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A covariant generalization of a non-relativistic stochastic quantum mechanics introduced by de la Peña and Cetto is formulated. The analysis
is done in space-time and avoids the use of a non-covariant time evolution parameter in order to search for Lorentz invariance. The covariant
form of the set of iterative equations for the joint coordinate and momentum distribution functionQ(x, p) is derived and expanded in power
series of the coupling of the particle with the stochastic forces. Then, particular solutions of the zeroth order in the charge of the iterative
equations forQ(x, p) are considered. For them, it follows that the space-time probability densityρ(x) and the functionS(x) which gradient
defines the mean value of the momentum at the space time pointx, define a complex functionψ(x) which exactly satisfies the Klein-Gordon
(KG) equation. These results for the zeroth order solution reproduce the ones formerly and independently derived in the literature. It is also
argued that when the KG solution is either of positive or negative energy, the total number of particles conserves in the random motion. Other
solutions for the joint distribution function in lowest order, satisfying the positive condition are also presented here. The are consistent with
the assumed lack of stochastic forces implied by the zeroth order equations. It is also argued that such joint distributions, after considering the
action of the stochastic forces, might furnish an explanation of the quantum mechanical properties, as associated to ensembles of particles in
which the vacuum makes such particles behave in a similar way as Couder’s droplets moving over oscillating liquid surfaces. Some remarks
on the solutions of the positive joint distribution problem proposed in the Olavos’s analysis are also presented.
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1. Introduction

The search for stochastic descriptions of quantum mechan-
ics and quantum fields theory has a large history. By exam-
ple, in the works [1–6], it was considered that the random
forces which determine the phase space density of particle,
were given in a stochastic and relativistic invariant way. This
defined the so called Stochastic Electrodynamics (SQED).
Specifically, these forces were generated by an electromag-
netic field configuration, obtained by exciting all the oscil-
lation modes with one half a quanta of energy. In addition,
the phases of the photon modes were assumed to be stochas-
tically defined within the interval(0.2π) in a uniform way.
This force had been argued to be invariant under Lorentz
transformations [2,5]. In addition, in reference [1], it was ar-
gued that the stochastic motion guided by those forces, when
taken in the non-relativistic limit, leads to the Schrodinger
equation. Further, in the series of works [8–13], it was pro-
posed a solution for the a central open issue of the theory:
the apparent lack of positive definiteness of the coordinate-
momentum joint distribution function emerging in the pre-
vious discussions. More recently, and with the purpose of
start considering a generalization of the results in Ref. 1,
in Ref. 18 it was suggested that random forces, showing the
same statistical distribution in all Lorentz frames, can be ex-
pected to imply the satisfaction of the Klein-Gordon equa-
tion, for which the non-relativistic limit is the Schrodinger
one.

The present work is devoted to present a derivation of a
relativistic version of the stochastic electrodynamics. That is,
we intend to relativistically generalize the discussion done in
Ref. 1. For this purpose we start from the relativistic for-
mulation of the kinetic equations given in Ref. 7. The im-
plementation of the stochastic force is assumed to coincide
with the one employed in the stochastic electrodynamics [5].
Then, a formula for the equation satisfied by the fluctuation
independent space-momenta joint distribution function is de-
rived. It directly generalizes the expression obtained in [1]
for the non-relativistic limit. A formula for the joint distribu-
tion is derived.

Then, the solution of the equations for the joint particle
distribution is searched as expanded in a power series in the
squared particle charge. Further, it is shown the existence of
particular solutions for the joint distribution in the zeroth or-
der in the charge. This implies that the density of particles at a
given space time point is defined as a square of complex func-
tion satisfying the Klein-Gordon equation, in this considered
interaction free approximation. This indicates that the Klein-
Gordon equation (or its non-relativistic limit the Schrodinger
one) can be described as satisfying some of the equations of
SQED in the first approximations. It can be cited that re-
cently, in Ref. 15 a derivation was presented of the Klein-
Gordon equation, from a modified classical Hamilton-Jacobi
equation for a particle interacting with random background
forces. In addition an alternative derivation of the KG equa-
tions was also obtained in Ref. 13. The present discussion
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independently generalizes the kinetic discussion of the non-
relativistic analysis done in [1]. The presentation here also
clarifies the role of the positive and negative energy solutions,
by showing that both of them separately imply the conserva-
tion of the total number of particles in the stochastic motions,
assumed that external electromagnetic fields are absent.

By the side, it can be observed here that a special circum-
stance could help to overcome the known lack of strict posi-
tiveness of the ansatz for the joint distribution adopted in [1]
and here. The KG equation, when seen as theory of particles
lacks a standard definition for the position operator having
eigen-functions like the Dirac’s Delta function. The position
operator for this theory shows Gaussian like spatial behav-
ior with non vanishing values within an spatial neighborhood
of the size of the Compton wavelength of the particle [17].
Then, it looks reasonable that a clear interpretation of the
Q̃0(x, p) as describing particles with a well defined position
x, can run in troubles. Thus, one can imagine that a proper
modification of the kinetic equations to take account of an ex-
tensive nature of the particles could lead to a consistent hid-
den variable interpretation of SQED in describing quantum
mechanics. Assumed that above mentioned difficulty can be
surmounted, an interesting extension of the work could seem
feasible. For this, after including an external electromagnetic
field, it seem possible to develop a picture in which both types
of particles move randomly: one kind of them guided by the
positive energy solutions and the other one (with opposite
charges) moves as driven by the negative energy waves. The
development of such a picture is an interesting envisioned ex-
tension of the work.

Further in the work, we also present some solutions for
the zeroth order joint distribution functionQ(x, p) which
have positive values in all the phase space points. They have
this property independently of the assumption done in the
Olavo’s works [8] about the infinitesimal character of the of
the Fourier conjugate variable of the particle momenta in the
stochastic motions. It also can be stressed that the zeroth or-
der equations for joint distribution function corresponds to
the limit in which no stochastic action of the particles are ef-
fected. Therefore, these solutions could be more reasonable
to be adopted in the zeroth order, since they describe uniform
motions of free particles. Two kinds of localized solutions are
found: One constructed as point-like localized spatial depen-
dence which moves with the four-velocity associated to the 4-
momentum of the particle. The other kind is attained by em-
ploying Yukawa like localized solutions of the Klein-Gordon
equation in their construction. Both types of joint coordinate
momentum distributions in turn strongly suggest the possibil-
ity of describing extended particles, showing the surprising
experimental properties exhibited by droplets moving over
oscillating liquid surfaces [19,20]. This idea comes from the
suspicion about that after the action of stochastic forces (in
higher orders in the coupling) both sorts of solutions might
transform in extended wavepackets surrounding a stochastic
mean position of the particle moving with constant veloc-
ity v = p/

√
p2 + m2. Such outcome is suggested in ref-

erence [21], in which the existence of such configurations is
argued from a given proof of a stochastic Noether theorem.
The investigation of the scattering properties of such solu-
tions on two slits screens and potential walls, by example is
expected to be considered elsewhere.

In Sec. 2 we introduce the basic notions of the relativistic
kinetic theory. Next, in Sec. 3, the relativistically invari-
ant equations for the mean value of the distribution and its
random fluctuations are written. Further, in Sec. 4, the mo-
mentum Fourier transform of the mean joint distribution is
introduced and the equations for it, are written. Section 5
considers the equations following in the first order zeroth ap-
proximation in the coupling with the stochastic forces. It is
exposed how solutions of the Klein-Gordon equation define
particular solutions of the relativistic kinetic equations, deter-
mining a possible joint distribution function in the assumed
zeroth order in the charge. Next, Sec. 6 discusses how these
special solutions determine particle distributions which con-
serve the total number of particles when the KG waves are as-
sumed to be alternatively positive or negative energy modes.
Further, in Sec. 7 ,we present other special solutions for the
equation for the joint distribution function, satisfying the pos-
itiveness condition and being consistent with the lack of ac-
tion of the stochastic forces in zeroth order of their coupling.
Also, their possible links with the Couder’s experiments are
identified. Finally, we advance some remarks linked with the
argue presented in Olavo’s analysis about the positiveness of
the joint distribution function [9,12].

The results are reviewed and commented in the Summary
section.

2. The equation for the joint distribution func-
tion

Let us start by writing the relativistic invariant equation for
the density of points in phase spaceR(x, p) for an ensemble
of massive particles all evolving under the action of a stochas-
tic 4-forceFµ(x, p) which was derived in Ref. 7

pµ ∂

∂xµ
R(x, p) + m Fµ(x, p)

∂

∂pµ
R(x, p) = 0. (1)

The 4-coordinatesxµ will be considered in the metric

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (2)

where the natural system of coordinates will be also em-
ployed, in which the light velocityc = 1 and the time is
thex0 coordinate and the Planck constant~ = 1. The four
momentum as usual, is given in terms of the 3-velocity as

pµ =
m(1,−→v )√
1−−→v 2

. (3)

In order to simplify the discussion, we will firstly con-
sider that the external force vanishes. The particle density
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n(−→x , t) and the particle flow
−→
j (−→x , t) in this relativistically

invariant case have the form

Nµ(x) = (n(−→x , t),
−→
j (−→x , t))

=
∫

d−→p
p0

pµ R(x, p), (4)

in which the integration is over all the 3-momenta. In gen-
eral the conventions defined in Ref. 7 will be employed. It
will be assumed that the momenta values are defined on the
mass-shell

p2 −m2 = 0.

In the present work, the force will assumed to be stochas-
tically defined as in Ref. 5. That force had been argued to be
invariant under Lorentz transformations [2–5]. Therefore, the
Eq. (1) also becomes relativistically invariant in form. As re-
marked before in Ref. 1, it was argued that the stochastic mo-
tion guided by that force, when taken in the non-relativistic
limit, leads to the Schrodinger equation in the first steps of an
iterative process of solution of the equations for the non rel-
ativistic distribution function. Therefore, as it was argued in
Ref. 18, it can be suspected that the relativistic invariant mo-
tions determined by (1) could be related with the satisfaction
of the Klein-Gordon equation, for which the non-relativistic
limit is the Schrodinger one. This work is devoted to investi-
gate this possibility. In order to make the discussion clearer
let us argue in the next section that in the non-relativistic
limit, the stochastic equations reproduce the ones employed
in Ref. 1.

2.1. The non-relativistic limit of the equation

In this case since(−→v 2/c2) ¿ 1 the momentum and the ex-
ternal force can be approximately given by

pµ = m(1,−→v ). (5)

Then, after considering−→v = −→p /m the Eq. (1) reduces to

∂

∂x0
R(x,−→p ) +

−→p
m
· ∂

∂−→x R(x,−→p )

+
−→
F (x, p)

∂

∂−→p R(x,−→p ) =
∂

∂x0
R(x,−→p )

+
∂

∂−→x
(−→p

m
·R(x,−→p )

)

+
−→
F (x, p) · ∂

∂−→p R(x,−→p ) = 0. (6)

Further, assuming that
−→
F (x, p) =

−→
F (x), in other words

that the force is independent of the momentum, leads to

∂

∂x0
R(x,−→p ) +

∂

∂−→x
(−→p

m
·R(x,−→p )

)

+
∂

∂−→p · (−→F (x) R(x,−→p )) = 0. (7)

which is the same starting formula employed in [1]. How-
ever, in order to arrive to this expression it was assumed that
the force is not momentum dependent. But, the stochastic
electric force term employed in [1] is momentum indepen-
dent, an thus it makes the non-relativistic equation employed
in Ref. 1 and the one employed here, equivalent in the non-
relativistic limit.

2.2. The adopted SQED relativistic random vacuum
forces

Let us give a precise definition of the relativistic stochastic
process under consideration. Note first that we had omitted a
time t argument in the distribution in order to avoid the use
of the non-relativistic invariant definition of the time. There-
fore, the stochastic character of the process will be imple-
mented by defining a large ensemble of particle trajectories
in the phase space(x, p). Each of these trajectories will be
defined by a solution of the Eq. (1) for a force given by a
random realization of the relativistic invariant Lorentz force
employed in SQED [5]

Fµ(x, p) =
q

m
Fµ

ν (x)pν = q fµ(x, p), (8)

fµ(x, p) = Fµ
ν (x)

pν

m
, (9)

in which the stochastic space-time dependent field intensity
Fγβ(x) is given by

Fγβ(x) = ∂γAβ(x)− ∂βAγ(x), (10)

Aβ(x) = (A0(x),
−→
A (x)), (11)

−→
A (x) =

2∑

λ=1

∫
d
−→
k

1
wk

−→ε (
−→
k , λ)h(

−→
k , λ)

× sin(
−→
k · −→x − wk x0 + θ(

−→
k , λ)), (12)

wherewk = |−→k | ,−→ε (
−→
k , λ) are two unit polarization vectors

associated to the wave vector
−→
k and satisfying

−→ε (
−→
k , λ) · −→ε (

−→
k , λ′) = δλλ′ ,

−→
k · −→ε (

−→
k , λ) = 0, (13)

and the numberh is defined as satisfying

π2h2 =
1
2
w−→

k
. (14)

Finally, the phasesθ(
−→
k , λ) are defined as independent

random (one for each value of(
−→
k , λ)) and uniformly dis-

tributed in the interval(0, 2π) [5]. In what follows, in place
of the force expression, we will prefer to work with the de-
fined above force per unit of charge

fµ(x, p) =
1
q
Fµ(x, p) = Fµ

ν (x)
pν

m
. (15)
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2.3. Definitions for the operators and their kernels in
joint coordinate-momentum space

We will consider in what follows linear kernels in the space
of functionsPS = {g(x, p)}of the particle coordinatesx and
momentap, which explicitly written will make the expression
to appear as cumbersome. Then, for any of such kernelsK,
which action on functions of the spaceg is defined as

g′(x, p) =
∫

dx′ dp′ K(x, p; x′, p′) g(x′, p′), (16)

its compact operator expression will be defined according to
the following equivalence rules

g(x, p) ≡ g, (17)
∫

dx′ dp′ K(x, p; x′, p′) g(x′, p′) ≡ K̂ g. (18)

The special Delta function kernelδ(8)(x − x′, p − p′) =
δ(4)(x−x′) δ(4)(p−p′) will be simply defined as the identity
Î , which will mean for the kernel associated to the inverse of
K, the relation

K̂−1K̂ = K̂ K̂−1 = Î .

The local operators, likeL = pµ(∂/∂xµ) and f =
fµ(x, p)(∂/∂pµ) are also considered as kernels in the usual
way

pµ ∂

∂xµ
→ pµ ∂

∂xµ
δ(8)(x− x′, p− p′) ≡ L̂, (19)

fµ(x, p)
∂

∂pµ
→ fµ(x, p)

× ∂

∂pµ
δ(8)(x− x′, p− p′) ≡ f̂ . (20)

3. The equations for the joint distribution
function

Now, we will apply the method of smoothing (See [16] and
[1]) in order to reduce the Eq. (1) to a non random one for
the coordinate-momenta joint distribution function over the
defined ensemble of trajectories. The ensemble is generated
by samples of the stochastic force, generated by the random
phases of the electromagnetic modesθ(

−→
k , λ) taken for all the

values of momenta and polarization(
−→
k , λ). For the further

analysis, the distribution function will be decomposed in its
average coordinate-momenta joint distributionQ(x,−→p ) and
its random fluctuationsδQ(x,−→p ) as

R(x, p) = Q(x, p) + δQ(x, p), (21)

with

Q(x,−→p ) = P̂ R(x, p), (22)

δQ(x,−→p ) = (1− P̂ )R(x, p), (23)

where theP̂ is a projection operator satisfyinĝP 2 = 1. After
substituting these expression in equation (1) and applying al-
ternativelyP̂ or (1− P̂ ), the following two equations follow

L Q(x, p) + q P̂ fµ(x, p)
∂

∂pµ
δQ(x, p) = 0,

L δQ(x, p) + q (1− P̂ )fµ(x, p)
∂

∂pµ
Q(x, p) = 0, (24)

L = pµ ∂

∂xµ
. (25)

Consider now the retarded Green function in the space
PS of the differential operatorL = pµ(∂/∂xµ), satisfying

pµ ∂

∂xµ
G(x, p; x′, p′) = δ(4)(x− x′)δ(4)(p− p′). (26)

In terms of its Fourier transform in the two arguments, the
Green functionG takes the form

G(x, p;x′, p′) =
∫ ∫

dq

(2π)4
dz

(2π)4
1

−i pµqµ

× exp(−i(x− x′)µqµ − i(p− p′)µzµ)

=
∫ ∫

dq

(2π)4
1

−i pµqµ

× exp(−i(x− x′)µqµ) δ(p− p′)

= G(x− x′|p′) δ(p− p′) ≡ L̂−1. (27)

It is important to note here, that this expression forG in-
dicates that the derivatives∂/∂pµ do not commute with the
operatorG, since

∂

∂pµ
G(x, p; x′, p′) = G(x− x′|p′) ∂

∂pµ
δ(p− p′)

= −G(x− x′|p′) ∂

∂p′µ
δ(p− p′)

= G(x− x′|p′) δ(p− p′)
∂

∂p′µ

+
∂

∂p′µ
(G(x− x′|p′)) δ(p− p′)

6= G(x− x′|p′) δ(p− p′)
∂

∂p′µ
. (28)

Therefore, this non commutativity of the momentum
derivative with the propagatorG made difficulty to show in
this relativistic case an important property derived in Ref. 1:
the quadratic dependence in the Fourier transform variablez
of the momentump, of some relevant quantities in the dis-
cussion. This lack of commutativity led us, further ahead in
this work, to consider the expansion in the coupling in the
equations, in place of the expansion in powers ofz. Now,
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acting with the product ofG andpµ(∂/∂xµ) on an arbitrary
functiong(x, p) it follows
∫ ∫

dx′dp′G(x, p; x′, p′)p′µ
∂

∂x′µ
g(x′, p′)

=
∫

dx′dp′
∫

dq

(2π)4
δ(p− p′)
−i pµqµ

exp(−i(x− x′)µqµ)

× p′µ
∂

∂x′µ
g(x′, p′) = g(x, p), (29)

which implies
∫ ∫

dx′dp′ pµ ∂

∂xµ
G(x, p; x′, p′)

≡ δ(x− x′)δ(p− p′). (30)

As in reference we will now define a compact notation
in order to eliminate the cumbersome appearance determined
by the kernel structure of the Green function. This notation
is described by expressing the above relation in the form

∫ ∫
dx′dp′p′µ

∂

∂x′µ
G(x, p; x′, p′)p′µ

∂

∂x′µ

≡ L̂ L̂−1 = Î ≡ δ(x− x′)δ(p− p′).

The use of these relations written above, after acting with
the kernelG at the left of the relations (24) gives for the av-
erage of the distribution and its random part, the expressions

Q = −q L̂−1 P̂ f̂δQ, (31)

δQ = −q L̂−1[Î + q L̂−1(I − P̂ )f̂ ]−1P̂ f̂Q. (32)

Then, the substitution of these relations in the first of the Eqs.
(24) leads to the following equations for the joint distribution
functionQ(x, p)

L̂ Q = q2P̂ f̂ L̂−1[Î + q L̂−1(Î − P̂ )f̂ ]−1f̂ Q,

=q2P̂ f̂ L̂−1
∞∑

n=0

(−1)n[q L̂−1(Î−P̂ )f̂ ]n f̂ Q,

=q2P̂ f̂ L̂−1
∞∑

m=0

(q2)
m

[L̂−1(Î−P̂ )f̂ ]2mf̂ Q. (33)

Therefore, the equation for the joint distribution function
can be written in a compact form, which after expanded in
powers ofq2, takes the form

L̂ Q = q2 Ĵ (q2) Q, (34)

Ĵ (q2) =
∞∑

m=0

(q2)
m

P̂ f̂ L̂−1[L̂−1(Î − P̂ ) f̂ ]2mf̂

=
∞∑

m=0

(q2)
m

Ĵ
m

(q2). (35)

In this relation it has been employed that the mean value of
an odd number of the random force functions [1,5] vanishes.

We recall that in that relation̂f is the operator corresponding
to the kernel

f̂ ≡ fµ(x, p)
∂

∂pµ
. (36)

4. The momentum Fourier transformed joint
distribution function

Let us perform now the Fourier transformation of the joint
distribution over the momentum variable as follows

Q(x, p) =
∫

dz Q̃(x, z) exp(−i pµzµ), (37)

Q̃(x, z) =
∫

dp

(2π)4
Q(x, p) exp(i pµzµ). (38)

It can be mentioned that this concept had been defined and
employed, by example in Refs. 1 and 8. It is also named as
the Characteristic Function. Then, after Fourier transforming
the Eq. (34) the following equation forQ(x, p) can be written

pµ ∂

∂xµ
Q(x, p) = q2

∞∑
m=0

(q2)
m

×
∫

dx′dp′ Jm(q2)(x, p; x′, p′) Q(x′, p′), (39)

∂

i∂xµ∂zµ
Q̃(x, z) = q2

∞∑
m=0

(q2)
m

∫
dx′d z′

× J m(q2)
(

x,
∂

i ∂z
; x′,

∂

i ∂z′

)
Q̃(x′, z′), (40)

with the operator

Jm(q2)
(

x,
∂

i ∂z
; x′,

∂

i ∂z′

)

operating in the space of function of the variables(x, z) is
defined by

Jm(q2)
(

x,
∂

i ∂z
; x′,

∂

i ∂z′

)

=
(
P̂ f̂ L̂−1[L̂−1(Î − P̂ ) f̂ ]2mf̂

)

× (x, p; x′, p′)
∣∣∣∣
p→ ∂

i ∂z ,p′→ ∂
i∂z′

. (41)

Now, the mean value of a function of the coordinates and
momenta at a specific space-time positionx can be written in
two forms as

〈A(x, p)〉x =
1

ρt(x)

∫
dp A(x, p) Q(x, p)

=
1

ρt(x)

[
A

(
x,

∂

i∂z

)
Q̃(x, z)

]

z=0

, (42)
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where the distribution function in the 3D-space points−→x and
a given timex0 is given by

ρt(x) =
∫

dp Q(x, p) =
∑
m=0

(q2)
m

ρm(x)

=
∑
m=0

(q2)
m

∫
dp Qm(x, p)

=
∑
m=0

(q2)
m

Q̃m(x, 0), (43)

in which the general expressions for the distribution function
have been expanded in series of the squared charge as follow

Q(x, p) =
∑
m=0

(q2)
m

Qm(x, p), (44)

Q̃m(x, z) =
∑
m=0

(q2)
m

Q̃m(x, z). (45)

Therefore, the general equation (40) can be written in the
form

∂

i ∂zµ∂xµ
Q̃0(x, z) = 0, (46)

∂

i ∂zµ∂xµ
Q̃m(x, z) = q2

∞∑
n=0

(q2)
∫

dx′d z′J n(q2)

×
(

x,
∂

i∂z
; x′,

∂

i∂z′

)
Q̃m−n−1(x′, z′), m ≥ 1. (47)

4.1. The interaction free limit q2 → 0

Let us consider now the satisfaction of the first of the itera-
tive equations in which the random movement had been de-
composed. In this case all theQm(x, p) for m ≥ 1 will
vanish and thusQ(x, p) = Q0(x, p). It should be remarked
here, that zeroth order equation forQ0(x, p) exactly coin-
cides with one obtained in Ref. 13 for the relativistic charac-
teristic function in the absence of interaction with the random
force. Then, the total density reduces to

ρt(x) =
∫

dp Q0(x, p) = ρ0(x)

=
∫

dp Q0(x, p) = Q̃0(x, 0). (48)

The mean values in this limit have the expression

〈A(x, p)〉x =
1

ρ0(x)

∫
dp A(x, p)Q0(x, p)

=
1

ρ0(x)

[
A

(
x,

∂

i∂z

)
Q̃0(x, z)

]

z=0

, (49)

in which the distribution function has been expanded in series
of the squared charge.

Let us define for what follow

ρ(x) = ρ0(x). (50)

Then, the equation for̃Q0(x, z)

∂

i ∂zµ∂xµ
Q̃0(x, z) = 0, (51)

can be derived after expanding the exponential in powers of
z. A similar equation had been obtained also in Refs. 13
where relativistic expressions for the characteristic function,
not coming from a stochastic discussion was independently
considered.

It is helpful to write the Fourier transforms in the zero
order inq2

Q0(x, p) =
∫ ∫

dz Q̃0(x, z) exp(i pµzµ), (52)

Q̃0(x, z) =
∫ ∫

dp

(2π)4
Q0(x, p) exp(−i pµzµ). (53)

The mean value formula reduces to

〈A(x, p)〉x =
1

ρ(x)

∫
dp A(x, p) Q0(x, p)

=
1

ρ(x)

[
A

(
x,

∂

i∂z

)
Q̃0(x, z)

]

z=0

, (54)

which allows to write the lowest order equation in the form

∂

i∂zµ∂xµ
Q̃0(x, z)=− ∂

∂xµ

∫∫
dp

(2π)4
Q0(x, p)pµ exp(−ipz)

=
∂

∂xµ
(ρ(x)〈pµ exp(−i p z)〉x = 0. (55)

We will now introduce new variablesz+ andz− in sub-
stitution of the variablesx andz. The change is defined as

z+
µ = xµ + β zµ, z−µ = xµ − β zµ,

xµ =
1
2
(z+

µ + β z+
µ ), zµ =

1
2β

(z+
µ − β z+

µ ), (56)

and for the derivatives

∂

∂z+
µ
≡ ∂µ

+ =
1
2

(
∂

∂xµ
+

∂

β∂ zµ

)
,

∂

∂z−µ
≡ ∂µ

− =
1
2

(
∂

∂xµ
− ∂

β∂ zµ

)
, (57)

∂

∂xµ
=

(
∂

∂z+
µ

+
∂

z−µ

)
,

∂

∂zµ
= β

(
∂

∂z+
µ
− ∂

z−µ

)
. (58)

The above kind of transformations had been suggested by ref-
erence [1] and were also employed in reference [13, 14] in
deriving the Klein-Gordon equation. These relations allow to
derive the identities

∂2

∂zµ∂zν
= β2 ∂2

∂xµ∂xν
− 2β2(∂µ

−∂ν
+ + ∂µ

+∂ν
−) (59)

∂2

∂zµ∂xµ
= β

(
∂2

∂z+
µ ∂zµ+

− ∂2

∂zµ−∂z−µ

)
. (60)
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This last equation permits to write the zeroth order equa-
tion for Q̃0 in the form

∂

i∂zµ∂xµ
Q̃0(x, z) =

β

i

×
(

∂2

∂z+
µ ∂zµ+

− ∂2

∂zµ−∂z−µ

)
Q̃0(x, z) = 0. (61)

4.2. Satisfying the higher order equations

In order to directly satisfy the set of equations forn ≥ 3 let
us assumẽQ0(x, z) in the form

Q̃0(x, z) ≡ Q̃0(z+, z−) = Ψ∗(z+)Ψ(z−). (62)

It should be noted that this form is suggested by the
analysis done in Ref. 1. This assumption directly led to the
character of solutions of the Schrodinger equation to the
entering functionΨ. Then we will follow this assumption
in searching for a covariant generalization of the discussion
in [1]. However, it can be noted that the satisfaction of the
quantum equations as implied by the stochastic theory be-
ing constructed could be more naturally expected to appear
after including the stochastic effects by considering higher
than zeroth orders in the coupling with the stochastic forces.
Therefore, in the last part of this work we also search for ze-
roth order joint distributions being positive definite and also
consistent with a free motion of a localized particles when the
random forces are absent in the zeroth order in the coupling
expansion.

Then, substituting the above commented assumed form
in the zeroth equation leads to

1
Ψ∗(z+)

∂2

∂z+
µ ∂zµ+

Ψ∗(z+)

− 1
Ψ(z−)

∂2

∂z−µ ∂zµ−Ψ(z−) = 0. (63)

But this relation is directly satisfied ifΨ obey the linear
equation for any argumentu and fixed value of the parame-
terM

∂2

∂uµ∂uµ
Ψ(u)−M2Ψ(u) = 0. (64)

Then, the satisfaction of this equation implies

∂

i∂xµ ∂zµ∂zµ1∂zµ2 ...∂zµn

Q̃0(x, z) = 0,

m = 1, 2, ...∞, (65)

a condition which will be helpful in the further discussion.
Thus, we had been able to find a solution of the equa-

tion describing the free approximation of the random process.

The equation for̃Q0 can be also written as

∂

i∂xµ ∂zµ
Q̃0(x, z) = − ∂

∂xµ

×
∫ ∫

dp

(2π)4
Q0(x, p) pµ exp(−i pµzµ)

= − ∂

∂xµ
(ρ(x)〈 pµ exp(−i pµzµ)〉x) = 0, (66)

which after expanding the exponential in powers ofp.z gives
the following set of equations

∂

∂xµ
(ρ(x)〈pµ〉x) = 0, (67)

∂

∂xµ
(ρ(x)〈pµpν〉x) = 0, (68)

∂

∂xµ
(ρ(x)〈pµpµ1pµ2 ...pµn〉x) = 0, n = 1, 2, ...∞. (69)

The last of these relations is directly implied by Eq. (65).
Thus, let us study in what follows the satisfaction of the first
two equations after the adopted ansatz

Q̃0(x, z) = Ψ∗(z+
µ )Ψ(z−µ ).

We will use now

〈pµpν〉x = − 1

Q̃0(x, 0)

[
∂

∂zµ∂zν
Q̃0(x, z)

]
, (70)

and the general relations

∂

∂zµ

(
1

Q̃0(x, z)

∂

∂zµ
Q̃0(x, z)

)
= − 1

(Q̃0(x, z))2

× ∂

∂zν
Q̃0(x, z)

∂

∂zµ
Q̃0(x, z)

+
1

Q̃0(x, z)

∂

∂zν∂zµ
Q̃0(x, z), (71)

which after evaluated inz = 0 permits to write

〈pµpν〉x = 〈pµ〉x〈pν〉x −
[

∂2

∂zµ∂zν
ln Q̃0(x, z))

]

z=0

=〈pµ〉x〈pν〉x

−β2

[
∂2

∂xµ∂xν
ln Q̃0(x, z)

]

z=0

+ σµν , (72)

σµν = 2β2
[
(∂µ
−∂ν

+ + ∂µ
+∂ν

−) ln Q̃0
]

z=0
, (73)

where it was used relation (59).
However, the assumed form of the zeroth order distribu-

tion allows also to find

σµν = 2β2
[
(∂µ
−∂ν

+ + ∂µ
+∂ν

−) ln Q̃0
]

z=0

= 2β2

[
(∂µ
−∂ν

+ + ∂µ
+∂ν

−)(lnΨ∗(z+)

+ lnΨ(z−)
]

z=0

= 0. (74)
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Thus, the resting two equations which remaining to be
verified in their compatibility with the ansatz can be written.
as

∂

∂xµ
(ρ(x)〈pµ〉x) = 0,

∂

∂xµ

[
ρ(x)(〈pµ〉x〈pν〉x

− β2
[ ∂2

∂xµ∂xν
ln Q̃0(x, z))

]
z=0

]
= 0. (75)

The derivation of these equations was directly suggested by
their non relativistic counterparts in [1]. They also coincide
with the ones derived in Ref. 13. In this work an alternative
relativist discussion of a similar ansatz for the characteris-
tic function, not coming from an stochastic formulation, was
earlier and independently presented.

5. The Klein-Gordon equation in the non-
interacting limit

The q2 = 0, will be called the ”non interacting or free ap-
proximation”. In this section we will study the compatibility
of the two Eqs. (75) with the expression assumed for the
zeroth order joint distribution function. After checking this,
it will follow that in this free limit, the equations admit so-
lutions for joint distribution function which are defined by
waves solving the Klein-Gordon equations. This result di-
rectly generalizes the derivation of the Schrodinger equation
in Ref. 1. Analogous derivation of the KG equation was
formerly and independently given in Ref. 13. Firstly, let us
search for solutions of the set of the two equations

∂

∂xµ
(ρ(x)〈pµ〉x) = 0, (76)

∂

∂xµ

[
ρ(x)〈pµ〉x〈pν〉x

− β2ρ(x)
[ ∂2

∂xµ∂xν
ln ρ(x)

]]
= 0, (77)

where it has been substitutedρ(x) = Q̃(x, 0). Further, let
search for solutions in which the mean momentum value at a
given space-time pointx is defined by

〈pµ〉x =
∂

∂xµ
S(x). (78)

After substituting in (76) and (77), it follows

∂

∂xµ

[
ρ(x)

∂

∂xµ
S(x)

]
= 0, (79)

∂

∂xµ

[
ρ(x)

∂

∂xµ
S(x)

∂

∂xν
S(x)

]

− β2ρ(x)
[

∂2

∂xµ∂xν
ln ρ(x)

]
= 0. (80)

The second equation can be transformed as follows

∂

∂xµ
S(x)

∂

∂xµ∂xν
S(x)

− β2

ρ(x)
∂

∂xµ
ρ(x)

[
∂2

∂xµ∂xν
ln ρ(x)

]
= 0, (81)

∂

∂xµ

(
1
2

∂

∂xµ
S(x)

∂

∂xµ
S(x)

)

− β2

ρ(x)
∂

∂xµ

(
ρ(x)

∂2

∂xµ∂xν
ln ρ(x)

)
= 0. (82)

Further, the density dependent term can be expressed as
the divergence of a vector (as the first term also is) as follows

1
ρ(x)

∂

∂xµ

(
ρ(x)

∂2

∂xµ∂xν
ln ρ(x)

)
=

∂

∂xν

(
1
2

∂

∂xµ
ln ρ(x)

× ∂

∂xµ
ln ρ(x)+ρ(x)

∂2

∂xµ∂xµ
ln ρ(x)

)
=

∂

∂xν

(
−1

2

× ∂

∂xµ
ln ρ(x)

∂

∂xµ
ln ρ(x)+

1
ρ(x)

∂2

∂xµ∂xµ
ρ(x)

)
. (83)

Therefore, the following relation arises

∂

∂xν

(
1
2

∂

∂xµ
S(x)

∂

∂xµ
S(x) +

β2

2
∂

∂xµ
ln ρ(x)

∂

∂xµ
ln ρ(x)

− β2

(
1

ρ(x)
∂2

∂xµ∂xµ
ρ(x)

))
= 0. (84)

This equation implies,

1
2

∂

∂xµ
S(x)

∂

∂xµ
S(x) +

β2

2
∂

∂xµ
ln ρ(x)

∂

∂xµ
ln ρ(x)

− β2

(
1

ρ(x)
∂2

∂xµ∂xµ
ρ(x)

)
= ctc. (85)

Now, if we fix the constant to be a positive value, given
by ctc = m2, the searched joint distribution function satisfies
the two equations

∂

∂xµ

[
ρ(x)

∂

∂xµ
S(x)

]
= 0, (86)

1
2

∂

∂xµ
S(x)

∂

∂xµ
S(x) +

β2

2
∂

∂xµ
ln ρ(x)

∂

∂xµ
ln ρ(x)

− β2

(
1

ρ(x)
∂2

∂xµ∂xµ
ρ(x)

)
= m2. (87)
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5.1. The satisfaction of the Klein-Gordon equation

Consider now expressing the KG equation for a complex
scalar fieldφ(x) in terms of the phase functionS(x) and a
positive densityρ(x) defined as follows

φ(x) = (ρ(x))
1
2 exp(i S(x)). (88)

Therefore, substituting in the KG equation it follow

(∂2 + m2)φ(x) = 0,
(

∂2

∂xµ∂xµ
+ m2

)
(ρ(x))

1
2 exp(i S(x)) = 0,

which after separating the real and imaginary parts and equal-
izing both of them to zero, leads to the two equations

∂

∂xµ
S(x)

∂

∂xµ
ln ρ(x) +

1
ρ(x)

∂

∂xµ∂xµ
S(x) = 0, (89)

1
2

∂

∂xµ
S(x)

∂

∂xµ
S(x) +

1
4

∂

∂xµ
ln ρ(x)

∂

∂xµ
ln ρ(x)

− 1
2

1
ρ(x)

∂2

∂xµ∂xµ
ρ(x) = m2. (90)

It can be noted that Eqs. (89) and (90) become fully
equivalent to (86) and (87) after assuming that the constant
β2 takes the value

β2 =
1
2
. (91)

Observe that this value coincides with the one before de-
rived for the non-relativistic situation in [1]. Therefore, under
the defined non-interacting approximation, it followed that
the space time distribution

ρ(x) =
∫

dp Q(x, p) = Q̃(x, 0)

and the also space time functionS (which determines the
mean value of the omentum at a given space time point
through

〈pµ〉x =
∂

∂xµ
S(x)

both define a complex function

φ(x) = (ρ(x))
1
2 exp(iS(x))

satisfying the KG equation.
In order that the searched solution of the distribution

Q̃0(x, z) = Ψ∗(z+)Ψ(z−), (92)

can be compatible with the solution for the KG waves gener-
ating the densityρ(x) and the phase functionS, the relation

Q̃0(x, 0) = Ψ∗(z+)Ψ(z−)
∣∣
z→0

= Ψ∗(x)Ψ(x) = ρ(x), (93)

implies that the constantM defining the ansatz, andm defin-
ing the solution of the Hamilton-Jacobi equation, should co-
incide.

Up to now we have discussed the generalization of the
de la Pẽna-Cetto derivation of the set of equations which
should be satisfied by the joint distribution function in the
non-relativistic limit of the SQED. We also derived a partic-
ular solution for the joint distribution function which implies
the satisfaction of the Klein-Gordon equation.

6. About the role of positive energy solutions
of the KG equations

Let us discuss an important physical question related with the
obtained solutions. Since the particles which are assumed to
undergo the random forces, are relativistic classical particles
with rest massm, it is natural to assume that the KG equation
solution describing the stochastic motion should be expected
to be a positive energy one. This circumstance is in certain
form confirmed by a special property of the positive energy
solutions (and also the negative energy ones): their total prob-
ability conserves in time, that is

∂

∂x0

∫
d−→x ρ(x) =

∂

∂x0

∫
d−→x φ∗(x)φ(x) = 0. (94)

This property can be easily derived after considering the
following equations also satisfied by the positive or negative
energy solutions

i
∂

∂x0
φ(x) = ±

√
m2 − (

−→∇)2φ(x)

= ±
( ∞∑

m=0

(−1)m ((
−→∇)2)m

2m

)
φ(x).

For proving the condition, consider that the spatial inte-
gral of the density for a positive energy (or a negative energy
one) solution can be written and transformed in the way

∂

∂x0

∫
d−→x ρ(x) =

∂

∂x0

∫
d−→x φ∗(x)φ(x)

=
∫

d−→x
(

∂

∂x0
(φ∗(x))φ(x)− φ∗(x)

∂

∂x0
φ(x)

)

= ∓1
i

∫
d−→x

(( ∞∑
m=0

(−1)m ((
−→∇)2)m

2m

)
φ∗(x)

)
φ(x)

− φ∗(x)
( ∞∑

m=0

(−1)m ((
−→∇)2)m

2m
φ(x)

)
= 0, (95)

in which there had been performed integration by parts over
the all the derivatives forming the appearing series. Thus, ei-
ther the positive or negative energy solutions define a stochas-
tic motions conserving the total number of particles.

This result suggests the possibility of simultaneously con-
sider two stochastic motions: both of them associated with
positive energy solutions: but having opposite values of the
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charges. Let us indicate the positive energy solutions by
φ+(x) and thenegative energy ones byφ−(x). But we can
also define positive energy functions starting from the nega-
tive waves by definingϕ+(x) = ϕ+(x0,−→x ) = φ−(x0,−→x ).
In this way all the solutions of the KG equations could partic-
ipate in defining a combined stochastic process in which two
kinds of particles participate: one kind with positive charges
and the another with negative ones. We suspect that this con-
struction can be extended to a full covariant stochastic the-
ory of complex scalar particles which could appear to be a
hidden variable theory for the quantum field theory of such
particles. This question will be explored in extensions of
this study. However, before considering this problem, the ap-
proach should made consistent, by finding a positive definite
joint distribution function. The possibilities for this will be
discussed in the next section.

In conclusion, for defining the found solution of the ze-
roth order equation for the joint distribution as a well defined
hidden variable theory, it rest only (in the relativistic as a well
as in the non-relativistic cases) to check wether or not, the
derived joint distribution can obey the important positivity
property, which is required by its character as a coordinate
and momenta distribution of classical particles of massm, all
showing a relativistic momenta obeying the mass shell con-
dition p2 −m2 = 0. In the coming sections we will remark
on these questions.

7. Positiveness of the joint distribution and
Olavo’s analysis

Finally, in this section we want to discuss the question
about the required positive character of the joint coordinate-
momentum distribution, needed if at the end, the SQED ap-
proach can furnish a consistent hidden variable approach to
quantum mechanics. It is known that the Fourier transformed
joint distribution of the formQ̃0(x, z) = Ψ∗(z+)Ψ(z−),
does not give a solution to this difficulty, since in general, the
joint coordinate-momentum distributions following from the
inverse Fourier transform of̃Q0(x, z)(for all values ofz) are
not positive definite in general. Thus, the before discussed
here solution for the joint distribution has a formal value, but
for every solution of the KG equation does not furnish a phys-
ical positive joint distribution.

A step in the solution of this relevant interpretation prob-
lem, was given in Refs. 8 to 13. In these works it has been
emphasized the idea about that by retaining only the sec-
ond order in the expansion in the conjugate variable of the
momenta in the Fourier transform of the joint distribution, a
proper positive distribution is obtained [9, 12]. Thus, the in-
finitesimal values of these Fourier conjugate variable of the
momentum was elevated to a central assumption. The con-
sistency of this analysis had been argued by few alternative
derivations [8–13].

It should recalled that we consider that the derivation of
the Schrodinger (or the Klein-Gordon one) from the equa-
tions for Q(x, p) in the absence of the vacuum stochastic

force, is in some sense inconsistent with the spirit of the
SQED, in which the stochastic action of the force is expected
to define the quantum properties. What could be more natu-
ral is to start the iterative construction of higher order in the
stochastic coupling, by employing also a zeroth order solu-
tions for the joint distribution, but reflecting a free classical
motion of the particle. This approach directly suggests that
that SQED could be valid as describing quantum mechanical
effects, but in a form compatible with the recent experimental
results of Ives Couder. Those surprising findings show that
mechanical systems, like liquid droplets moving on oscillat-
ing liquid surfaces, can exhibit quantum mechanical proper-
ties, as tunnel effects and double slit interference [19,20].

Finally, in a last subsection we present some remarks on
some special issues in the discussions given in [9,12].

7.1. Positive zeroth order joint distributions and
Couder’s findings

In this section we will present a solution of the equation for
the joint distributionQ(x, p) being positive definite in phase
space. These solutions strongly suggests a possible link with
the recent studies on quantum mechanical properties in the
movements of droplets [19, 20] . The picture could be as
follows. After considering the action of stochastic forces on
the free solutions to be presented below, the stochastic move-
ments of the particle could form a localized standing wave
which center of mass could be in uniform motions. The pos-
sible existence of such standing waves, showing counterparts
moving with different velocities under a Lorentz transfor-
mation, had been suggested in a recent work [21]. In it a
form of a stochastic Noether theorem had been introduced.
The extender nature of these Lorentz invariant stochastic so-
lutions can be imagined to show properties being similar to
the Couder’s droplets moving over liquid surfaces. If such
is the case, the quantum particles of SQED could be imag-
ined to describe the quantum properties in nature through the
Couder’s mechanism. We expect to study this possibility
elsewhere.

The construction of the positive joint distributions is
based in the Yukawa potential like solution of the Klein-
Gordon equation in the presence of sources

ψ(−→x ) =
1
4π

exp(−m r)
r

, (96)

r =
√

x2
1 + x2

2 + x2
3, (97)

satisfying the KG equation

(∂2 −m2)ψ(−→x ) = −δ(3)(−→x ), (98)

whereδ(3) is the three dimensional Dirac delta function. Af-
ter performing a Lorentz transformation to a frame moving
with velocity −→v along, let say, thex1 axis, followed by a
shift in the position of the origin of coordinates (at vanishing
time t) to an arbitrary point−→x k, this Yukawa like solution
becomes a “moving” one, of the form
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ψxk,(x, p) =
1
4π

exp
(
−m

√
−→p 2+m2

m2

(
x1 − p1√−→p 2+m2

t− xk
1

)2

+ (x2 − xk
2)22 + (x3 − xk

3)
)

√
−→p 2+m2

m2

(
x1 − p1√−→p 2+m2

t− xk
1

)2

+ (x2 − xk
2)22 + (x3 − xk

3)

(99)

x = (t,−→x ), p = (p0,−→p ) =
(

m√
1− v2

,
m −→v√
1− v2

)
, xk = (0,−→x k). (100)

In this change it had been used the relations

v =
p1√−→p 2 + m2

,
√

1− v2 =
m√−→p 2 + m2

. (101)

This function also can be expressed in a rotational invariant form as

ψxk,(x, p) =
1
4π

exp


−m

√
−→p 2+m2

m2

((
−→x − −→p√−→p 2+m2

t−−→x k

)
.
−→p
|−→p |

)2

+ (−→x −−→x k).
(−→−→

I − −→p−→p
|−→p |2

)
.(−→x −−→x k)




√
−→p 2+m2

m2

((
−→x − −→p√−→p 2+m2

t−−→x k

)
.
−→p
|−→p |

)2

+ (−→x −−→x k).
(−→−→

I − −→p−→p
|−→p |2

)
.(−→x −−→x k)

,

(102)

where (−→−→
I −

−→p −→p
|−→p |2

)

is the projection tensor on the plane orthogonal to the velocity
and−→p /|−→p | is a unit vector in the direction of the velocity.

The functionψxk,(x, p) is positive definite in the phase
space(x, p). Also, in the rest framep = (m,

−→
0 ), it directly

satisfies the equation for the joint momenta-coordinate dis-
tributions, since it is time independent and the three velocity
vanishes. Then

pµ ∂

∂xµ
ψxk,(x, p) = 0. (103)

Having this equation a covariant form, it should be also
valid after performing any Lorentz transformation of the co-
ordinates and momenta. Now, we can define a set ofN points
xk, k = 1, 2, ...., N . Then, by superposing the functions of
the type (102) for all the values ofk, more general solutions
can be constructed. They will describe a set ofN localized
solutions of the Klein-Gordon equation with sources. Also,

the new distributions also will be positive quantities in all
the mass-shell phase space. These solutions of the equations
pµ(∂/∂xµ)Q(x, p) = 0, showing a positive joint distribution
have the forms

Q(x, p) =
∑

k

ψxk,(x, p), (104)

where for eachk value, the velocity for the distribution with
indexk, points in an arbitrary direction.

It can be noticed that the proposed solution is not rig-
orously point like. It has distributions showing a Compton
wavelength extension. However, strictly point-like solutions
for the joint distribution function are directly obtained in the
form

Q(x, p) =
∑

k

Φxk,(x, p), (105)

pµ ∂

∂xµ
Φxk,(x, p) = 0, (106)

in which

Φxk,(x, p) =
1
4π

δ(1)

(√−→p 2 + m2

m2

(
x1 − p1√−→p 2 + m2

t− xk
1

)2

+ (x2 − xk
2)22 + (x3 − xk

3))

)
(107)

x = (t,−→x ), p = (p0,−→p ) =
(

m√
1− v2

,
m −→v√
1− v2

)
, xk = (0,−→x k). (108)

These joint distributions are positive in the whole phase space and solves the zeroth order equation. They represent the
uniform motions of localized particles in the absence of stochastic perturbations, being more compatible with considered zeroth
order equation under consideration. Below, we remark on the possible connections of these distributions with the Couder’s
findings of quantum mechanical properties droplets moving over oscillating liquid surfaces.
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7.1.1. Possible links with the Couder’s systems

Finally, let us here very roughly argue about the possible links
of these special joint distributions with the Couder’s experi-
mental results [19, 20]. For this purpose, let us qualitatively
discuss a situation in which one of the solutionψxk,(x, p)
with a given velocity, perpendicularly approaches a wall hav-
ing two slits holes. Let us first note that the singularity of
the solution is similar to the one in the Coulomb potential
field and its classical energy is infinite. Thus, since we will
assume that the particle has a finite massm, some negative
contribution to the bound energy (which is concentrated in
the singularity point) should cancel the infinite and positive
contribution of the classical energy outside the point. Then,
let us consider a sphere centered in the singularity at any in-
stant, such that the field energy outside the sphere coincides
with the total mass of the particle. Therefore, the contri-
bution to the total energy inside the defined sphere, should
vanish (the negative cohesive term should cancel the infi-
nite positive energy laying outside the point, but inside the
sphere). However, having not net mass, the system inside
the sphere, might be suspected to weakly contribute to the
free dynamics of the particle. Then, we have that outside the
small sphere the system will satisfy the Klein-Gordon equa-
tion and also will move as a whole with constant velocity,
Thus, the solutionψxk,(x, p) might perhaps also be approx-
imately represented by a wave packet solving KG equation,
but with a momenta distribution showing non vanishing val-
ues only in a small neighborhood of the momenta component
p1 = mv/

√
1− v2, in order that the packet shows a constant

velocity. If this idea is valid (in spite of its very rough nature)
then

ψxk,(x, p) '
∫

d−→p f(−→p ) exp
(
− i

√−→p +m2t+−→p .−→x i

)

'
∫

dp1dp2dp3 f(−→p ) exp
(
−i p

(√−→p +m2

p
t−x1

)

+ i p2x2 + i p3x3

)

'
∫

dp1dp2dp3 f(−→p )

× exp(−i p(v t− x1) + i p2x2 + i p3x3). (109)

However, it should be noted that the singular solution is
localized within region of the size of a Compton associated
to the free mass parameterm. This is a small quantity for
usual particles as, by example electrons. Thus, in order that
the representation (109) could be valid, the momentum band-
width of the integral in (109) should be larger than one over
the spatial width of the singular solutionδx ' (1/m), that
is, larger thanm. In the relativistic limitp1 À m, this condi-
tion can be satisfied. However, for mass parametersm larger
than the electron’s one, and in the non relativistic limit, this
rule can not be imposed. Thus, we expect that the parameter
m should have a small value in order to allow implementing

the representation (109) in the non relativistic limit. Since the
Couder’s experiments are done for movements of the droplets
over surfaces having massless propagating modes, even the
vanishing mass parameterm could be allowed. As positive
factor it can be noticed that after considering the effect of the
stochastic forces, the wavepacket bound to the particle will
be constituted by real waves stochastically excited by the ran-
dom moving of the particle. Therefore, opening possibilities
for showing Couder’s like effects.

To end the argue, note that (109) is a wave correspond-
ing to particles of massm and wavelengthλ = 2π/p. There-
fore, assumed that the two slits to which the wave approaches,
have a separation of a similar size to the wavelengthλ, these
modes should tend to be scattered by the action of the slits.
Clearly, if the waves were completely free ones, this scatter-
ing should work. However, since the singularity is expected
to maintain the structure of the particle when the scattering
process occurs (as it happens in the Couder’s experiments)
the whole effect of such ”dispersion forces” could be sus-
pected to be reduced to control the movement of the singu-
larity (if it passes through the slits) to be pointing in the di-
rections of the usual interference maxima. This argue also
indicates (as noted above) that the results of Couder could
perhaps be described by the found positive solutions of the
equation for the joint distribution function after incorporating
the action of the vacuum stochastic forces. The study of the
two slits scattering on such configurations is expected to be
considered elsewhere. The clear limitations of the above dis-
cussion for pure free solutions could be solved by the noted
consideration of the stochastic forces. They have the chance
of converting, the uniformly moving point like distribution
functions in sorts of solitonic stochastic wavepackets show-
ing similar properties as the Couder’s droplets.

7.2. Remarks on the Olavo analysis

In the discussion given in [9, 12] it was obtained the general
relation

− ~2ρ(x, t)
(

∂2 ln Z(x, δx, t)
∂(δx)2

)

δq=0

= −~2ρ(x, t)
∂2 ln R(x; t)2

4 ∂x2
(110)

=
∫

dp

(
p− ∂

∂x
S(x, t)

)2

F (x, p; t). (111)

between the characteristic functionZ and its inverse Fourier
transform, the joint coordinate momentum distribution func-
tion F .

We intend to underline here that this exact equation (only
assuming the product structure forZ(x, δx, t) = Ψ∗(x +
(δx/2), x− (δx/2)) ) implies a strong link between the sign
of the second derivative(−∂2 ln R(x; t)2/ ∂x2) and the strict
positivity of the joint distributionF (x, p; t). This connection
determines that when(∂2 ln R(x; t)2/ ∂x2) in some spacial
points turns to be negative, thenF (x, p, t) can not be strictly
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positive. But, it can be noted that it is possible to give ini-
tial conditions at some timeto to defining arbitrary values
for the spatial dependence of the wavefunctions. This prop-
erty allows fixing the spatial dependence of the coordinatesx
for the density function in an arbitrary form. Therefore, the
relation

−∂2 ln R(x; t)2

∂x2
=

1
ρ(x, t)

(
− ∂2ρ(x, t)

∂x2

+
1

ρ(x, t)
∂ρ(x, t)

∂x

∂ρ(x, t)
∂x

)
(112)

can be always made negative, at a some timeto and some
point xo, by fixing a minimum of the density atto andxo.
This conclusion means that solutions will always exist show-
ing a non positive joint distribution function. Therefore, since
this result is determined by the characteristic function up to
second order inδx, that is in the limit considered in the
Olavo’s discussion, it is concluded that this approach still
present a difficulty in consistently predict an always positive
definite joint distribution function.

The above conclusion seems contradictory with the fact
the in references [9, 12], it was argued the positivity of the
joint distribution function. Let us remark on this point. In
the notation of these works (in which the discussion was non
relativistic), the characteristic function for infinitesimal val-
ues of the conjugate variable to the momentaδx was firstly
obtained up to second order in the expansion overδx,in the
form

ZQ(x, δx; t) = R(x; t)2 +
i δx

~
R(x; t)2

∂s(x; t)
∂x

(113)

+
(δx)2

2

[
R(x; t)2

4
∂2 ln R(x; t)2

∂x2

− R(x; t)2

~2

(
∂S(x; t)

∂x

)2]
, (114)

whereρ(x, t) = R(x; t)2 is the particle density of the derived
Schrodinger equation expressed as the absolute value of the
wave functionR(x, t) andp(x, t) = ∂S(x; t)/∂x is the gra-
dient of the phase of the wavefunctionS(x, t). In a central
step in the discussion in Ref. 9, after employing the assumed
differential character ofδx, the above expression was substi-
tuted by the following one.

ZQ(x, δx; t) = R(x; t)2 exp
[

+
i δx

~
∂s(x; t)

∂x

+
(δx)2

8
∂2 ln R(x; t)2

∂x2

]
. (115)

This is a valid transformation up to the assumed second order
in δx. In other words, a series of terms ”completing” the ap-
pearing exponential function were added. Note that all such
terms have at least a cubic dependence inδx. If the further use
of the form of the characteristic function is reduced to evalu-
ate its derivatives up to second order inδx, or integrals over

δx, for small intervals in which the second order approxima-
tion gives a good approximation, the use of (115) is allowed.
However, the obtaining of the expression for the joint distri-
bution function in [9] rests in evaluating the Fourier inverse
transformation

F (x, p; t)=R(x; t)2
∞∫

−∞
d(δx) exp

(
−i δx

(
p−∂s(x; t)

~ ∂x

)

+
(δx)2

8
∂2 ln R(x; t)2

∂x2

)

= R(x; t)2
√

π

exp

((
p− ∂s(x;t)

~ ∂x

)2

∂2 ln R(x;t)2

2 ∂x2

)

√
−∂2 ln R(x; t)2

8 ∂x2

, (116)

which again is a positive definite expression only
for the special class of wavefunctions having
−(∂2 ln R(x; t)2/8 ∂x2) > 0, as argued before.

That is, even after assuming the modified expression for
the characteristic function (115) as valid for finite values of
δx, (as required to evaluate the inverse Fourier transform) the
resulting expression can result as a non positive definite quan-
tity for existing special wavefunctions.

Summary

We have presented a generalization of the non-relativistic
stochastic quantum mechanics introduced by de la Peña and
Cetto [1]. The discussion starts form the description of the
random motions of a particle under the action of a relativis-
tically invariant stochastic force defined in reference [5]. It
is checked that in the non relativistic limit the starting equa-
tions reduce to the ones employed in [1]. Then, the set of
equations for the joint distribution is expanded as a series
of the particle charge. The free approximation, that is, the
equation following in the zero order of the expansion in the
charge is solved by considering the ansatz for the distribu-
tion adopted in [1]. After this, it is argued that the space-
time probability distribution of the stochastic processρ(x)
and a phase functionS(x) which gradient determines the mo-
mentum mean value at a definite space-time point, define a
complex scalar function satisfying the KG equation through
φ(x) =

√
ρ(x) exp(i S(x)). It is argued that the total num-

ber of particlesN =
∫

d−→x ρ(x) determined by the space-
time distribution conserves in time, if the KG solutions con-
sidered for determining the distributions are either positive or
negative energy modes.

It is also addressed the fact that above mentioned ansatz
solution, is associated to a joint distribution function possi-
bly giving negative values. In this sense, it is remarked that
there are special circumstances that could help to overcome
this limitations. One of them is the following, the KG equa-
tion, when seen as theory of particles shows the interesting
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effect that it lacks a standard definition for the position op-
erator eigenfunction as the Dirac’s Delta function. In place
of it, the appropriate position operator for this theory has a
Gaussian like appearance showing non vanishing values in
spatial regions of the size of the Compton wavelength of the
particles [17]. Therefore, it looks reasonable that the proper
interpretation of theQ̃0(x, p) as describing particles with a
well defined positionx can show difficulties. This leads to
the idea that a proper modification of the kinetic equations
to take account of this extensive nature of the particles oc-
casionally could still lead to a consistent equivalence of the
SQED with QM and QFT.

The work is also presenting solutions for the joint distri-
bution functions which obey the positive conditions required
by a proper classical distribution. Such solutions in a sense,
seems that can be more natural (in the zeroth order in the
coupling with the stochastic forces) than the ansatz consid-
ered in [1]. It is also argued that these solutions could be
related with systems of particles showing the Couder’s exper-
imental results, if the localized solutions employed for their
construction can be approximately represented as Couder’s
like wavepackets after including the effects of the stochastic
forces [19]. The investigation of this particular possibility is
expected to be considered elsewhere.

They are exposed some remarks in connection the
Olavo’s discussion in reference [8–13] directed to define a

positive definite joint distribution function. They identify
some estimated limitations of the approach in connection
with the central question of defining a positive result for this
quantity.

Finally, assumed that the identified difficulties with posi-
tive condition of the joint distribution (the one adopted in [1])
can be properly solved, the discussion opens possibilities for
the extension of the SQED analysis. Of particular interest is:
The possibility of generalize the discussion to describe the
stochastic evolution of two sets of particles: one described
by the positive energy solutions and the other by the nega-
tive energy ones. After to also including the presence of an
external electromagnetic fields, this construction seem to of-
fer opportunities for describing the creation and annihilation
particles by the electromagnetic field. The interaction terms,
could result to be sources of the variation in the total num-
bers of positive or negative charged particles generated by
the annihilation or creation of particles due to the action of
the electromagnetic field. The search for the connection of
this construction with the quantum field theory of the com-
plex scalar field is a further question of interest to explore.
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