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INVARIANTS OF THE EQUATIONS OF WAVE MECHANICS II
ONE-PARTICLE SCHROEDINGER EQUATIONS"

Robert L. Anderson, Sukeyuki Kumei, Carl E. Wulfman

University of the Pacific
Stockton, California, USA

(Recibido: diciembre 15, 1971)

ABSTRACT: Employing the systematic methods of the previous paper (I},
we derive the invariants and dynamical groups of the time-de-
pendent Schroedinger equation for the two-dimensional
hamonic oscillator, and the two and three-dimensional hydro-

genlike atom.

1. INTRODUCTION

The application of the systematic methods of the previous paper® to
some common Schroedinger equations is illustrated here.

Time-independent and time-dependent invariants are sought for the
two dimensional harmonic oscillator. Using both time and space dilatations

-
From the M. Sc. Thesis of Sukeyuki Kumei, Department of Physics, University of
_ thee Pacific; 1971.

*See the preceding paper.
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we then determine a set of invariants of the two-dimensional Kepler problem.
A subset of these generates the dynamicalgroup which is shown to be 0 (320
An interesting feature of the result is that all the 0 (3,2) generators may be
constructed from further invariants that shift the radial and angular quantum
numbers by one-half unit?.

Calculations similar to those petformed on the two-dimensional
system vield the generators of the dynamical group of the three -dimensional
Kepler systems. We find this to be 0 (4.2) in agreement with the analyvses
of Malkin and Manko*, Barut and Kleinert* and Fronsdal®. The calculations
on Kepler systems presented here obtain for the first time their spectrum
generating invariants as explicit functions of the time.

Finally, in the appendix we determine the spectrum generating groups
of the radial equations of two and three-dimensional Kepler systems.

2. THE TWO-DIMENSIONAL HARMONIC OSCILLATOR

The Schroedinger equation is

-5(93 +r7'3 + r-za¢a¢-kr2 +2i9,) * f(r, b, £)=10 . (2.1)
We assume a Q operator of the form

0= Q¢¢8¢8¢+ Q'¢8r8¢+ Q"3 + Q¢a¢+ 0'9,+9° (2.2
and choose the independent functions to be

Db o o g gbes hipr e Dipr g 3+ Epgipn Tgipr
The determining equations derived from

(3,3, +r'3 + r, 8, ~kr +2i3 )0f= 0

are
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Their general solutions give

where @'’s are the integration constants and Q,’s are
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Here Q.. 7 =1, 2,...,10, are expressed in terms of # I Qs and Q,, as
listed and O is equal to the operator defined in (2.2)

3. THE TWO DIMENSIONAL HYDROGENLIKE ATOM

The two dimensional Kepler problemhas several interesting features?.
The Schroedinger equation is

—;;(afar+r-1ar+r-23¢a¢ +27r " +2i9,) 2 Cppexp [-iE )Y, (r,$)=0,

-2

’ . 2 ;
where E_ is given by - L7z%(n-1) . The transformation operator D
2 2

leading to the linear spectrum can be chosen to be

. & s
D=D D, = exp {rd, log(—g_za!) }+exp {19, log [2z//-207]}

(3.2)
and the transformed equation is then
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1 ~ 2 . &1 1
~2(9.9 +r79 +r79,3, ~ir '3, - L) j(r, b, 1)=0 (3.3)
2(rr 170, +r7 9,0, ~ir™ 9, 4frq5t)

where

flr g, t)= Em(d””‘ exp [itn-5)03% (Eﬂf r,d) .
We choose as independent functions the set

by fige Tor e s Bprnhigs v b » s
and let the Q operator be

Q=0%%3,93, + Q'%3,3, + Q" + 08, 5 0Te a0
(3.4)

Then the determining equations for Q derived from the equation
= o ) -
(afar-#r 13r+r a¢a¢—zr '3 - %)Q[(r,qb): 0
are

0l=0. %% - g+ P =

0f?+rgf =0, gyringi?- fgrt=o,
Q@+ r0l i 0+ 20T QT —ir T =
Qrf -+t + r‘zgd’)‘i- ir Qi+ Zr'ZQ(; +20% =1,

Q¥ +:'0P% + Qe -ir ot + 2,007 + 2r*gf - 2r?g7 =0,

39
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Qo g i g 4 4 207 =0,

00 +r1Q0+ r'zgq’:,w5 ~ir' @0+ Lo =0,

S i 3
0? +r‘lg‘f+r'2g$¢-n‘19;’5+ 2,208 + %Qr"ﬁ

Solving these equations, one obtains a 16 parameter generator

1 ; 2
where @ are the integration constants, and the Q, are
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il I\- z I -3 :I %}
Q,, = exp :’21!:41¢ (r ar:zr a¢:2_r .Q15—5¢3¢,Q16:1
12
13
14

Here Q 1s equal to the operator defined in (3.4).

It is interesting to notice that all the operators listed above can be
transformed into thosc of the harmonic oscillator in section rwo by the
transformation r =, @~ 2¢, t =2¢. This is because under this transfor-
mation the c»quation (3.1) becomes exactly the same as equation (2.1). As
a result, we can-express the Q (=1, 2, , 10) in terms of Q“, 4/ ‘_ anci Q
as listed” above as in the case of the harmomc oscillator.

As the Q; listed above were_ obtained by using the transformed equation

(3.3), the corresponding operators Q for the original equation (3.1) are given
by

-

Q=000

Now we ana[yze these _operators. The commutation relations of Q
le Q,; and Q“ with Q and Q show that these operators raise or lower th(
b 2 .. ations ¢ 0
elgenwalues of Q and Q y 1/ The commutation relations imong Q
d i
Q12 le an Q“ are given by

[Qn,éu]=0, [éu’gls]zo’ [éll‘él‘*]:l’
[élz’éls]:—l’ [512’514]=0’ [Qu’Qu]:U'

From this and from the fact that Q i=1,2, , 10, can be expressed interms

of Q“,le, Qu and Q“, one can see that the set {O }i=1,2,...,10, forms
a closed Lie algebra.

-
To derive the expression for the Q. one must use the operator identity

a’ar=_,-'lar-,'za¢a +ir B + % . which halds in the space
{exp {int]lyﬂm(;_?r,dﬁ}.
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This set contains two subalgebras {Ql, Q, Q3} and {Q4, Q. Qﬁ} , for which
the commutation relations are given by

[él"-]: %QN [‘éa?él]ziél7 [537éz]=_iléz‘
[Q‘pés]:'zzgs’ [Qﬁvé4j_té4» [éﬁ Qs] -rér,
16,,8,]=i5,, [8,0]=-i6,,  16,8,)=id,.

~ ~ ~

[0,,0)=-i0,, [0;.0,1=06G=1,2,3), [§,,0,]=06=4,50).

These imply thgt él anﬂd éz shift the eigenvalue of ‘éa’ thar is /m, by one
u~nit,~and also 9, and Q Shift~thﬁ' eigenvalue of Q , in, by unit amount. As
Q,. @,and Q, commute with Q. , which is a labeling operator of the energy,
they comprlse the Lie algebra of the degeneracy group, and the operators
—1(Q Q ) and - (Q + Q ) are identified® as A and A where A is the twoe
d1men~;10nal analogue of the Runge-Lenz vector defmed y

A= (Ax,Ay,0)=(_zH)'*{2l(Lx B-PsLlival ).

Here we have defined the cross product by, for example,

i ]k
LeP= |D 0 L,
P, P, 0

The raising and lowering operators of n, Q

4 and Q, satisfy the equations

& lpn\‘-lm

5 ) 1\ 3
Q‘ exp i——i'Enf]lp = z(fii) {(ﬂ+l)(?1-[)} exp [-iE

nm + 1im
n- ”n

%
See appendix | for the analogous calculation in three dimensions



Invariants of the equations. . . 43

v

n-1m

n-1

” %
Qg exp [~iE,10,, =i (22%) {(-1+1) -1-1)) exp [~iE
n —

Q, exp [-iEﬂt] ‘I’nm in exp [—z’En t] ‘an

where®
%
4 (n+|m|-1)!
m:___w*{ } F(-n+\m|+1]2|m|+1]|ar)
(Zlm])'! 21(2n =12 (n = |m| - 1)!
n L g
X e %ar(ar) Mg
and

3
a=2/-2E,, E =-%Z'(n-%" .
Now to obrain the skew-adjoint operators under the scalar product

27 00 o
(f,g)=f0 {f'grdrdsﬁ'

We define the new operators Q, by

The Q, and 55 then satisfy the relations

Il

Q, exp {—-iEﬂt} L {(n+1)(n —Z)}zexp [—iEn+1t] B i

3 .
i{n-1+0)n-1-1)} exp [~#E,

_és exp {-iEnt] ‘I’nm _lt] 1]

n-1im

and the operators
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are skew adjoint.
Calculating the commutation relations directly, we find that .,'!.]. %
generate an (3, 2) algebra

g Tl == 8ol Baelbar Builiic F Boaue
with
B i
810 T 82T 8337 T84T ~ 85 "1, Ug) = -y

Therefore the set {exp [—iE”t] ‘Pﬂm} where n and m are both integers or both
half odd integers form the basis for a UIR of O(3,2), and m or n specify the
UIR of an O(1, 2) or O(3) subgroup of 0(3, 2).

If we allow both integral and half integral n and m , then the set
{exp [—r'[:"l t) 'an} will comprise the basis of a UIR of the group generated
by the set of generators {Ql , Q2 , Qs’ Q15 X QU, Ql2’Q13‘ Q", Qm} . For this case

the scalar product must be defined by

4 o0
(f.g0=] ‘”f /¥ g rdrdd .
o o

4. HYDROGENLIKE ATOM

We shall determine the invariants of the time-depdendent Schroedinger
equation of the hydrogenlike atom
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%373 +2:793 - L2+ 22,7 +20,))

) Can —EXP [—iEnt:t lpn[m (r, 8, qﬁ): 0, (4.1)

nim

where the C ; are arbitrary constants, and
L?=-y*3,9, +2x3 -y "3,3,

with x = cos, y = sin{.

The transformation operator D leading to the linear spectrum can be
chosen to be

= P i ' ; . 2Z
D_Dr Di—exp{rar log(-_zfé_at)} exp{tat log( _2}]3)}

(4.2)
where
H=-1933 -3 + 1,2. 1.2 7",
2 r r T 2
The transformed equation is then
(3,3, +2r773 =+ 151710, - 1)« fr,6, 0= 0 (4.3)

with /(r,0,$)= 3 C_, exp [int] ¥, (Zr.0,¢).
nim 2Z

We choose as independent functions, the set
f’fr’fx’ fd)’!t’frx’ rqﬁ’frt’fxx’fxq‘,:’fxt’fqbqiv’

jd)t’frxx'jrx(ﬁ ’frqb¢ 2 fxxx’fquf:’ fx¢¢’fqb<;b¢>‘

where x = cos, and let the Q operator be
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Q=033 +9'%3 3,+Q*¥3 3 _+ Q’“ﬁaxaqs + Q¢¢a¢a¢
+079, +0%0 +0%3, + 03, +¢° (4.4)
The determining equations derived from the equation
(3,3 +2r7%3 - rPL2 =y, - ;_)Q cf=0

are then found to be

A- Q0+ ;_Q:= 0,4-0"+2r%9 - 47707 +209° = o,

A- Q0 +2,7 %%+ 4r7%x0" - 4r 050"+

@+ ) grr - 4™ w2y 20 - g,

A-0%+ Zr'zy'2Q2b+§Q:¢= 0, A-Q +2ir " iy 20" = 0

A Q™ - 4r77Q + 472" ¢ 2r'2y2Q;+ 207 =0,

o o quﬁ _ 4r-1Q:qS+2r-er¢>+2r-2y-qu;+2Qfs =0,

A-g™ +6r'2Q"x+8r'2xQ:"- 8r 3xQ™* - 2"'2y2Q:+ 2r-3y2 0"

t2r%y20% + 2,250 = 0,

A Q™ 42,7 0% + 4,7 20g7b_ o3 ord 4 2r 72yl +2r 72 0% = ¢,
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-4

A QP = 27y T4 27y R0 ey I 4 4 ey
- 2%y % (14 3x2) 0% + 2r'2y"2Qi -2 240"
21'r-1Q:x— 1.r-2er+2,.-2y2Q; _ 0,2ir'1Q:¢-z'r'2Q'¢’+ 2r_2y'2Q;5= 0
AL QT 0T = 0, 1 PyTQIP 4 0t 4 17y 20 g
Q¥ + 17y 20" 1y = 0, _ 207 4 rly2Q 45207 + 260 =0
VPl g0t 4 a0 + 20 = 0,
Sy Ay 4 y R 0xb 4y 298¢ 0y T = g,
_}_-QQ:¢+r-1y-2Qr¢+y-2Q$¢>_ xy'4Qx¢ =40, Q: -0
where
A=83 +273 4+ 728 D - 2r 748 4572 y 0,9, - 119,

Solving these equations, one obtains a 22 parameter generator.

T s .
where the @'’s are integration constants and the Q,’s are

Q; = exp [+i¢] (y3_7 ixy'laqb), Q,=73,
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Q, =Zexp|[ tig] (xyarax‘i'r'ly“axax;iy'lara¢+r'ly'lagSqu
E
S & r
+yar—2r xyax—_ztyat)
Q6 =2 (—yzarax'f' r']xyzaxax+r_lxy'2a¢a¢+xar +—2r'1x28x-;_'xat‘,
Q72exp (izra +a—2rii), Qg-—-at,
8
B f i shyed
Qm°2:exp{+ t i lxyaa ¥ 333 2 aa +r B¢a¢+
- - +
2
" - £ 5
i (1 % r)ya —_(4f -l)ryax: %y'18¢ yya —% }

Q,, =2 exp [i‘it]{ —y23r3x+r'1xyzaxax+r_1xy_2 a¢a¢+ 2 %r)xar
15

t Lidy? = 4™ty B +xat—lrx\ :
2 i

Q16 = exp [ +2id] {)’2axax¥2ixaxa¢ —xzy’28¢a¢ T-iy_z(l +x?) a¢} =(Q1)

L7 2

o A -2y 1
Q, = yzaxoxi— xty o¢a¢ - ZxBx = 5(QIQ2 +2.,0.3,

Q,, = €xp [ +ig] (‘)-Bx?‘d) iixy'laqba )= Q Q, ,

and Q 1s the operator defined in (4.4).
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As these are obtained from the transformed equation (4.3) the corre-
sponding operators, J., tor the original equation (4.1) are given by

g, =070

I'his rransformation can be carried through easily for Q.1 = 1.2 ...,56,as

demonstrated in the appendix I. .
First le, Qw, — Qu are ex-

Now we analyze those operators.
pressed in terms of the operators Ql’ Q and Q} , as listed, and Q,, is a
Q;’ =1,2,..., 06, commute with Qg or the Hamiltonian, and

unit operator.
% S *
are identified as

0, =ilA *id), O, = i(A ~id), O, =iA,

are the usual angular momentum operators and

v»here L,,L_andL,
= (A A AL s thc weil known Runge-lenz vector defined by

A=f-2H).2 {I(LXP—PxL)“fZL}
2 r

As is well known, A amd l'.. generate an 0(4) algebra. »

Furthermore, O_’r1 Q and O comprise a closed Lie algebra

[Q.?’és] - 2iéq’ [é')év] - I'Q'?’ £ég’§8] - _iés

From these it is clear that Q. and Q shifc the eigenvalue of Q_, that is in,
by unit amount. They satisfy the relarions

See appendix |.
- » : .
By using a dummy variable ¢, Armstrong7 obtained the identical generators in his
treatment of the radial function. Our result shows that his ¢ is in fact the phy sical

time.
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Q.+ exp s z'Ent} "P”lm: i(l+i)2 {(n +1+l)(n—l)}2 . cxp[ n+1’] \p
n

n+llm

2 3
Qs T exp [—z'Ent] "P”Imzi(l— 1_) {tn =1 -1)n £ 1) ‘ exp [—ih‘ﬂ_lt] -y

“ n-1{m

59 *exp [—z’E’nr] W, = exp [—z’f:’ﬂf] W

where ¥ wim 1S @ normalized hvdrogemc wave function and i, = Z* /252
Because of the factor (1 + 1/n)° in the above coefficients, no linear combi-
nations of the operators Q and O are skew ~djoint under the usual scalar
product

(, ,g;—j”f”{“/' - g P2sin Odrd Bdeb

0 Q

: o *
To remove these factors we define the new operators Q. by

Using the new operators, we “ave

_Q—7 T exp [-iﬁnt] "I’nlm:i {(n+1+1)n —I)}g'exp [-iE Hr] v

n+llm

55 *exp {-iE,,!] "P,,zmzi{(n =1 =1)(» +!)}2'6XP [-iE 1’} ¥

n-1m -

A straightforward analysis then shows that

It is clear that the new set {Q } sansf} the same commutatjon relatmns as the ser

{Q}, and asQ t=12...,6,9, commute with Qg wehaveQ Q
fori=1, 2, 5 6,9



Invariants of the equations. .. 51

are skew adjoint under the above scalar produce.

They satisfy the relations
of the well known O(1, 2) algebra

— s ] .1-_
(M, M, ]=-n,, (M, M, 1=m, (M, M 1=M

2

The remaining operators can be identified as

ém=_£[§4’§ﬁj‘ Q11=i[§4,§8], Zv)lz':'i[és’g'f]

Q,=ile,.ql), ¢,=-ilg,.0], 0,=ilg,q,]

by direct calculation. It is clear then that a particular complex extention of
the set {Q;.}z' =1,2,...,15, comprises the well known 0(4,2) algebra of the
dynamical group of the hydrogenlike atom,®*5

and that the hydrogenic wave
functions form the basis of a UIR of 0(4.2).
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APPENDIX I.
THE INVERSE TRANSFORMATION OF CONSTANTS
OF THE MOTION TO THE ORIGINAL PHYSICAL SPACE

We illustrate the process of inverse transformation by using the
operators which arise in the treatment of the hvdrogenlike atom.
: n : i T T T .
The inverse transformation operator D~ 1S glven by

= (Di)‘l (Dr )'1 = exp { .f'r)l log I'ZZ)_1 (=2H) }

i
exp {:r—r)ir log (—;*;“at) }

4

and the transformed operator éi will be
B e il _ = e |
g, =0 D=,y (D)'Q DD, .

; A 2 o= ~
as @, Q,and Q, commute with D™, Q,,Q, and Q, have the same form as
QI,QEand Q,. - B

We next calculate the transformation of Qs explicitly. (The trans-
formation of e and Q. can be done in a similar manner.) Performing the

: il
transformation (D) " on Q , we get

61
(D, e Zz'yzar Bx + 2ir ey ? 9,8, t2ir” 1xy'2a¢a¢ +2ix9,

- 4ir"'x%3_+ x3,)n =79, (-y*3 8+ 'xy?3 9

X X

+r-1xy'3—(3¢a¢+x?r—2:"‘x28x+2x). {1)

Here we have used the relations

[9,01=0.0)"3p =-%z"33, ()y'+'p =-%z'+3, .
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oo 2
Next we perform the time dilation (D)™ on (1) to get

3

=2(=2H) 3 (=47 Ty 22 ey
QG 2(- 2H) ,.!( y Brax+r X3 I.Jxax+r Xy d,0

(s

-1 i
+xd ~2r'x%3 + Zx)
r %
after using the relations

A7

() o] =0, @) 3, =22(- 2my ">,

As we have an operator identity H = i—at in the original space

{exp f= :'H"r] Wnlm}‘ the last equation can be rewritten as

od -3
Q, =i(-2H) " (-y"3 3 _+r'xy?D +rixy 9,9
3 ¥

+ %0 -2r"'%%3 +Zx).
r x

This 1s a 7Z component of the weilknown Runge-Lenz vector to within the

phase factor ¢

55
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APPENDIX II

Sometimes we have to make use ofan operator identity implicd by the
original differential equation to obtain a closed Lie algebra. We illustrare
the process by using the two-dimensional hydrogenlike atom, taking the
commutator [O f? ] as an example

By cale ul= 11\4r the commutator explicitly, we get

[QI.QQJ: el'!{»\hf(arar'fr—‘arﬂ*r e ¢‘i Nyl 41

7 2 7 4

~2(3,3 +r713 +:73, 08, - i7" - 1).‘%}

1l 1 = | -2~ | 1
e {—Er(afar+r 3?+r a¢a¢~—1r at—z)

-2i (88, +:713, 70,9, -ir '3, - i,)aqﬁ

ir_la Ll ra +1
2 L4 g i

But as we have an operator identity (see equation 3.3)

B T N .
E;B,rr 9, +.4 B¢d¢-zr az.-z---

in the transformed space {exp Liln - %) ¢] 'l’ulm

L rgf)) }, the above
27

equation reduces to
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APPENDIY 11

To illustrate the way 1o which one can proceed in determining the
sroups of equations which arise on separation of variables we consider the
rudial cquaticas for the two and three-dimensiona! Kepler problem

The radial equations of two and three-dimensionalhydrogenlike aroms

Aarc
-1 i R, | . . 5 .
(9,2 +pr7'3 —qr ™ +277 +2i3)) E. Cyoexp =i 1R (r)=0
where
. 1R [ hn =
h = L=y By, == i (= %)
for 2-dimensions or
p=2,9=IU+1),E =-57"n"

for 3-dimensions.
The appropriate compound dilation operaror D is

D=9 * B =exp {rar log (- ‘1-1'7._1?‘, )} exp 1 taf log (I 2”3\}

where

H=-5%(03 +pr '8 «qr™+22:7 ).
r r k r
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b
fir,y=%C exp [i(-26,) zAR (T _).
" 2/-2E

We choose the independent functions to be

]-‘fr‘f,;l,l

and let the Q operator be of the form

0=03,+0'3 +0 .

The determining equations then are

Q, =0, Q -pr ' Ql-ir ' +pr 70" + 20" = 0

1 1
+ !

Q,, pr”Qy - fr_lQ;—ir_ZQr + 2ir7 Q’r =0

Q) +or Q) -ir Q) 2gr7%0" + 2(gr 7t +4) 0

r

=0.

The solution is

Q
I
H
=
14
)
+l
Q/
+H

Q,and Q, arc the same as the n shift operators obtained in section 3 and 4.
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RESUMEN

Usando los métodos sistemdticos del articulo previo (I), se obtienen
los invariantes y los grupos dindmicos correspondientes a la ecuacion de
Schroedinger dependiente del tiempo, para el oscilador arménico en dos di-

mensiones y para el atomo hidrogenoide en dos y en tres dimensiones.





