
RESEARCH Revista Mexicana de Fı́sica64 (2018) 107–115 MARCH-APRIL 2018

Synchronization dynamics of two mutually coupled
555-IC based electronic oscillators

M. Santillán
Centro de Investigación y de Estudios Avanzados, Unidad Monterrey

Vı́a del Conocimiento 201, 66600 Apodaca NL, México,
e-mail: msantillan@cinvestav.mx

Received 22 September 2017; accepted 28 November 2017

We designed and implemented an electronic oscillatory system consisting of two mutually coupled oscillators (each one based on the 555-
timer IC working in astable mode), and investigated its synchronization dynamics. For that purpose, we characterized the phase-locking
rhythms achieved in a large set of values of the uncoupled frequency ratio and of the coupling strength between both oscillators. We further
developed an ODE mathematical model that qualitative reproduces the obtained experimental results and provides further insight into the
system behavior.
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1. Introduction

Science interest in synchronization dates back to the late
17th century, when Christiaan Huygens discovered this phe-
nomenon. By the end of the last century a solid mathematical
theory was developed, and for the first time it allowed us to
really understand some of the simplest examples of synchro-
nization [1-3]. However, the general problem is open for re-
search, and the behavior of some apparently simple systems
reveals unanswered questions that still need to be answered—
see for instance [4], Chapter 8.

By definition, an oscillator has closed phase-space trajec-
tories. In the case of nonlinear oscillators, these closed trajec-
tories may correspond to nonlocal stable regions or attractors,
also known as stable limit cycles. According to their limit
cycle speed, nonlinear oscillators can be classified into what
we call quasi-harmonic and relaxation oscillators. In a quasi-
harmonic oscillator the trajectory speed along the limit cycle
varies smoothly. Contrarily, the speed in a relaxation oscil-
lator presents abrupt changes, thus defining multiple times
scales.

Much of the work on synchronization, and concomitantly
many of the existing developments, correspond to quasi-
harmonic oscillators [1,5-7]. Regarding relaxation oscilla-
tors, their synchronization has been widely studied when they
are pulse-coupled—i.e. when the interaction occurs only dur-
ing the rapid cycle phases [2,3,7-17]. This includes:

• Master-slave and mutual interaction scenarios.

• Two interacting oscillators and large networks of inter-
acting oscillators.

• Theoretical and experimental studies.

Contrarily to pulse coupling, in the so-called diffusively-
coupled relaxation oscillators, interaction occurs during the

whole cycle. Studying synchronization with this type of in-
teraction is challenging because of the existence of very dif-
ferent times scales. To the best of our knowledge, there is
no general mathematical theory for this problem. However,
important developments have been achieved while studying
specific examples [18-21]. On the other hand, only a few ex-
perimental studies concerning synchronization of diffusively
coupled relaxation oscillators have been reported [22]. In
this regard, recent developments in electronics, like new digi-
tal devices and versatile micro-controllers, make possible the
implementation of experimental setups to thoroughly study
assemblies of coupled electronic oscillators. Having this in
mind, the present work is advocated to experimentally and
theoretically studying the synchronization dynamics of two
diffusively-coupled electronic relaxation oscillators (based in
the 555 integrated circuit, operating in astable mode).

2. Circuit design

2.1. The 555 timer IC

The 555 timer is a very versatile integrated circuit that is fre-
quently used in a variety of timer, pulse generation, and oscil-
lator applications. The detailed characteristics and modes of
operation of this circuit can be consulted in [23]. In summary,
the 555 IC has eight pins that are connected and/or have the
functions described as follows:

• Pin 1 is connected to the ground reference, or low level
voltage (0 V).

• Pin 2 is an input pin called the trigger. The output pin
goes high when this input falls below 1/2 of the control
voltage, which is typically 2/3 of the positive supply
voltage, Vs. That is, the output pin goes usually high
when voltage at Pin 2 falls bellow 1/3 of Vs.
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• Pin 3 is the 555 IC output pin. Its voltage can be equal
to either Vs or 0 V, depending on the state of the trig-
ger, reset, and threshold pins.

• Pin 4 is the reset pin. Voltage at this input needs to be
higher than about 1 V in order for Pins 3 and 7 to be
able to switch between their available states.

• Pin 5 is an input pin that provides access to the control
voltage. If this pin is unconnected, the control voltage
takes its default value: 2/3 Vs. Usually this function is
not required and the control input is often left uncon-
nected.

• Pin 6 is an input pin known as the threshold pin. Volt-
age at the output pin goes low when the voltage at this
pin is greater than the control voltage (2/3 Vs if pin 5
unconnected).

• Pin 7 is called the discharge pin. It is an open collector
output which may discharge a capacitor in phase with
the output pin.

• Pin 8 is the power input pin. It must be connected to the
positive supply voltage (Vs), which provides the power
necessary for the IC to operate.

2.2. Electronic oscillator based on the 555 integrated-
circuit operating in astable mode

Depending on the way it is connected, the 555 timer IC has
two different modes of operation: monostable and astable—
see Ref. 23, Sec. 7.4. In the monostable mode, the timer
functions as a device that generates a single voltage pulse
(of fixed duration) at Pin 3, in response to a negative trigger
pulse of less than 1/3 Vs to Pin 2. In the present work we do
not employ this configuration, but that corresponding to the
astable mode, in which the 555 Timer IC triggers itself and

FIGURE 1. Electronic oscillator built with a 555 timer IC in astable
mode.

free run as an oscillator—see Fig. 1. According to the de-
scription in the previous subsection, the circuit oscillatory
behavior can be explained as follows. Assume that capac-
itor C1 is initially discharged and that the voltage at pin 3
is high. Then, the capacitor starts charging through resistor
R1. When the voltage in the upper end of C1 exceeds 2/3 Vs,
the voltage at pin 3 shifts to low. This makes the capacitor
discharge through resistor R1, until the voltage at the C1 up-
per end goes below 1/3 Vs. At this point, the voltage at pin 3
changes to high and the cycle starts all over again. Notice that
capacitor C1 charges and discharges through R1, producing
symmetric cycles. Henceforth, by varying the value of this
resistor one can control the cycle period.

2.3. Two mutually interacting 555-IC electronic oscilla-
tors

We are interested in studying the synchronization dynam-
ics of two mutually interacting 555-IC electronic oscillators.
To do this, we implemented the circuit schematically repre-
sented in Fig. 2. Notice that Pins 2-6 in the ICs of both elec-
tronic oscillators are connected through a resistor Rc. The
rational for this design is that when Rc tends to infinity, the
two oscillators behave independently. However, at low resis-
tance values, any voltage difference between the upper ends
of Capacitors C1 and C2 would rapidly tend to disappear due
to the current the voltage difference causes through resistor
Rc, and this in turn may force the oscillators to synchronize.
In the experimental protocol described below, we keep fixed
the the natural frequency of one oscillator, and variate the fre-
quency of the other. Without loss of generality, we call the
oscillator with variable frequency Oscillator 1, and refer to
the other as Oscillator 2. The frequency of Oscillator 1 is
controlled by modifying resistance R1.

The values of all the resistances and capacitances em-
ployed in our circuit design, as well as that of Vs, are tab-
ulated in Table I. Notice that resistance R2, which deter-
mines the natural frequency of Oscillator 2, is fixed. With
the parameters in I, this frequency should be about 10.5 kHz,
but the actual value in a given circuit may change due to
electronic-component variability.

FIGURE 2. Circuit design for two mutually-interacting 555-timer-
IC oscillators.
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TABLE I. Parameter values for the circuit in Fig. 2.

Parameter Value Parameter Value

R1 0-10.0 kΩ C1 .01µF

R2 6.8 kΩ C2 0.01µF

Rc 0-10.0 kΩ Vs 5.0 V

3. Data acquisition and experimental results

Data, in the form of voltage time series measured at Pin
3 of both 555 ICs (see Fig. 2) were acquired by means of
a BitScope BS10 (manufactured by BitScope [24]), con-
trolled fromPython 2.7 via the public libraryBitScope
Library 2.0. We used a sampling frequency of 1,000 kHz,
and obtained 6,000 data points each time we recorded.
This ensures that about 100 data points are captured per
cycle, and that more than 50 cycles are recorded each
time. We carried out measurements with several combina-
tions of resistances R1 and Rc in the range[0 kΩ, 10 kΩ].
To that end, we employedDallas Semiconductors ’
DS1083 integrated circuit, that features two independently
controlled 256-position potentiometers. Control of this
device from Python 2.7 was achieved by means of
Adafruit FT232H breakout, together withAdafruit
Python GPIO library.

Using the above described experimental setup, we
recorded data for several values of resistances R1 and Rc
(including the case in which both oscillators are uncoupled:
Rc→ ∞). In Fig. 3, we show sample recordings in which
R1 = 5.85 kΩ, and either Rc→ ∞, or Rc = 1.95 kΩ. Notice
how in the first case both oscillators have different frequen-
cies and so they are out of synchrony, while in the second
case not only they are synchronized but they are in phase.

FIGURE 3. Sample recordings from Pin 3 (V3) of oscillators 1
(orange line) and 2 (blue line). In the corresponding experimental
setup, R1 was set to 5.85 kΩ. In the top plot, both oscillators are
uncoupled, while in the bottom plot the coupling resistance, Rc,
was set to 1.95 kΩ.

FIGURE 4. Cycling frequency of Oscillator 1 (̄f1), when both os-
cillators are uncoupled, as a function of 1/R1. Notice that, as ex-
pected,f̄1 and R1 are inverselly proportional.

To further validate the circuit performance, we car-
ried out recordings for several values of R1 in the
range[2.5 kΩ, 10.0 kΩ, while both oscillators are uncoupled
(Rc → ∞). Resistance R1 was fixed to 6.8 kΩ. There-
after, we measured the cycling frequency of Oscillators 1
(f̄1) and 2 (̄f2) by means ofNumpy’s (a Python ’s library)
rftt algorithm. The measured frequency of Oscillator 2
wasf̄2 = 10.17 kHz. The results for̄f1 are reported in Fig. 4.
As experted,f̄1 and R1 are inversely proportional. This re-
sults not only confirms the proper performance of out circuit
design, but allowed us to calibrate the frequency of Oscilla-
tor 1.

To investigate the effects upon synchronization of the
coupling resistance value and of the oscillators’ natural-
frequency difference, we performed recordings of the volt-
age at Pin 3 of both 555 ICs for many different values of
resistances R1 and Rc. To test for bistability, we repeated
the experiment four different times. In each experiment, one
resistance value was fixed while the other was modified step-
wise within the corresponding range. Then, the first resis-
tance value was slightly modified, and the whole process was
iteratively repeated for a given range of the first resistance
values. What changed in each experiment were the initial
values of both resistances. Specifically, we selected all possi-
ble combinations of the maximum and minimum R1 and Rc
values.

After carrying out the above described recordings and
plotting the time-series we obtained from both oscillators, we
noticed that the coupled system achieved in general complex
m : n phase-locking rhythms—see [25] Chapter 6. In these,
the behavior of the coupled system is periodically repeated.
However, in every period of the coupled system, each indi-
vidual oscillator undergoes a different number of cycles. To
characterize these complex rhythms, we measured the fre-
quency of both electronic oscillators by means ofNumpy’s
rfft algorithm (letf1 andf2 respectively denote the fre-
quencies of Oscillators 1 and 2). Then, we looked for the
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FIGURE 5. Complex phase locking rhythms (denoted by the ro-
tation number m:n) achieved by the system of coupled oscillators,
in terms of the coupling resistance value (Rc) and the ratio of fre-
quencies both oscillators have when they are uncoupled (f̄2/f̄1).

greatest common divisor off1 andf2 (gcd(f1, f2)), and re-
ported rotation number of the corresponding complex rhythm
asm : n, with m = f2/gcd(f1, f2) andn = f1/gcd(f1, f2).
The results of this analysis are reported in Fig. 5. There,
the achieved complex phase locking rhythms are plotted as
a function of the uncoupled frequency ratio (f̄2/f̄1, which
can be computed from resistances R1 and R2) and the cou-
pling resistance (Rc). For the sake of simplicity, we limited
ourselves to the casesm,n = 1, 2, 3.

We can appreciate in Fig. 5 that the sets of (f̄2/f̄1,
Rc) points corresponding to different complex phase lock-
ing rhythms are grouped in well defined regions. Except for
the 1:1 complex rhythm, these regions appear to be not con-
nected. Further notice that the regions corresponding to com-
plex rhythms other than 1:1 do not appear at very low values
of the coupling resistance. Regarding the region correspond-
ing to the 1:1 rotation number, note that the top part presents a
salt-and-pepper pattern. To understand this, take into account
that we used the results of all four formerly-described exper-
iments. Everywhere but in the salt-and-pepper (SP) region,
the system behavior was the same in all four experiments.
However, in the SP region, either both oscillators cycled in
synchrony, or neither of them showed an oscillatory behav-
ior. In the last case, the voltage at Pin 3 of one of the 555
CIs was zero, while at the other CI this voltage achieved its
maximum possible value. That is, we observed a multistable
behavior in which the final outcome depends on the initial
conditions. To illustrate this multistable behavior, only the
points were the results of at least two experiments showed
synchronized cycling of both oscillators are shown.

FIGURE 6. Order parameter—as defined in Eq. 1—computed from
the experimentally measured voltage time-series of both coupled
oscillators. This parameter, which is plotted as a function of the
coupling resistance and the natural-frequency ratio, takes values
between zero (phase shift between both time series is 180 degrees)
and one (both time series are in phase). The order parameter value
is indicated by means of different shades of blue, with the darkest
shade corresponding to one.

We also investigated to what extent the two coupled os-
cillators are out of phase when they achieve 1:1 synchrony.
For this, we employed an order parameter functions defined
as [26]:

op(x1, x2) =
var(x1 + x2)

2(var(x1) + var(x2))
, (1)

wherex1 andx2 are two different cyclic time series to be
compared. This function equals one when bothx1 andx2

are in phase, and monotonically decreases as the phase shift
increases.

We computed the order parameter for the recorded time
series of both oscillators, and for all the combinations of re-
sistances R1 and Rc that yielded 1:1 cycling rhythms. The
results are summarized in Fig. 6. Observe how, despite 1:1
rotation numbers are possible for a wide range off̄2/f̄1 val-
ues, both time series are in phase only when the two inter-
acting oscillators have very close natural frequencies. The
more different the oscillators’s natural frequencies are, the
more out of phase their rhythms end up being, even though
the coupling resistance is low enough to ensure a 1:1 cyclic
behavior.

4. Mathematical modeling

To further understand the results in the previous section, we
developed a mathematical model for an electronic oscillator
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based on the 555 IC. Below we describe this model and the
results of the corresponding simulations.

4.1. Mathematical model for the 555 IC

When pins 2 and 6 in the 555 IC are short circuited (as in the
circuit in Fig. 1), this IC behaves as a hysteretic NOT gate. To
see this, letx denote the voltage at Pins 2-6 andy the voltage
at Pin 3 (the output pin). According to the description of the
555 IC given in the previous section, these variables behave
as follows:

• If x < 1/3 VS , theny = VS .

• If x > 2/3 VS , theny = 0.

• If 1/3 VS < x < 2/3 VS , y be either 0 or 1, depending
on the initial condition.

Taking the previous discussion into account, we propose to
model the 555 IC (when Pins 2 and 6 are short-circuited) as
follows:

dy

dt
= γ(H(1 + y − 3x)− y), (2)

with H() denoting Heaviside’s function, andγ a large
enough parameter to secure a rapid evolution of the differ-
ential equation toward the steady state. It is straightforward
to verify that whenx < 1/3, the only available steady state is
y = 1; whenx > 2/3, the only existing steady state isy = 0;
and when1/3 < x < 2/3, both steady state are feasible.

4.2. Modeling an electronic circuit based on the 555 IC
working in astable mode

According to the diagram in Fig. 1, to build an electronic
oscillator it is enough to take a 555 IC working as a NOT
hysteretic gate and feedback the output variable,y, into the
input, through a RC circuit. Accordingly, the mathematical
model for the 555 IC can be extended as follows to represent
an astable 555-IC oscillator:

dx

dt
=α(y − x), (3)

dy

dt
=γ(H(1 + y − 3x)− y). (4)

whereα ¿ γ takes the place of the RC-circuit relaxation
rate.

So far, we have employed Leibniz’s notation for time
derivatives. However, in the forthcoming discussion we will
employ Newton’s notation for the sake of brevity. Here and
thereafter, both notations will be employed together. To un-
derstand the origin of oscillations, let us analyze the phase-
space trajectories of the ODE system (3)-(4). The relation
γ À α implies that ẏ À ẋ across the phase space, ex-
cept whenẏ = 0. This further means that trajectories are
pretty much vertical everywhere, but in the neighborhood of
the ẏ = 0 nullcline. Moreover, since close to the nullcline

ẋ ≈ ẏ ≈ 0, once the representative point of the system ap-
proaches thėy = 0 nullcline, it slowly follows this line.

The ẏ = 0 nullcline consists of all the(x, y) points sat-
isfying the equationH(1 + y − 3x) = y. As we discussed
earlier, whenx < 1/3 only y = 1 satisfies the equation;
furthermore, whenx > 2/3 the equation is only satisfied by
y = 0; and when1/3 < x < 2/3, y can take both values
(y = 0, 1). Hence, the nullclinėy = 0 consists of two par-
allel horizontal straight-line segments, one located aty = 0
and extending fromx = 1/3 to x = 1, while the other rec-
tilinear segment is located aty = 1 and extends fromx = 0
to x = 2/3. In the next figure we can appreciate a graphic
representation of they = 0 nullcline. The fact that the two
nullcline branches partially overlap, together with the discus-
sion in the former paragraph, implies that no matter what the
initial condition is, the phase-space trajectory of the formerly
introduced ODE system should converge onto a closed cycle
as that depicted in the next figure, thus explaining the sys-
tem cyclic behavior. Finally, we can see from this discussion
that the oscillator here studied is analogous to the Van der Pol
oscillator.

4.3. Modeling two mutually interacting oscillators

To model two different 555-IC electronic oscillators whose
corresponding Pins 2-6 are connected through a coupling re-
sistance, take into account that the value of variablex corre-
sponds to the voltage at Pins 2-6. Thus, the dynamics of the
coupled system are governed by the following ODE system:

dx1

dt
= α1

(
(y1 − x1) +

x2 − x1

ρ

)
, (5)

dy1

dt
= γ(H(1 + y1 − 3x1)− y1), (6)

dx2

dt
= α2

(
(y2 − x2) +

x1 − x2

ρ

)
, (7)

FIGURE 7. Schematic representation of theẏ = 0 nullcline (blue
line), and of the phase-space cycle predicted by the present model
(orange line).
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dy2

dt
= γ(H(1 + y2 − 3x2)− y2), (8)

with ρ a parameter proportional to the value of the coupling
resistance.

5. Numerical-simulation results

After developing a model for two mutually-interacting elec-
tronic oscillators based on the 555 IC, we carried out several
simulations to mimic the experiments reported in Sec. 3. We
started by simulating the performance of a single electronic
oscillator—Eqs. (3)-(4). To avoid numerical errors due to
the discontinuity of Heaviside function atx = 0 we approxi-
mated this function as

H(x) ≈ tanh(100x) + 1
2

,

To perform the simulations, the differential equations (3)-(4)
were numerically solved by means of Algorithmodeint ,
found in Python ’s library SciPy . In Fig. 8 we show the
result of one of such simulations whereα = 1 andγ = 1000.
Notice that variablesx andy resemble the performance of a
555-IC based electronic oscillator.

To further validate the model, we carried out several sim-
ulations, modifying the value of parameterα in the range
[0.5, 2.0]. Then, for each simulation we computed the fre-
quency of they vs. t time series by means ofNumpy’s rfft
algorithm. The results are shown in Fig. 9. Observe that,
as expected, the oscillator frequency depends linearly on the
value ofα. Further notice the resemblance of this plot to that
in Fig. 4.

After verifying the mathematical model of a single os-
cillator behaves as expected, we proceeded to study the syn-
chronization dynamics of two mutually interacting oscilla-
tors. To do this, we numerically solved the differential equa-
tion system given by Eqs. (6)-(8), for several values of para-

FIGURE 8. Simulation results for a single 555-IC electronic os-
cillator. The numerical solution of Eqs. (3) and (4)—variablesx
(orange line) andy (blue line)—are plotted vs. time.

FIGURE 9. Plot of the frequency ofy vs. t time-series as a function
of α, computed from several numerical solutions of Eqs. (3)-(4).

metersα1 andρ (α2 was fixed atα2 = 1.0), starting from
randomly-selected initial conditions. In agreement with the
experimental results, we observed that for every couple of
(α, ρ) values, the coupled system achieved a complex phase
locking rhythm. Therefore, we followed the procedure de-
scribed in Sec. 3 to compute the corresponding rotation num-
bers. The results are presented in Fig. 10. Note that the rota-
tion numbers are given in Fig. 10 in terms of the uncoupled
frequency ratiof̄2/f̄1, instead ofα1. However, we can ap-
preciate in Fig. 9 that̄fi ∝ αi. So,f̄2/f̄1 = α2/α1 = 1/α1,
sinceα2 = 1.0.

Observe in Fig. 10 that all(ρ, f̄2/f̄1) points yielding 1:1
rotation numbers are grouped in a connected region around
thef̄2/f̄1 = 1 axis. Furthermore, forρ < 1, this region pre-

FIGURE 10. Complex rhythms (denoted by the rotation number
m:n) achieved by the system of mathematically-modeled coupled
oscillators, in terms of the value of parameterρ and the ratio of
frequencies both oscillators have when they are uncoupled.
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FIGURE 11. Order parameter—as defined in Eq. 1—computed
from the simulated coupled-oscillators’y1 andy2 time-series. This
parameter, which is plotted as a function of the coupling resistance
and the natural-frequency ratio, takes values between zero (phase
shift between both time series is 180 degrees) and one (both time
series are in phase). The order parameter value is indicated by
means of different shades of blue, with the darkest shade corre-
sponding to one.

sents a salt-and-pepper pattern. The reason for this is that,
in such region of the parameter space, the system presents
a multistable behavior (see Sec. 6 for further details): both
oscillators can cycle in synchrony, but they can also reach
non-cyclic stationary states in whichy = 1 for one oscillator,
while y = 0 for the other. Other phase locking rhythms with
rotation numbers of the form m:n (with either m or n larger
than one) are also possible, but they occur in non-connected
regions on both sides of the 1:1 region, and forρ values larger
than 1.

Next, we considered all the simulations in which a 1:1
circulation number was reached, and computed the order pa-
rameter defined in Eq. (1), to measure the phase shift between
the time series of both oscillators. The results are shown in
Fig. 11. Note that, similarly to the experimental results in
Fig. 6, both oscillators are in phase only when their nat-
ural frequencies are very similar. Otherwise, even though
they synchronize with a 1:1 rotation number, they are out of
phase, and the phase shift increases together with the natural
frequency difference.

We can see from the discussion in the previous para-
graphs that the results regarding synchronization in our
model (Figs. 10 and 11) are qualitatively similar to the cor-
responding experimental results (Figs. 5 and 6). This, in our
opinion reinforces the validity of our model, and allows us
to use it to tackle questions regarding the dynamics of the
real system. We are particularly interested in the multistable
behavior observed in strong coupling limit. The following
section is advocated to studying this problem.

6. Multistable behavior in the strong coupling
limit

To study multistability in the dynamical system given by
Eqs. (5)-(7) recall that the system steady states are the so-
lutions of: ẋ1 = ẏ1 = ẋ2 = ẏ2 = 0. It follows from the
Heaviside functions iṅy1 = 0 and ẏ2 = 0 that the steady
state values fory1 andy2 must be either 0 or 1. This gives us
four different possibilities:

1. y∗1 = y∗2 = 0,

2. y∗1 = y∗2 = 1,

3. y∗1 = 1, y∗2 = 0,

4. y∗1 = 0, y∗2 = 1.

Here and thereafter we employ asterisks as superscripts to
denote steady state values. Let us analyze each one of the
possibilities enlisted above.

• Assume thaty∗1 = y∗2 = 0. This, together with
ẋ1 = ẋ2 = 0 implies thatx∗1 = x∗2 = 0. But this
is impossible because, as we have seen,x∗1, x

∗
2 > 2/3

andẏ1 = ẏ2 = 0 imply thaty∗1 = y∗2 = 1, contradict-
ing our initial assumption.

• Suppose thaty∗1 = y∗2 = 1. This andẋ1 = ẋ2 = 0
imply that x∗1 = x∗2 = 1. However, we know that
x1, x2 < 1/3 andẏ1 = ẏ2 = 0 imply thaty∗1 = y∗2 =
0, which contradicts the initial assumption.

• Concerning possibilities 3 and 4, given the symmetry
of the ODE system they can be regarded as equivalent.
Thus, it is enough to analyze only one of them. With-
out loss of generality assume thaty∗1 = 1, andy∗2 = 0.
It is straightforward to prove from this and constraints
ẋ1 = ẋ2 = 0 that

x∗1 =
1 + ρ

2 + ρ
, x∗2 =

1
2 + ρ

.

furthermore, to havey∗1 = 1, andy∗2 = 0 we need that
x∗1 < 2/3, andx∗2 > 1/3, and this further implies that
ρ < 1.

In conclusion, whenρ < 1 (strong coupling), two steady
states exist in which none of the coupled oscillators shows
cyclic behavior, besides possible cyclic behaviors for both os-
cillators. Contrarily, whenρ > 1 no steady states exist, and
so the only possible behavior is one in which both oscillators
cycle periodically.

To analyze what kind of cyclic behavior is possible in the
strong coupling limit, let us consider the case in whichρ ≈ 0.
In this situation, the terms proportional to(x1 − x2)/ρ dom-
inate in the right hand side of Eqs. (5) and (7). Therefore,
x2 andx2 rapidly reach a quasi-equilibrium state values such
thatx1 = x2. Let us define variableξ as:

ξ =
x1 + x2

2
.
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It follows from this definition and Eqs. (5) and (7) that

dξ

dt
=

1
2

(α1(y1 − x1) + α2(y2 − x2)) .

Hence, if we assume thatρ ≈ 0, the equation above can be
approximated as

dξ

dt
=

1
2

(α1(y1 − ξ) + α2(y2 − ξ)) . (9)

This equation, together with the following two ones, conform
a mathematical model for two very strongly coupled 555-IC
electronic oscillators:

dy1

dt
=γ(H(1 + y1 − 3ξ)− y1), (10)

dy2

dt
=γ(H(1 + y2 − 3ξ)− y2). (11)

Finally, the fact thatγ À α1, α2, implies that variablesy1

andy2 in the above dynamic system simultaneously follow
the evolution of variableξ. That is, wheneverξ > 2/3, both
y1 andy2 turn zero; and as soon asξ > 2/3, y1 andy2 turn
one. This in turn indicates that, in the strong coupling limit,
when the system of two coupled oscillators does not reach a
steady state, both oscillators cycle in synchrony.

7. Concluding Remarks

In this work we have studied the synchronization dynamics
of two mutually interacting electronic oscillators based on
the 555 IC. Our experiments revealed a complex repertoire
of behaviors in this apparently simple system. Namelly, in
the weak interaction regime, complex synchronizationm : n
modes are found when the frequency ratio is close tom/n.
As the coupling strength increases, the frequency ranges
leading tom : n synchronization widen up to a certain point,
and then these regions become unconnected; with the excep-
tion of the region corresponding to1 : 1 synchronization.
At even higher coupling strengths, a bistable behavior is ob-
served in which1 : 1 synchronization coexists with a station-
ary behavior. We finally developed a simple mathematical
model that, on the one hand, was able to qualitatively repro-
duce the behavior of the experimental system, but also helped
us to understand the origen of its bistable behavior in the very
strong coupling regime.
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