditions. However, when the boundary conditions are taken
into account the groups are quite different.  Nevertheless, it is elear that the
first stepin finding operators that convert cigen-solutions into ¢igen-solutions
is

= 3 o *
to find those operators which have the necessary local properties ro do so!

oo Bluman has recently shown explicitly how to use local

baildy

svmmersy operators in the

ng ol solutions thar satisfy various boundan condition~,
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5. THE DETERMINING EQUATIONS

We now consider the problem of actually finding the operators Q that
are invariants of a time-dependent wave equation. For simplicity of expo-
sition we restrict ourselves in this paper to Schroedinger’s equations. Let

K = 2(H - i3, = a"fa:.aj+b"a,.+c;f,j, =1,2,...n (5.1

7

and let

a!-u =, aiaj” = Uy, e,

so that the differential equation of interest becomes
Kztza'fu‘..+b‘ui+cu=0 ; (5.2)

Here it is assumed that the @’ (=a’"), and 4*, ¢, and u are functions of

X = X X .o X
n

T Y with £ =x . (5.3)

2

An operator Q will be the generator of a one-parameter continuous group that

leaves equation (5.1) invariant if

(exp SQu=0 (5.4)

for all values of the parameter B On setting [ infinitesimal in the usual
way, one finds that this is equivalent to the requirement

KQu =0 . (5.5)

As we may suppose that Q is of the form

0= g(x)+q'(x) 3, + g% (x) che PP (5.6)
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we must then have, if O is an invariant,
(a13,3. + 53, + g+ 43, +4*'3,3, +....)u=0 (5.7)
vl g, ;telgtg optg 0.0, +.... ’ ;

Equation (5.7) is solved by the classical method of expanding it and
collectirg terms that multiply the functions u, i, iy, eLc. These functions
would all be linearly independent were it not for the identities contained in
the original differential equation (5.2). On substituting these identities in
the expanded form of (5.7) and again collecting terms that multiply a linearly
independent set of functions, one obtains a set of simultaneous differential
equations determining the components g, ¢*, qif,etc. ,of @. The process
may be neatly formulated with the aid of Lagrange’s undetermined multipliers.
However, in the actual calculations of interest to us here the use of unde-
termined multipliers only complicates the computations, so we will not make
use of them in this paper.

On integrating the set of differential equations, arbitrary constants
of integration appear. Because of the interdependence of the equations, the
same constants may occur in the final expressions for ¢, and the ¢°, "/ | etc.

We shall denote these constants of integration v?, ¥ .., and write
q=7"q, (5.8)
g= e, (5.9
g = ymgd (5.10)

and so forth.

The general result of solving equation (5.7) for any system is thus of
the form

Q:')f”‘(qm+q;?ﬁl.+q;faiaj+...). {311}
Because the ™ are linearly independent one defines the operators

Qm::qm-i—q;!ai‘i'qgaiaj‘l‘... (512)
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so that

g=v"0 (5.13)

In short, the search for a particular Q that satisfies (5.7) yields a set
of such Q’s, the 2.

6. AN EX AMPLE: SOLUTION OF THE DETERMINING EQUATIONS
FOR Q WHEN THE POTENTIAL IS A TIME-INDEPENDENT
FUNCTION OF ONE VARIABLE.

If we let
Q*—'q+q"8]_ (6.1)

and the wave equation is the ume-dependent Schroedinger equation

(8131+2i82—2v)u =0, (6.2a)
which ve also write as
u“+2iu2 =2 =0, (6.2b)
then we must require
(3181+2z'82—2v)(q+qjaj)u=0; i=12, (G.3)

I'his becomes on expanding
= ; T ow §2gl i)
0 q”u+2qlu1 +2:q2u+quui quuu. *I'..zqzu}.

+ g/ (u +2m 2~ Bum, ) . (6.4)
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Theu, “y )y, are subject to the condition

0= B +2iu2 - 2vu (6.5)

and the two further conditions obtained by differentiating this equation

— : - ) - '
0 u1“+2m21 2Lxu 2vn (6.6)

O:u112+21'u22—2va2=0 . (6.7)

Collecting terms in (6.4) gives

o 1 | 1
0 = ulg, +2ig,)+u, (2q, tg, t2ig,-2vq")

tu,(gl~ 2097 )4 Hee (25q2)+u12 (qu + 2igt)

Yo, 124 g ety R le®) - (6.8)
Choosing the independent functions to be Hothy, By, uy, uy,, the dependent
functions are u. %y and T— Ehmmatmg chese last three by means of
equations (6.5), (6.6), and (6. 7), we find that the last three terms in (6.8)
become
2(;: ( 2vu - 2y )= uldvg )+ u,(~diq ) (6.9)
1(2vu1 + Evlu- Zz'uu)*—* u(2ulq') +z¢l‘;’uql) + uu(— Zt'ql) (G.10)
q i"'zu ~ 2., g = a}flugz) # e Zig?) (G.11)

Substituting these relations into (6.8) and collecting terms gives

11
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ulq, +2q, + é‘ivql + 2y1ql) =0

u (2q, +q:l+2iq21)= 0
2 poa2 ; =
u,(q; +2iq,-4ig )= 0

207 =0

Anderson et al

(6.12)

(6.13)

(6.14)

(6.15)

These equations are identical to those obtained by Osvjannikov’s formulation

of Lie's method”, if one identifies -g with his 0.

From equation (6.15) it follows that ¢? is a function of x? only. Thus

(6.14) becomes

7, = 29,
or
7= %(x'g2 4a),
with
4 = @{x®y.
Hence
q111 =0

Therefore (6.13) becomes
29, + "(xlqzzz ta,)=0
or

R T .
g, = =g lx"gy, tey).

(6.16)

(6.17)

(6.18)
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Thus
9,= - %iq), (6.19)

50

=-%i{s(x")2q2, +x'a, + b} (6.20)
with

b=b(x?).

Hence

q,=-%i{s("2q},, tx'a,, +b,}. (6.21)

This implies that (6.12) can be written as

- 4i(q2,)=5(x"2q)  +(xNa,, +b,+2vq+v (x'q}+a)=0.

(6.22)
To sum up then to this point we have
g'=%(x'q?+a); q°=q¢*(x?), a=a(x?) (6.23,a, b, c)
g=-%i{5(x)2g2 +x'a,+b}; b=b(x) (6.24,a, b)
'/zz'qu - 62 = q22(21)+ v]x1)+ av, +% q2222 (xH2+ a22x1 . (6.25)

These relations are only compatible if in the last equation the coefficients
involving the same powers of x! are separately constants. Equation (6.25)
thus gives rise to several further equations whose form will be quite differ-
ent for different potentials. We first treat the system with v = d(x')"? as an
example. In this case the coefficient qg becomes zero, while that of a is
-2 (x’)'s. Separating equation (6.25) then gives
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4 (6.26)
5iq;, - b,=0 o
qzzzz =l *
Thus
‘Ifg = 0, (6.29)
;=Y +y1 (6.30)
=R et by (6.31)
Also
b,= %iy° (6.32)
b= %iyOx2 43 (6.33)
Inserting these results into equations (6.23 and 6.24) one obtains
o S (Y0x 1x? + 141y (6.34)
and
._,A_“-'.,rz(xl)2+l/4y0x2_'/2;3/3_ (6:.35)

On collecting terms as indicared in equation (5.12) one obtains the invariants

f4 B g '/Exlxzal + fz"():z)za2

(6.36)

L al
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Ql: '2-;.-‘?,11+x271) (6.37)
Q,=79, (6.38)
Q3= s t/;',t' & (6]'9)

Now lct us return to equation (6.25) and view it not as an cquation

. 3 2 . - 5 T .
determining ¢, @ and b, but rather as a differential equation determining
the potential w(x!') that corresponds to a given set of functions g%, a, b .

We, therefore, rewrite it as

1.2 2 1y2 2 1 ; _

"'1(" q; +a)+ y{Zqz) + ™) By T . + bz—'/;, :q222 =10

(G.40)
Integrating gives
= 1 = . =2
v={C+C x' ¥ &V + € (" + € IV Mt 4 o
(6.41)
The constants are related to g2, @, b as follows:

C, = Co/qg » €, an arbitrary constant. (6.42)
C, =(alqy) * (b~ %ig?, )/q? (6.43)
- Pa 2 ) P
2¢, =(a/q}) (an/qz)“*(bz-zq;g)/q; (6.44)
3C,=%a/q}) " (q},,/93) Y ay,/q] (6.45)
i, =Ye. Je (G.40)
(7 == g/‘fq:; 'f(‘l—i-’]



TABLE 1

91

First-Order Invariants 1Q , of the Equation (Bxax - 2;’3{ -2Yu=0

2 =4 v=cx v=Yex? v=Ykx? v=%(cx? + bx?)
Q, 1 1 1 1 {
Q, 13 _-ix 10, —ix+ ict? - (9, +Vkx) exp [ivki] %exp [2ivEt] {VEx?
+%5+x- ik 13 x)
0, 9 d_ +ict . (9, ~vkx)exp [-VEE] % exp [-2ivar] {VEx2
+%5+x0_+ik" 43 )
Q, 3 =%Q) 9=k +tc, 3 3, 3,
0, %)’ Y (0, 4(xd + 12, " .
+%2- %ix?)
O, 402.0,-%0, %R,0,- %0, 19, + %x0_ - _

[e 13 uosiapuy
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TABLE 2

Basic Commutation Relations of the Invariants of Table 1

a)* v=0: [o,.0,]1=1Q,
b)* v= cx: lo,.0,]1=1i0,
&) v=Yex [Q,.0.1="%0Q, +Q,
(9,0 )=2
[o,.0,)= @,
d)  v= hkx?: [0,.0,1=2/k0,
[0,.0,1=ivkQ,
[0,.0,]=-ivkQ,
e) v=sex P +kx?): [0,,0,]=ik"?Q,

[9,.0,1=2ivkQ,

[0,,0,]=-2ivkQ,

In these cases the commutation relations of the remaining invariants in the corre-
sponding columns of Table 1 may be obtained using the relations between invari-
ants given therein. In both cases all invariants close under commutation.
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The compatible solutions of these equations determine the poroni:als
vix') chat give rise to Schroedinger equations with invariants of the form
{6.1). The invariants of several such systems are listed in Table 1. 7T)ii.
commuration relations will be found in Table 2. The allowed class of
tentials clearly does not include many systems of physical interc s
must conclude that many quantum mechanical constants of the morions ar
not of the form (6.1).

7. TIME DILATION TRANSFORMATION FOR LINEARIZING
NON-LINEAR SPECTRA

The generalization which allows constants of the motion to contain
sccond order terms g'73, B]. has its simplest interesting applications where
the wave equations are those of systems with several spatial degrees of
freedom. These are discussed in paper Il of this sertes.* The determining
cquations and the processes involved in solving them are there shown to L«
analogous to those just illustrated. Here we shall proceed directly to the
discussion of a merhod for determining the constants of the motion of time -
dependent Schreedinger equations which allows one to find invariants whose
expanstion (1.7) involves an infinite series of derivatives.

Consider the class of eigenvalue problems which are the form

(H - f\(n))‘Pr(x)= 0 (7 I3
where £= (2 52 ..., ) represents » independent variables,
H=H(x"93. ,9.23. ... )
1% 5
Here Afn) — #» (1n is one-to-one, and the set

‘-P}_V(") €L  (w(x))}

-
constitutes a complete set for all square integrable functions L°(1(x)) with

= &
See the following ip e



. ; 2
Invariants of the equations 19

respect to the measure u(x).
This class can be thought of as arising from the Schroedinger-type

equation.

(H—iai)exp [ = ixin) t] (7.2)

W Il"-’(‘

¥ (x) €L?(u(x)) .

Here + may or may not correspond to the physical time, e. g., in the case
s a Hamiltonian, ¢ corresponds to the physical time, whereas, e. g., in the
casc of the classical orthogonal polynomials, t has no direct interpretation
and, as will be indicated later, if desired, it can be eliminated from any re-
sult.

The method, we shall describe in this and the next two subsequent
sections yields spectrum generating Lie algebras for the equation.

(H-i3,)¥(x,8)=0 (7.3)

where
Yiix, )= Ecn exp [ -iN(n) 1] ‘P”(x) EL? (.n\f,u(x)} (7.4)

under the assumption that the spectrum A(n) is knewn. Decause these alge-
bras and their enveloping algebras transform the set{ exp [ - iA(n)¢] '-Pnf_x)}
amongst itself they can be used to construct the dynamical group for (7.3).

If Aln) is a sufficiently simple function of scveral integers i.e.
n=(n'n? ...) €.g., in a relativistic wave equation, the technique we
shall describe is applicable by considering cach integer one at a time. This,
of course, means that some, if not all, the corresponding #'s will be auxiliary
variables, and that the dynamical group’s Pie algebra lics in the direct sum of
spectrum gencrating algebras for all the integers n, . The technique is also
directly applicable to any set of partial difterential equations which e. g,
might arise in the separation of variables approach, and the spectrum gener-
ating algebras for the separate equations can be multiplied to give the dy-
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namical group for the original unseparated equation.

In general, there are two types of dilation operations involved: one
dilating ¢, and the other dilating some subset of the x. The key operation
is the dllatl()ﬂ of ¢, which transforms to a space where the spectrum of id,
is linear in #. The dilation of x transforms to yet another space, and it is
necessary in some cases in order to avoid extending infinitesimal methods
to include other than nonnegative integral powers of the partial derivatives.
Because of this aspect of the method, we shall present the method in two
steps - first the dilation of # and then, in Section 9, the dilation of the x.
We shall proceed on the assumption that all operators are well defined i. A
we shall not examine here questions concerning the domains and ranges of
our mappings.

We subject the operation (H - za ) and the space L 7\( #)(L(%)) to the
time dilation
D,=exp|In(_2H) ) (7.5)
‘ : [ An(H)) *

where n(H) is the operator solution of (7.1) for » in terms of i, i.¢
(n (H)—rz)‘i’n(x)z 0 (7.6)

Therefore, we pass from the space I,;\(n)(,u,(x)) and equation (7.3) to Lifg(r))
[H- { M”((:)” iat] W(x, 1)=0 (7.7)
n

where

¥Yix, t)= Ean exp [-int] ‘P”(x) eLi(#’("'” :
2
In the space L (u(x)), the following equation is equivalent to (7.7):

{H—)\(n(z'ar))}‘l'(x,t)=0 (7.8)
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This is possible because in Li(,u,(x)), we have

(ﬂ(h’)—z’at)‘i’(x,t)=0 (7.9)

8. AN EXAMPLE OF TIME-DILATION. THE GEGENBAUER EQUATION

As an example illustrating the use of time dilations as an aid in
finding specium-generating invariants we consider Gegenbauer’s differential

equation
{(1 - x?) axax—(2V+ l)xax'l'n(n"'ZV)}gﬂ(x):U (8.1)

which arises by separating the equation

{(1-x%) Bx'ax- (210 + l)xax+ iat}f,cﬂ exp [-in(n +2v)¢] g,(x)=0.

(8.2)

To get a linear spectrum for at we transform equation (8.1) with the dilator

D= exp IEI log :_'_n_ (8.3)
nin+ 2y)

where
|
2

A=-vt{?-(1-x%)93 +(2v+1)x3}

The transformed equation is

{(1 - xg)ax 3}(-(21) + I)xax-! (n +2V)iat}§:cn exp [ ~int] IRE R

-
Because of the identity expressed by (7.9), we can substitute for all or anv subset

of_the n(H) in 7\-(n(!‘!))/n(H); hence we see that there are, in general, classes of
“time-dependent” partial differential equations which from the point-of-view of
squareeintegrable solutions, are indeed equivalence classes in the strict seqce of
possessing “the same general solution”.
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Within the basis set exp [- int] gﬂ(X), we have the operator identity

i, =1 .
Using this identity we get

{(1-x%9.9, - (2v+1)x3_+49, (3, + 2v)} f(x,1)= 0 (8.4)
where f(x,t)=2X exp [-int) £,(%) . From (8.4), we have
”
A-x?)f  -QutDxf -f, +2vf,=0, (8.4")

and differenciating this by x and ¢, we get

(I i x2] fxxx— (2]/ t l)xfxx_ fxtt b zivfxt = foxx+(21/ + l)fx

(8.5)
7and
(1=-x%f  ~QutD)xf = [, +2vf, =0 . (8.6)
From (8.4"), (8.5) and (8.6), we can choose
f7ftlfx!fx;;f” (87)

for the independent functions. We seek an operator Q which satisfies the equation

{(1-x"73_03 - (2v+1)x3d_- 9,9, +2ivd, }Qf(x,£)=0 (8.8)
of the form
Q=¢g"0,_+ qtat +4° (8.9)
Substituting O into (8.8), we get

{1-x9 9 -(2v+1)x3_-9,9,+2i3 }(g*f_+4'f,+q°f)=0 (8.10)
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Expanding it, using (8.4"), (8.5), (8.6), and collecting terms multiplying

the functions (8.7), we get the determining equations

-1 x

grtx(l-xH)"g"-¢ =0
(1-xY¢g -¢ =0
(1-x))q" -(2v+1) xq‘x—q‘” - Zz'vqf - 2q) - 4ivg] - divx (1 - ) g* =0
<.} g T EPF 1) xq;- q;‘t + 21'Vq:‘ +
+ QU+ D+ x)(1-xDg"+2(1-x?) g2 =0
(1-x) g}, -Q2uv+1)xq)- g’ +2ivg?=0. (8.11a-¢)
Solving these simultaneous equations, we have, for v # 0, 1,
gF=a(l-x)e+b(1-x2e "
q' = aixe® —bixe "+ ¢ (8.12 a-c)

0.= - 2buxe 4+ d

-
Il

where a, b, c and 4 are integration constants. Substituting these into (8.9),

we gﬁ‘t

Q=a'e“{(l-xz)ar+ixat}+b'e'”{(l-xz)ax-ixf&!—2vx}+c°3‘+d.

(8.13)
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] * : X
As a. b, c and d are arbitrary”. we have four independent operators which

satisfy the equation (8.8);

0, =e*{1-x? o, tixd }, Q_= Pl (ST R R o |

1Q,.0.1=~2iQ . [0,.01=i0,,[0.01=-iQ_.

i."‘;,[‘-‘)
These show that @, or Q_ shifts the cigenvalue of O, i(n - 1), by unit
amount
. 0 . ; b5 i 1
Q,eMg (x)=C (n) e )ié',.,““"]- (3. 1)

As the Casimir operator ‘Q(QJ{Q__ tg.4.)- QO‘) has the cieenvalue vi{p—1).
v specifies the UIR of the group.

E
; . : .
Forv =0 or 1, we have the following solutions for %, q' . ¢° :

% a fd / ) ] ~1 ca iz 9
v=0:qg = 2 £ s-lz,q"= 0oL T fefilis 2% E% e i+cz.;“'=.’-,_
A== aoria
oo s
x sd - pai 3 1 @ U BT | ;
v=0:4"= % £ g = R L {e vx1-aDT e e v a
A= - a=01a .
n = L ) 2.=1 O i 1
gr== B l{':,,,— (et 1) x(Tex?) & }Pat-g..=-.r ey
a¥o a

. Pt . .
where a a, b are arbitrary and © are the solutions of the equating
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This eigenvalue vanishes when v =0 or 1. In these cases a subset
of the invariants of the Gegenbauer equation still generate an 0(2,1) sub-
algebra, but as indicated in the footnote, the complete set of generators of
the algebra is infinite.

Now, we shall turn to the problem of eliminating the auxiliary varia-
ble ¢, if desired, in this discussion of the Lie algebraic properties of the
Gegenbauer polynomials. This is accomplished as follows: define {xa}
-, 1,2, such that

gy

where @ = +,

X8, (%)= lim Qg exp [-intl g, (x) (8.17)
then
¥ =Y = xz)ax-f- xn
x_=(1-x? 0, - xn - 2ux (8.18 a-d)
x = -in
X, = 1

We see here clearly that the disadvantage of eliminating the auxiliary
variable ¢ is that the generators are n dependent, e. g. the x,'s involved, in
say x, g ., are not identical in their » dependence to (8.18), but this can
be overcome by substituting # for # (eq. (8.3)).

We note that this method of taking lim is completely general.

{ R

9. SPACE DILATION TRANSFORMATIONS

In many cases, e.g., the rigid rotator or the classical orthogonal poly-
nomials, the dilation of ¢ is sufficient, i.e., equation (7.8) has invariants
of the form discussed in Section 6. But, in other cases. ¢, g., the hydrogen
atom, the direct application of infinitesimal methods would require the ex-
tenston of the methods to other than nonnegative integer powers of the

partial derivatives. In order to avoid this possibility, we shall now discuss
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the dilation of some or all of the x variables. For clarity and simplicity, we
shall discuss in detail the procedure for dilating one variable and then
indicate the generalization for dilating more than one variable. Therefore,
in the following assume x represents one variable.

We introduce a set of “special functions” such that by definition
Y

‘]’”(x):(l)”(g(n)x) (9.1)

where g is arbitrary for the present and will be chosen later for convenience.
Now, we introduce the dilation operator Dx where

e i
Dx = exp {xaxln [g(rz(iat))J } (9.2)

takes us from Li(,u(x)) to a new space, which we shall denote as §, i.e

D_exp [ - int] ‘I‘”(x)=exp [ - int] (I)n(x)GS (9.3)

and

D (H(x,3 3., ...90)- i\ (73,)) D
= H(g 'x,g3,, ..., g"37) - ik(n (:3,)) (9.4)

where ¢ = g(n (z'at)).

Now, we use the allowed freedom in choosing g(*) such that e. g.
equation (9.4) does not contain any negative powers of a (An example ()f
just such a case is the hydrogen atom, c. f. paper II of th1s series®.)

The generalization to the dilation of £ x's then follows directly and
the dilation operator in that case is given by

D, ,= 7 exp{«d IngnidN") (9.5)

X wow i=1

where the g’.’s are defined such thar
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v (xl,...,xk,...,x”):(Dn(glxl,,...,gkxk+l,..., ).

(9.6)
An extremely important aspect of these dilation transformations is
that the algebraic structure of the dynamical algebra for the transformed
cquation is the same as the original one, even though when x dilation is
employed adjointness properties are changed. In other words if

{0:.0,) =<0,

represents the Lie algebra of the dynamical group for the transformed

equation, then the algebraic structure for the dynamical group of the original
cquation is given by

where

10. AN EXAMPLE OF TIME AND SPACE DILATION:
ONE-DIMENSIONAL KEPLER SYSTEMS

To illustrate the combined use of time and space dilations as an aid
in finding invariants, we consider the one-dimensional Kepler problem.

(i) Linearization of spectrum

The Schroedinger equation for the one dimensional atom is given

i . =g F 1 —
(=%9,3,-27 -i3)S e "W VIEL). (r20) (10.1)

n

where
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To linearize the spectrum of ia‘r we perform the time dilation

-iE_t
B, [~ ‘/?arar-zr"-fat)u;‘- D2C.e o ¥ (2V=1E +)

n
where

D, = exp {19, In 22v- 2177} (10.2)

with H = - '/2375)' - Zr''. The transformed equation is then

{-%373 - zr'-2zy'VZ2H *i3,} S C ™Y (V2B 1) =10
n

(10.3)

In this basis set we have an operator identity
z =
(~2H) = iZ(Bt)
which allows one to rewrite (10.3) as
- ;
{-%93,9, -2r'-%2%() "} 2 e (2/-2E,r1)=0 .
”n
Now to eliminate” the negative power of at we perform the space dilation
e exp{rarlog(az'at)} (10.4)

where @ is an arbitrary constant.
The transformed equation will be

. ‘ . . L 2
Although we can eliminate negative powers by multiplying through(at) , wWe get a

fourth order differential equation.
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T L LT G Ty o ind >
-5 {(aid,) 783 +27(aid,) 427 (3)TIE ¢ Y (- 2a7r)= 10,

n
and can be rewritten as

(8.9, % 2Zar 38, ~ 2 0"V~ 58 ™Y (~ 2005 1=10 .
o i n n n

By choosing --(."’_2')_E for @, we put the equation in the standard form
(9,9, =ir" '3, - %) f(r,0)=10, (10.5)

whre

Flr, s X, (,'nei”tq’n(r) :
n

To determine the independent functions, we differentiate (10.5) with respect

to rand ¢ to get
_ Ll i =2
/rrr_" Jrrn'— /4fr: . ft (10.6)

fogy =3 g~ RL =10 . (10.7)

rri

From (10.5), (10.6), and (10.7), we can choose /d 51y 1, and /,, for the
independent functions.
We seek an operator Q of the form

Q0=4g"3, +4'd,+4° (10.8)
which satisfies the equation

(3,3, =ir"' 9, - Y)0 " f(r,t)=0 . (10.9)
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Using (10.5), (10.6), (10.7) and (10.8), (10.9) becomes

0=(373 —z'r'lar-Z)(qrjr+q‘ft +4°f

= (g -ir ')+ 5q [+ (g} - iz g}~ ir g )+

. - gl : ¢
2ir' gy f *(q] -ir g +2¢0) ) +2¢} [, .  (10.10)
Using the linear independence of [, de & ks and f” , we have
0

sl S
de, =0 g, + 44 =0

! P S I - ol B
4, ~ir g, -ir q tair g =0

(10.11 a-d)
a),~ir g/t 24} =0

.
g, =l
Solving these equations, we have

il

q" = iare - jbre !

= ae'' + be ' + ¢

<
|

(10.12a-c)

q°= -hare' - Gibre 't + 4d

where @, b, ¢, and d are arbitrary constants. Putting these solutions into
(10.8), and collecting terms with the same constant coefficient, we get

Q= az’e“(rar - iat ~-57)

- bie (0 + 9, + 5r)+ 9, + 4d (10.13)
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As a, b, ¢, and d are arbitrary, the operators

Q =ie'(rd -id, -%r)

Q, =i (rd +id, + 4r)

(10.14 a-d)
Q, =79,
2 =1

will satisfy the condition (10.9) independently.
These invariants satisfy the commurtation relations

(@] =~80, , 10,0 1=10,[0,0)=~ig . {(10.15]
From these it is clear that @ and O _ shift the eigenvalue n by one unit;

0. - eiﬂ[[l_[ (T): £ el‘(n'.tl)[]l,
n 7 n

Q, (r), j=1,2.  (10.16)

t1

To obrain the shift operators for the eigenfunctions of the original equation
(1), we must perform the inverse transformation :

= = . i pe—
D :!)rlntlzc‘xp{rarlog 22’(-:’8{) }.'exp{rd[ log (27) \/—ZHJ}.

(10.17)

Then the corresponding operators Q Q, and O, will be

szl)'leD,j:l,l} . (10.18)

In this and higher dimensional Kepler problems the energy shift operators are
best left in the form (10.18) as very complicated expressions are obtained on

explicitly carrying out the indicared transformations.
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il. CONCLUSION

We have seen that the partial differential equations of quantum me-
chanics can be invariant under continuous groups of transformations whose
generators contain derivatives of arbitrarily high order. The currently ac-
cepted methods of finding the infinitesimal invariants of differential equations,
which are due primarily to the works of Lie! on ordinary differential equations
of Osvjannikov’ on partial differential equations, do not allow for the ex-
istence of group generators involving derivatives of order greater than those
contained in the differential equation itself. It turns out that this is of no
consequence for ordinary differential equations, but for partial differential
equations the accepted view is, in general, much too restrictive. We have
therefore in reference (2) generalized the concept of form-invariance of
differential equations by generalizing the concept of a point transformation
upon which Lie founded his group theoretic treatment of differential equations.
The reader is referred to this reference (2) for a more detailed discussion of
the relation of the work here to the works of Lie and Osvjannikov,
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RESUMEN

Se generaliza ¢l método de Lie para encontrar las invariantes de ecua-
ciones diferenciales; la generalizacion se aplica a la ecuacion ae
Schroedinger independiente v dependiente del tiempo  Se obtienen invarian-
tes que contienen derivadas con respecto a las coordenadas tanto de orden
finito como infinito. Se indica una clasificacién fisica de los invariantes y
de los grupos que forman. El método se ilustra aplicandolo a varias ecua-
ciones diferenciales interesantes en Fisica y que contienen una coordenada

espacial.





