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A covariant generalization of a non-relativistic stochastic quantum mechanics introduced by e émBe€etto is formulated. The analysis

is done in space-time and avoids the use of a non-covariant time evolution parameter in order to search for Lorentz invariance. The covariant
form of the set of iterative equations for the joint coordinate and momentum distribution fudztiam) is derived and expanded in power

series of the coupling of the particle with the stochastic forces. Then, particular solutions of the zeroth order in the charge of the iterative
equations fo(x, p) are considered. For them, it follows that the space-time probability deg(sifyand the functiort (z) which gradient

defines the mean value of the momentum at the space timespalefine a complex functiott (x) which exactly satisfies the Klein-Gordon

(KG) equation. These results for the zeroth order solution reproduce the ones formerly and independently derived in the literature. It is also
argued that when the KG solution is either of positive or negative energy, the total number of particles conserves in the random motion. Other
solutions for the joint distribution function in lowest order, satisfying the positive condition are also presented here. The are consistent with
the assumed lack of stochastic forces implied by the zeroth order equations. Itis also argued that such joint distributions, after considering the
action of the stochastic forces, might furnish an explanation of the quantum mechanical properties, as associated to ensembles of particles in
which the vacuum makes such particles behave in a similar way as Couder’s droplets moving over oscillating liquid surfaces. Some remarks
on the solutions of the positive joint distribution problem proposed in the Olavos’s analysis are also presented.
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1. Introduction The present work is devoted to present a derivation of a
relativistic version of the stochastic electrodynamics. That is,
The search for stochastic descriptions of quantum mechanve intend to relativistically generalize the discussion done in
ics and quantum fields theory has a large history. By examRef. 1. For this purpose we start from the relativistic for-
ple, in the works [1-6], it was considered that the randommulation of the kinetic equations given in Ref. 7. The im-
forces which determine the phase space density of particllementation of the stochastic force is assumed to coincide
were given in a stochastic and relativistic invariant way. Thiswith the one employed in the stochastic electrodynamics [5].
defined the so called Stochastic Electrodynamics (SQED)Then, a formula for the equation satisfied by the fluctuation
Specifically, these forces were generated by an electromagdependent space-momenta joint distribution function is de-
netic field configuration, obtained by exciting all the oscil- rived. It directly generalizes the expression obtained in [1]
lation modes with one half a quanta of energy. In addition for the non-relativistic limit. A formula for the joint distribu-
the phases of the photon modes were assumed to be stochgsn is derived.
tically defined within the interva{0.27) in a uniform way. Then, the solution of the equations for the joint particle
This force had been argued to be invariant under Lorentzistribution is searched as expanded in a power series in the
transformations [2,5]. In addition, in reference [1], it was ar-squared particle charge. Further, it is shown the existence of
gued that the stochastic motion guided by those forces, wheparticular solutions for the joint distribution in the zeroth or-
taken in the non-relativistic limit, leads to the Schrodingerder inthe charge. This implies that the density of particles at a
equation. Further, in the series of works [8—13], it was pro-given space time point is defined as a square of complex func-
posed a solution for the a central open issue of the theortion satisfying the Klein-Gordon equation, in this considered
the apparent lack of positive definiteness of the coordinateinteraction free approximation. This indicates that the Klein-
momentum joint distribution function emerging in the pre- Gordon equation (or its non-relativistic limit the Schrodinger
vious discussions. More recently, and with the purpose obne) can be described as satisfying some of the equations of
start considering a generalization of the results in Ref. 1SQED in the first approximations. It can be cited that re-
in Ref. 18 it was suggested that random forces, showing theently, in Ref. 15 a derivation was presented of the Klein-
same statistical distribution in all Lorentz frames, can be exGordon equation, from a modified classical Hamilton-Jacobi
pected to imply the satisfaction of the Klein-Gordon equa-equation for a particle interacting with random background
tion, for which the non-relativistic limit is the Schrodinger forces. In addition an alternative derivation of the KG equa-
one. tions was also obtained in Ref. 13. The present discussion



A RELATIVISTIC FORMULATION OF THE DE LA PENA-CETTO STOCHASTIC QUANTUM MECHANICS 159

independently generalizes the kinetic discussion of the norerence [21], in which the existence of such configurations is
relativistic analysis done in [1]. The presentation here als@rgued from a given proof of a stochastic Noether theorem.
clarifies the role of the positive and negative energy solutionsThe investigation of the scattering properties of such solu-
by showing that both of them separately imply the conservations on two slits screens and potential walls, by example is
tion of the total number of particles in the stochastic motionsgxpected to be considered elsewhere.
assumed that external electromagnetic fields are absent. In Sec. 2 we introduce the basic notions of the relativistic

By the side, it can be observed here that a special circurrkinetic theory. Next, in Sec. 3, the relativistically invari-
stance could help to overcome the known lack of strict posiant equations for the mean value of the distribution and its
tiveness of the ansatz for the joint distribution adopted in [1]random fluctuations are written. Further, in Sec. 4, the mo-
and here. The KG equation, when seen as theory of particlggentum Fourier transform of the mean joint distribution is
lacks a standard definition for the position operator havingntroduced and the equations for it, are written. Section 5
eigen-functions like the Dirac’s Delta function. The position considers the equations following in the first order zeroth ap-
operator for this theory shows Gaussian like spatial behavproximation in the coupling with the stochastic forces. It is
ior with non vanishing values within an spatial neighborhoodexposed how solutions of the Klein-Gordon equation define
of the size of the Compton wavelength of the particle [17].particular solutions of the relativistic kinetic equations, deter-
Then, it looks reasonable that a clear interpretation of thénining a possible joint distribution function in the assumed
Q°(x,p) as describing particles with a well defined position zeroth order in the charge. Next, Sec. 6 discusses how these
x, can run in troubles. Thus, one can imagine that a propespecial solutions determine particle distributions which con-
modification of the kinetic equations to take account of an exserve the total number of particles when the KG waves are as-
tensive nature of the particles could lead to a consistent higssumed to be alternatively positive or negative energy modes.
den variable interpretation of SQED in describing quantumFurther, in Sec. 7 ,we present other special solutions for the
mechanics. Assumed that above mentioned difficulty can bequation for the joint distribution function, satisfying the pos-
surmounted, an interesting extension of the work could seeritiveness condition and being consistent with the lack of ac-
feasible. For this, after including an external electromagnetition of the stochastic forces in zeroth order of their coupling.
field, it seem possible to develop a picture in which both typedlso, their possible links with the Couder’s experiments are
of particles move randomly: one kind of them guided by theidentified. Finally, we advance some remarks linked with the
positive energy solutions and the other one (with oppositérgue presented in Olavo’s analysis about the positiveness of
charges) moves as driven by the negative energy waves. Thie joint distribution function [9, 12].
development of such a picture is an interesting envisioned ex- The results are reviewed and commented in the Summary
tension of the work. section.

Further in the work, we also present some solutions for
the zerot_h_ order joiqt distribution functio@(xzp) which 2 The equation for the joint distribution func-
have positive values in all the phase space points. They have tion
this property independently of the assumption done in the

Olavo's works [8] about the infinitesimal character of the of | et us start by writing the relativistic invariant equation for
the Fourier conjugate variable of the particle momenta in thghe density of points in phase spakéz, p) for an ensemble

stochastic motions. It also can be stressed that the zeroth off massive particles all evolving under the action of a stochas-
der equations for joint distribution function corresponds totic 4-force F*(x, p) which was derived in Ref. 7

the limit in which no stochastic action of the particles are ef- 9
fected. Theref_ore, these solutions_could be more_reaso_nable p#ﬂR(x’p) +m F“(m,p)%R(I,p) =0. (1)
to be adopted in the zeroth order, since they describe uniform €z p
motions of free particles. Two kinds of localized solutions areThe 4-coordinates” will be considered in the metric
found: One constructed as point-like localized spatial depen-
. . . i 1 0 0 0

dence which moves with the four-velocity associated to the 4- 0 -1 o0 0
momentum of the particle. The other kind is attained by em- g = , (2)

. ) - . . 0 0 -1 0
ploying Yukawa like localized solutions of the Klein-Gordon

A . . - . 0 O 0 -1

equation in their construction. Both types of joint coordinate
momentum distributions in turn strongly suggest the possibilwhere the natural system of coordinates will be also em-
ity of describing extended particles, showing the surprisingoloyed, in which the light velocity: = 1 and the time is
experimental properties exhibited by droplets moving ovetthe z° coordinate and the Planck constant= 1. The four
oscillating liquid surfaces [19, 20]. This idea comes from themomentum as usual, is given in terms of the 3-velocity as
suspicion about that after the action of stochastic forces (in

—_—
higher orders in the coupling) both sorts of solutions might pt = m(li’v)z (©)
transform in extended wavepackets surrounding a stochastic V9I—

mean position of the particle moving with constant veloc-  In order to simplify the discussion, we will firstly con-
ity v = p//p?+ m?2. Such outcome is suggested in ref- sider that the external force vanishes. The particle density
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n(7,t) and the particle flow; (7, ¢) in this relativistically ~ which is the same starting formula employed in [1]. How-

invariant case have the form ever, in order to arrive to this expression it was assumed that
_ the force is not momentum dependent. But, the stochastic
Nt (x) = (n(Z,t), j (T ,t)) electric force term employed in [1] is momentum indepen-
a7 dent, an thus it makes the non-relativistic equation employed
= /Fp“ R(z,p), (4)  in Ref. 1 and the one employed here, equivalent in the non-

relativistic limit.
in which the integration is over all the 3-momenta. In gen-
eral the conventions defined in Ref. 7 will be employed. It 5 The adopted SQED relativistic random vacuum
will be assumed that the momenta values are defined on the forces
mass-shell
p*—m®=0. Let us give a precise definition of the relativistic stochastic
In the present work, the force will assumed to be stochasProcess under consideration. Note first that we had omitted a

tically defined as in Ref. 5. That force had been argued to bAM€ ¢ argument in the distribution in order to avoid the use

invariant under Lorentz transformations [2-5]. Therefore theOf the non-relativistic invariant definition of the time. There-
Eq. (1) also becomes relativistically invariant in form. As re- fore. the stochastic character of the process will be imple-

marked before in Ref. 1, it was argued that the stochastic mdn€nted by defining a large ensemble of particle trajectories
tion guided by that force, when taken in the non-relativistic" the phase spacer, p). Each of these trajectories will be

limit, leads to the Schrodinger equation in the first steps of affi€fined by a solution of the Eq. (1) for a force given by a
iterative process of solution of the equations for the non rel random realization of the relativistic invariant Lorentz force

ativistic distribution function. Therefore, as it was argued in€MPloyed in SQED [5]
Ref. 18, it can be suspected that the relativistic invariant mo-

4q v
tions determined by (1) could be related with the satisfaction F(z,p) = EFu”(x)p =q f"(z,p), (8)
of the Klein-Gordon equation, for which the non-relativistic P
limit is the Schrodinger one. This work is devoted to investi- [ (x,p) = Fl'(z)—, 9)

gate this possibility. In order to make the discussion clearer m

let us argue in the next section that in the non-relativisticin which the stochastic space-time dependent field intensity
limit, the stochastic equations reproduce the ones employef. ;(z) is given by

in Ref. 1.
R _ Eyp(a) = 0,Ap(x) — 954, (), (10)
2.1. The non-relativistic limit of the equation _
In this case sinc€v'?/c?) < 1 the momentum and the ex- )
ternal force can be approximately given by X(x) _ Z/d?i?(?’ /\)h(?, N
w
P =m(1, 7). (5) A= '
— —
. . — _ 0
Then, after considering’ = 7' /m the Eq. (1) reduces to xsin(k -7 —wp 2"+ 0(k, A)), (12)
0 Riz. T 0 Riz. T wherew;, = |?\ : ?(?7/\) are two unit polarization vectors
§p0 8@ P)+ - =Rz, P) associated to the wave vectér and satisfying
+ F(@p)gmR p) = 558 P) TEN - EFN)=bw, k-E(k.N)=0, (13)
i — (P R(z, ) and the numbek is defined as satisfying
1
N 9 72h? = Zw—. (14)

Finally, the phaseé(?,)\) are defined as independent
random (one for each value ¢f: ,\)) and uniformly dis-
tributed in the interval0, 27) [5]. In what follows, in place

Further, assuming thd?(x,p) = ?(x), in other words
that the force is independent of the momentum, leads to

B . o (7 R of the force expression, we will prefer to work with the de-
9,0 2@ )+ 5= (m R(z, p )) fined above force per unit of charge
+ 2 F@ R ) =0 @ lap) = ~Frap) = FE@L.  (5)
87 9 . 9 q ] v m .
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2.3. Definitions for the operators and their kernels in  where theP is a projection operator s:atisfyirfg2 = 1. After
joint coordinate-momentum space substituting these expression in equation (1) and applying al-

) S ] ) ternativelyP or (1 — P), the following two equations follow
We will consider in what follows linear kernels in the space

of functionsPS = {g¢(x, p) }of the particle coordinatesand 9
momentap, which explicitly written will make the expression LQ(z.p) +q P f*(x, 10)8 0Q(z,p) =0,
to appear as cumbersome. Then, for any of such kerkels

which action on functions of the spagés defined as L6Q(z,p)+q(1— P ) fH(x p)aiQ(x p) =0, (24)
) ) p‘u b )

g (op) = [ & Ko o', (19) o
T g’

(25)

its compact operator expression will be defined according to
the following equivalence rules Consider now the retarded Green function in the space
PS of the differential operatof = p*(9/0z"), satisfying

9(z,p) =g, 17
= 9 R (4) N 5(4) /
/daz’ dp' K(z,p;2',p') g(2',p') = K g. (18) p* amMG(x’p,I ) =06 (x—2")0""(p—p). (26)
The special Delta function kern&(®) (z — 2/, p — p’) =  In terms of its Fourier transform in the two arguments, the

8@ (z—a") 64 (p—p) will be simply defined as the identity Green functior; takes the form
I, which will mean for the kernel associated to the inverse of

K, the relation Gz, p; 2, p') // 1

7o—1 7> 7> >—1 T i P4
K "K=KK =1 L
x exp(—i(x — x ) Qu —i(p — P')"2)
The local operators, likeL = p*(9/dz") and f =
fH(x,p)(0/0p*) are also considered as kernels in the usual // @i =i p#q
i
way

x exp(—i(z — 2')*q,) 6(p — p')

0 0 ~
P , ®)(p — = ~
p 5 (J? 1‘ yDP—P ) - L7 (19) — G($ _ .I'/|p/) 5(]9 _p/) = L_l. (27)

oxH oxH
f“(ﬂc,p)i — f*(z,p)

OpH It is important to note here, that this expressiondmn-
9 N dicates that the derivative®/9p* do not commute with the
X 8pN5(8)(a: —a',p—p)=F. (20)  operatorG, since
. .. . . . a / / VAP a /
3. The equations for the joint distribution @G(w};x ') =G(x—a'p) @5(1) -7)
function 5
AP /
Now, we will apply the method of smoothing (See [16] and = Gl -al) 8p’“6(p P)
[1]) in order to reduce the Eq. (1) to a non random one for
the coordinate-momenta joint distribution function over the =G —2'[p') d(p - P')W
defined ensemble of trajectories. The ensemble is generated b
by samples of the stochastic force, generated by the random i W )
: =, —(G(@—2']p")) o(p— ')
phases of the electromagnetic modej , A) taken for all the op'r
values of momenta and polarizati¢ , ). For the further ,
analysis, the distribution function will be decomposed in its # Gla—a'lp’) o(p—p )W' (28)
average coordinate-momenta joint distribut@z, ') and
its random fluctuationsQ(z, p’) as Therefore, this non commutativity of the momentum
derivative with the propagatar made difficulty to show in
R(z,p) = Q(,p) +0Q(x,p), (21) this relativistic case an important property derived in Ref. 1:
with the quadratic dependence in the Fourier transform variable
R of the momentump, of some relevant quantities in the dis-
Q(z,P) = P R(x,p), (22)  cussion. This lack of commutativity led us, further ahead in
. ~ this work, to consider the expansion in the coupling in the
0Q(z, p') = (1 = P)R(z,p), (23) equations, in place of the expansion in powers: ofNow,
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acting with the product off andp*(9/0xz*) on an arbitrary  We recall that in that relatioﬁis the operator corresponding

functiong(z, p) it follows to the kernel 5

f=fr(e,p)——-. 36
//dx/dP'G(x,p;I',p')pmaa/ug(x',p') J= D) g 49

/ da' dpf / dq o(p Mp)exp(_i(x_x/)uqu) 4. The momentum Fourier transformed joint
=1 pHqu distribution function

um

xp &Wg( o, p') = g(x,p), (29 Letus perform now the Fourier transformation of the joint

C distribution over the momentum variable as follows
which implies

[ [wwar v 2 ctest Qap) = [ &G ew(-ip's), @)

= 5(z — ')6(p— 7). (30) O, ) = / (;fylcy(z,p) exp(i pz).  (38)

As in reference we will now define a compact notation
in order to eliminate the cumbersome appearance determlné
by the kernel structure of the Green function. This notation:
is described by expressing the above relation in the form

Bcan be mentioned that this concept had been defined and

mployed, by example in Refs. 1 and 8. It is also hamed as
the Characteristic Function. Then, after Fourier transforming
the Eg. (34) the following equation f6}(x, p) can be written

0
/oI A N AYN ]
//dl’ dpp 8 m (xapax P )p ox'H i bl 9 > 2\™
" P 5 Qp) =g > @)
=LL '=T=6x—2")5p—-7p). m=0
The use of these relations written above, after acting with X /d:v’dp/ J™(@®) (z,p; 2, ) Q(2',p'), (39)

the kernelG at the left of the relations (24) gives for the av-
erage of the distribution and its random part, the expressions

2 771
L x z)=q Z /d:c dz
Q=-qL' P fsQ, oy 900"

=0
5Q= gL 'T+qL " I-PYA'PfQ. (32 < ™) (x,

Then, the substitution of these relations in the first of the Egs.
(24) leads to the following equations for the joint distribution With the operator

functionQ(z, p)
~ o J™(q?) <1 i'm’ 3)
LQ=¢@PfL ' I+qL*T-P)f'fQ, "0z i 07

o , 0

i(’?z’x’iaz’> Q(I )y % )7 (40)

95 o1 > Nt o1, BN Tin T operating in the space of function of the variablesz) is
=q PfL Z%(_l) [qL (I_P) ] an defined by
2BTFo1 N2\ (Fo1T 2m J™(q?) xi 9
=*PfL' Y ()" L' T-P)1*"fQ. (393) )\ 2537 5y
m=0
Therefore, the equation for the joint distribution function = (13 FLYLY(I-P) f]QmJ?>
can be written in a compact form, which after expanded in
powers ofg?, takes the form x (z,p;a’,p) (41)
—>L7 /—>%
LQ=¢7 Q. (34) rr
oo Now, the mean value of a function of the coordinates and
j(qQ) = Z (q2)’” P fﬁ‘l[f—l(f_ 13) ﬂQ’”f momenta at a specific space-time positiotan be written in
m=0 two forms as
=@ 7" @), @) (A =~ [dp Alz.p) Q)
m=0
In this relation it has been employed that the mean value of = 1 [A <x7 6) @(%Z)} . (42)
an odd number of the random force functions [1, 5] vanishes. p(x) i0z 2=0
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where the distribution function in the 3D-space poiiteind  Then, the equation fap°(z, z)

a given timez is given by 9 _
. TGnam @) =0 (51)
pla) = [dp @ap) = Y @)™ @) | o N
m=0 can be derived after expanding the exponential in powers of
. z. A similar equation had been obtained also in Refs. 13
= / dp Q™ (z,p) where relativistic expressions for the characteristic function,
not coming from a stochastic discussion was independently
m( considered.
N Z Q z,0), (43) It is helpful to write the Fourier transforms in the zero
order ing?
in which the general expressions for the distribution function
have been expanded in series of the squared charge as follow Q°(z, p) //dz Q°(x, 2) exp(i p'2,), (52)

Q,p) =Y (@) Q" (x,p), (44) .9 / /

m=0

(x,p) exp(—ip"z,). (53)
Q™(x,2) = > (¢*)" Q"(x,2). (45)  The mean value formula reduces to
m=0 B 1 o
(Awp))e = - [ Alwp) Q(an)

Therefore, the general equation (40) can be written in the

form 1 P N

) o A(eg) @ea] L e

o (@2) =0, (46) pla) 10z =0

b ORuOT which allows to write the lowest order equation in the form
a - o0

Q@) = Y () [ a2 ) o= [ e

7 8Zu8x# ngo 782’M8$#Q ax# 4Q T p P eXp( ZPZ)
x |z i'x’ 9 @m_"_l(ac’ 2", m>1. (47) = i( (z)(p"exp(—ipz))e =0 (55)

0z 0 = azr ¥ v =

We will now introduce new variables, andz_ in sub-

. . N
4.1. The interaction free limit ¢° — 0 stitution of the variables andz. The change is defined as

Let us consider now the satisfaction of the first of the itera- .+ — 4, 1+ 3. .- =z,— 32
. . . . I 12 o N 1 123]
tive equations in which the random movement had been de-

H 1 1 1 1
composed. In this case al(l) th@™ (z,p) for m > 1 will T, = §(zf[ + 23)7 2, = Qﬁ( -3 Zu) (56)
vanish and thug)(z,p) = Q°(z,p). It should be remarked
here, that zeroth order equation f@°(z,p) exactly coin-  and for the derivatives
cides with one obtained in Ref. 13 for the relativistic charac- 9 1/ 9 9
teristic function in the absence of interaction with the random Fy =0 = 3 (83: 30 2 ) )
force. Then, the total density reduces to A " "
3] 1/ 0 0
— =0t == ( — ) , 57
pi(x) = / dp Q°(x,p) = p°(x) 0z, 2\ 0z, (0 z, 7
_ a (0 n 0
~ [ Qe =0, @8 e, \ar T )
The mean values in this limit have the expression 9 _ (8 — 8) ) (58)
1 Iz Oz =
(A(z,p))e = m/dp Az, p)Q°(z,p) The above kind of transformations had been suggested by ref-

erence [1] and were also employed in reference [13, 14] in
1 B L o ; :
B { ( 0 ) Qo(x,z)} . (49) deriving the Klein-Gordon equation. These relations allow to
z=0

~ pO(x) derive the identities
in which the distribution function has been expanded in series 0 _ 32 0 _ 252(3531 +010Y) (59)
of the squared charge. 02,0z, Oz ,0z,
Let us define for what follow 92 92 92
= — 60
pla) = (). (50) Oz (azww 0=~z ) 0
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This last equation permits to write the zeroth order equaThe equation for)° can be also written as

tion for Q° in the form ~
0 Qo(mv Z) = _i

P - i0xt 0z, ozt
Q@ (. 2) =~
10%,0xH ) 5 // 2dp4Q0(x’p) P exp(—i p"z,)

. N (@)
< (5epa ~ g ) @@ =0 (6D o
Oz Oz# 0z~ 0z = (p(z){ p" exp(—i p"zu))z) = 0, (66)

© ah
which after expanding the exponential in powergof gives

4.2. Satisfying the higher order equations the following set of equations

In order to directly satisfy the set of equations for> 3 let i(p(w)(p“)z) =0, (67)
us assum€)’(z, z) in the form Ot
0
~ ~ = B\ ) —
Q@) =P =V EE) (@) o VW) =0 9

8 L1 " Un, — J—

It should be noted that this form is suggested by the @(p(w)@%l PEep)e) =0,m =12, 00 (69)
analysis done in Ref. 1. This assumption directly led tothe The last of these relations is directly implied by Eq. (65).
character of solutions of the Schrodinger equation to therhus, let us study in what follows the satisfaction of the first
entering function. Then we will follow this assumption two equations after the adopted ansatz
in searching for a covariant generalization of the discussion ~0 4 _
in [1]. However, it can be noted that the satisfaction of the Q@ (@, 2) = 07 (,) ¥ (z,).
guantum equations as implied by the stochastic theory bea/e will use now
ing constructed could be more naturally expected to appear 1 9
after including the stochastic effects by considering higher (P'p")e = — =0 [(% 2
than zeroth orders in the coupling with the stochastic forces. Q(,0) e
Therefore, in the last part of this work we also search for zeand the general relations
roth order joint distributions being positive definite and also 9 1

0z, <

@wﬂ, (70)

9 50 ) oL
Q°(x,2) Oz @ )> (Q°(x,2))?

consistent with a free motion of a localized particles when the
random forces are absent in the zeroth order in the coupling

expansion. 9 o 30
Then, substituting the above commented assumed form x aZVQ (z, 2) aT#Q (z,2)
in the zeroth equation leads to 1 P
+ = QO T, z), 71
1 62 QO(-T7 Z) aZ,,aZ'u ( ) ( )

U (2t . . : .
U (2F) Oz Oznt ") which after evaluated in = 0 permits to write

coe e P wemo @ W= ) - | g )
z2=0

U(27) 0z 02k~ 02,02,
. o o . =(")2(P")a
But this relation is directly satisfied i obey the linear
equation for any argument and fixed value of the parame- a2 2 ~0 v
tor M 6] 92,00, InQ°(z, z) L + ot (72)
0? 9 ~
ST U(u) — M2U(u) = 0. (64) o = 23° [(aﬁ 0" +0"9”)In Q" L:o : (73)

where it was used relation (59).
However, the assumed form of the zeroth order distribu-
9 tion allows also to find

. )
B0 Do OBy, 0 (02 =0, o =257 [(aﬁai +019Y ) In Q" }
m=1,2,...00, (65)

Then, the satisfaction of this equation implies

z=0

=232 [(aﬁai + L9 )(In W™ (27T)
a condition which will be helpful in the further discussion.

Thus, we had been able to find a solution of the equa- +In qj(z—)] =0. (74)
tion describing the free approximation of the random process. 2=0
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Thus, the resting two equations which remaining to be  The second equation can be transformed as follows
verified in their compatibility with the ansatz can be written.

- 0 5(w)-—0—S(a)
) —o( T
S (@) (")) = 0, dx, " 0wt O,
ﬁQ a 82 _
o [p<x><<pﬂ>$<p”>w 73 g o) | <0, (oD
X
o (1 0 0
o r. <2axs(x) axﬁ(”)
=l I Qz2)| _ [ =0. (@) P
ox (9 z=0 52 b 2 : -
The derivation of these equations was directly suggested by a maﬁ (p(m)m np(x)) =0 (82)

their non relativistic counterparts in [1]. They also coincide

with the ones derived in Ref. 13. In this work an alternative .
relativist discussion of a similar ansatz for the characteris- Further, the density dependent term can be expressed as

tic function, not coming from an stochastic formulation, Wasthe divergence of a vector (as the first term also is) as follows
earlier and independently presented.

L () g ) ) = % (e e
5. The Klein-Gordon equation in the non-  p(z) 9z* dz,0z, dzv \ 2 Ozt
interacting limit o o2 ) 1

g X 1np(:c)+p(x)wlnp(:r)) =3 V<
The ¢> = 0, will be called the "non interacting or free ap- L Ludt t
proximation”. In this section we will study the compatibility 0 | 0 ) 1 02 83
of the two Egs. (75) with the expression assumed for the = 7y P& )37# np(x)“Lp(x) 0z, Ot plx)).  (83)
zeroth order joint distribution function. After checking this,
it will follow that in this free limit, the equations admit so-
lutions for joint distribution function which are defined by
waves solving the Klein-Gordon equations. This result di-
rectly generalizes the derivation of the Schrodinger equation 0 (1 0 0 82 0 0
in Ref. 1. Analogous derivation of the KG equation was 9z, iaxus( ) g S + Eﬁlnp(x)axu n p(x)
formerly and independently given in Ref. 13. Firstly, let us

2

Therefore, the following relation arises

2
search for solutions of the set of the two equations — 32 1 aitp(‘”) =0. (84)
9 p(z) dz,0zt
@(P(x)@“%c) =0, (76)
o This equation implies,
o [p(:ﬂ)@“)m(p )o
10 0 32 0 0
5o 9@)5—S(@) + — 5 Inp(x)5—Inp(z)
0? 2 0x (x>8xl‘ 2 Oxt ox
_ 12 _ N N
Bp()| 5207, nP) H 0, (77 o
~ — ﬂ2< x ) = cte. (85)
where it has been substitutedz) = Q(z,0). Further, let (x) Oz, B, 00"

search for solutions in which the mean momentum value at a

iven space-time point is defined b . . " .
g P P y Now, if we fix the constant to be a positive value, given

Py = 0 —S(z). (78) by ctc = m?, the searched joint distribution function satisfies
Oz, the two equations
After substituting in (76) and (77), it follows
0 0 o) 0
g | P0) =) =0 19 g |peges@] = (86)
0 0 0 10 0 B% 0 0
o [P0 e 5(0) - )| 3 o S(a) (@) 4 5 p(e) )
o 1 0?
12 _ o2 L / — 2
#oto)| —— (e | =0. @0 #(5 axﬂaxﬂpm) m?. (87)
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5.1. The satisfaction of the Klein-Gordon equation implies that the constarit/ defining the ansatz, and defin-
. ) . ing the solution of the Hamilton-Jacobi equation, should co-
Consider now expressing the KG equation for a complexncide.

scalar fieldp(x) in terms of the phase functiafi(z) and a Up to now we have discussed the generalization of the
positive density () defined as follows de la P@&a-Cetto derivation of the set of equations which
1 , should be satisfied by the joint distribution function in the
¢(z) = (p(x))® exp(i S(2)). (88)  non-relativistic limit of the SQED. We also derived a partic-

ular solution for the joint distribution function which implies

Therefore, substituting in the KG equation it follow the satisfaction of the Klein-Gordon equation.

(0% +m®)p(x) = 0,
52 1 6. About the role of positive energy solutions
< + mz) (p(x))? exp(i S(x)) = 0, of the KG equations

O0x,, 0z

aketus discuss an important physical question related with the
obtained solutions. Since the particles which are assumed to
undergo the random forces, are relativistic classical particles
0 0 1 0 with rest massn, it is natural to assume that the KG equation

which after separating the real and imaginary parts and equ
izing both of them to zero, leads to the two equations

@S(w)@ I p(z) + p(x) Dzt oz, (@) =0, (89 soyution describing the stochastic motion should be expected
19 P 19 P to be a positive energy one. This circumstance is in certain
——S(@)=—S5(z)+ = Inp(x)=— Inp(z) form confirmed by a special property of the positive energy
20z, Ozt 4 0zt Oz, solutions (and also the negative energy ones): their total prob-

1 1 52 ability conserves in time, that is
e pla) = m* (90)
2 p(z) Oz, Oz 0

— 0 —> %
o [ ela) = 55 [ AT @) =0 (94
It can be noted that Egs. (89) and (90) become fully z z
equivalent to (86) and (87) after assuming that the constant This property can be easily derived after considering the

32 takes the value following equations also satisfied by the positive or negative
5% = 1. (91)  energy solutions
2
Observe that this value coincides with the one before de- iio () = £/ m?2 — (?)%(x)
rived for the non-relativistic situation in [1]. Therefore, under Oz
the defined non-interacting approximation, it followed that s m((€)2)m
the space time distribution =+ < > (1) “om )¢($)~
m=0
p(z) = /dp Q(z,p) = Q(z,0) For proving the condition, consider that the spatial inte-
gral of the density for a positive energy (or a negative energy

and the also space time functigh (which determines the one) solution can be written and transformed in the way

tmh:a:l;]gr\:alue of the omentum at a given space time pomt;o/ 7 pla) = %/d?q&*(m)q&(m)
= 5 5 = [ 47 (556" @)ote) - 670 0(0) )
both define a complex function 9z B 90
6(x) = (p(a)} exp(iS () -1 a7 (S e )o@ )ow
satisfying the KG equation. o " = ovm
In order that the searched solution of the distribution — ¢*(2) (Z (=1)™ ((zzn) ¢(x)> =0, (95)

Q(z,2) = ¥ (z1)¥(=7), ©) . .
in which there had been performed integration by parts over

can be compatible with the solution for the KG waves generthe all the derivatives forming the appearing series. Thus, ei-
ating the density(z) and the phase functiofi, the relation ~ ther the positive or negative energy solutions define a stochas-
tic motions conserving the total number of particles.

Q°(x,0) = (=N, This result suggests the possibility of simultaneously con-
. sider two stochastic motions: both of them associated with
= U (2)¥(z) = p(x), (93) positive energy solutions: but having opposite values of the
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charges. Let us indicate the positive energy solutions byorce, is in some sense inconsistent with the spirit of the
¢+ (x) and thenegative energy ones by _ (z). But we can  SQED, in which the stochastic action of the force is expected
also define positive energy functions starting from the negato define the quantum properties. What could be more natu-
tive waves by definingp (z) = o, (2°,27) = ¢_(2°, 7).  ralis to start the iterative construction of higher order in the
In this way all the solutions of the KG equations could partic-stochastic coupling, by employing also a zeroth order solu-
ipate in defining a combined stochastic process in which twdions for the joint distribution, but reflecting a free classical
kinds of particles participate: one kind with positive chargesmotion of the particle. This approach directly suggests that
and the another with negative ones. We suspect that this cothat SQED could be valid as describing quantum mechanical
struction can be extended to a full covariant stochastic theeffects, but in a form compatible with the recent experimental
ory of complex scalar particles which could appear to be aesults of Ives Couder. Those surprising findings show that
hidden variable theory for the quantum field theory of suchmechanical systems, like liquid droplets moving on oscillat-
particles. This question will be explored in extensions ofing liquid surfaces, can exhibit quantum mechanical proper-
this study. However, before considering this problem, the apties, as tunnel effects and double slit interference [19, 20].
proach should made consistent, by finding a positive definite Finally, in a last subsection we present some remarks on
joint distribution function. The possibilities for this will be some special issues in the discussions given in [9, 12].
discussed in the next section.

In conclusion, for defining the found solution of the ze- 7.1. Positive zeroth order joint distributions and
roth order equation for the joint distribution as a well defined Couder’s findings

hidden variable theory, it rest only (in the relativistic as a well

as in the non-relativistic cases) to check wether or not, thd" this section we will present a solution of the equation for
derived joint distribution can obey the important positivity € joint distributionQ(z, p) being positive definite in phase
property, which is required by its character as a coordinat§Pace. These solutions strongly suggests a possible link with
and momenta distribution of classical particles of massill the recent studies on quantum mechanical properties in the

showing a relativistic momenta obeying the mass shell confovements of droplets [19, 20] . The picture could be as
dition p®> — m? = 0. In the coming sections we will remark follows. After considering the action of stochastic forces on

the free solutions to be presented below, the stochastic move-
ments of the particle could form a localized standing wave
.. . . which center of mass could be in uniform motions. The pos-
7. Positiveness of the joint distribution and gjpje existence of such standing waves, showing counterparts
Olavo’s analysis moving with different velocities under a Lorentz transfor-
mation, had been suggested in a recent work [21]. Init a

Finally, in this section we want to discuss the questiong, m of 4 stochastic Noether theorem had been introduced.
about the required positive character of the joint coordinaterne extender nature of these Lorentz invariant stochastic so-

momentum distribution, needed if at the end, the SQED app(isns can be imagined to show properties being similar to

proach can furnish a consistent hidden variable approach @« couder’s droplets moving over liquid surfaces. If such
quantum mechanics. Itis known that the Fourier transformegl {a case the quantum particles of SQED could be imag-
A 0 o z .

joint distribution of the formQ"(z,2) = W*(z")W(27),  ined to describe the quantum properties in nature through the

does not give a solution to this difficulty, since in general, thec,der's  mechanism. We expect to study this possibility
joint coordinate-momentum distributions following from the g |sawhere.

inverse Fourier transform @ (z, z) (for all values ofz) are The construction of the positive joint distributions is

not positive definite in general. Thus, the before discussegl saq in the Yukawa potential like solution of the Klein-
here solution for the joint distribution has a formal value, buts .44 equation in the presence of sources

for every solution of the KG equation does not furnish a phys-
ical positive joint distribution. W(T) =
A step in the solution of this relevant interpretation prob- v r ’
lem, was given in Refs. 8 to 13. In these works it has been 5 5 5
emphasized the idea about that by retaining only the sec- r=/21+ T3+ 23, (97)
ond order.in the expgnsion in the conjuggte vgriqble_of th%atisfying the KG equation
momenta in the Fourier transform of the joint distribution, a
proper positive distribution is obtained [9, 12]. Thus, the in- (0? —=mHY(T) = _5(3)(?)7 (98)
finitesimal values of these Fourier conjugate variable of the
momentum was elevated to a central assumption. The Corwhereé(3> is the three dimensional Dirac delta function. Af-
sistency of this analysis had been argued by few alternativter performing a Lorentz transformation to a frame moving
derivations [8-13]. with velocity @ along, let say, ther; axis, followed by a
It should recalled that we consider that the derivation ofshift in the position of the origin of coordinates (at vanishing
the Schrodinger (or the Klein-Gordon one) from the equadime t) to an arbitrary poinfz’, this Yukawa like solution
tions for Q(z,p) in the absence of the vacuum stochasticbecomes a “moving” one, of the form

on these questions.

1 exp(—mr) (96)
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2
_>2+ 2 .
. exp(—m\/l’m2m (xl—\/#t—x’f) +(m2—x’2‘)§+(:ﬂ3—x’§)>

o) = o — : (99)
P ;;2771 (ajl — 7%?1;:_7”21‘, - xic) + (.%‘2 — .135)3 + (l‘3 - l‘§)
— — m mv —
Z‘:(t,l‘), p:(p07p): (m’m), l‘k:(o, J}k). (100)

In this change it had been used the relations

B P1 5 m
Y o S Sy (101)
VP2 +m2 P2+ m?2

This function also can be expressed in a rotational invariant form as

2 —
. P2+m?2 - 7 t_ Tk @ - =k 7_7? - =
1exp m\/ P ((x T x >.|p|> +(Z—= )( it (T —TF)
P

ka,(a%p) = Z )
" p2am? [ — 7 =k | 2 - =iy (F_ B (= _ =+
p2+m
(102)
where NN — _ — —
(T _ p_f’) the new distributions also will be positive quantities in all
P ? the mass-shell phase space. These solutions of the equations

is the projection tensor on the plane orthogonal to the velocity* (9/0z)Q(x, p) = 0, showing a positive joint distribution
andp’/| 7’| is a unit vector in the direction of the velocity.  have the forms

The functioniy,, (x,p) is positive definite in the phase
space(z, p). Also, in the rest frame = (m, 0 ), it directly Q(z,p) =Y _ ¥, (x,p), (104)
satisfies the equation for the joint momenta-coordinate dis- k

vanishes. Then indexk, points in an arbitrary direction.
. 0 —0 103 It can be noticed that the proposed solution is not rig-
p @w‘”h(x’p) - (103) " 4rously point like. It has distributions showing a Compton
wavelength extension. However, strictly point-like solutions

Having this equation a covariant form, it should be also]c he ioint distribution f ; directly obtained in th
valid after performing any Lorentz transformation of the co- or the joint distribution function are directly obtained in the

ordinates and momenta. Now, we can define a sat pbints

zr, k = 1,2,....,N . Then, by superposing the functions of Q(z,p) = Z(I)%(l"p)’ (105)
the type (102) for all the values & more general solutions k
can be constructed. They will describe a sef\ofocalized p,tié (z,p) =0 (106)
solutions of the Klein-Gordon equation with sources. Also, Oxr TR ’
| inwhich
1 724+ m?2 2
— 1 sm prrmz I o _ k)2 _ gk
®yy (7,p) = 47r6 <\/ m2 (xl 72 +m2t 1:1) + (22 — 23)5 + (3 173))) (107)
m m 7

These joint distributions are positive in the whole phase space and solves the zeroth order equation. They represent the
uniform motions of localized particles in the absence of stochastic perturbations, being more compatible with considered zeroth
order equation under consideration. Below, we remark on the possible connections of these distributions with the Couder’s
findings of quantum mechanical properties droplets moving over oscillating liquid surfaces.
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7.1.1. Possible links with the Couder’s systems the representatiori (9) in the non relativistic limit. Since the
Couder’s experiments are done for movements of the droplets
Finally, let us here very roughly argue about the possible linkgyyer surfaces having massless propagating modes, even the
of these special joint distributions with the Couder’s exPe”'vanishing mass parameter could be allowed. As positive
mental results [19, 20]. For this purpose, let us qualitativelyfactor it can be noticed that after considering the effect of the
discuss a situation in which one of the solution, (z,p)  stochastic forces, the wavepacket bound to the particle will
with a given velocity, perpendicularly approaches a wall have constituted by real waves stochastically excited by the ran-
ing two slits holes. Let us first note that the singularity of yom moving of the particle. Therefore, opening possibilities
the solution is similar to the one in the Coulomb potentialfq, showing Couder’s like effects.
field and its classical energy is infinite. Thus, since we will T4 end the argue, note thatto9) is a wave correspond-
assume that the particle has a finite magssome negative ing to particles of mass: and wavelengthh = 2 /p. There-
contribution to the bound energy (which is concentrated iffore assumed that the two slits to which the wave approaches,
the singularity point) should cancel the infinite and positivepgye g separation of a similar size to the wavelengtihese
contribution of the classical energy outside the point. Thenyodes should tend to be scattered by the action of the slits.
let us consider a sphere centered in the singularity at any incjearly, if the waves were completely free ones, this scatter-
stant, such that the field energy outside the sphere coincidqﬁ.g should work. However, since the singularity is expected
with the total mass of the particle. Therefore, the contri-tg majintain the structure of the particle when the scattering
bution to the total energy inside the defined sphere, Shou'Brocess occurs (as it happens in the Couder’s experiments)
vanish (the negative cohesive term should cancel the infijhe whole effect of such "dispersion forces” could be sus-
nite positive energy laying outside the point, but inside thepected to be reduced to control the movement of the singu-
sphere). However, having not net mass, the system insidgyity (if it passes through the slits) to be pointing in the di-
the sphere, might be suspected to weakly contribute to thgactions of the usual interference maxima. This argue also
free dynamics of the particle. Then, we have that outside thg,gicates (as noted above) that the results of Couder could
small sphere the system will satisfy the Klein-Gordon equaperhaps be described by the found positive solutions of the
tion and also will move as a whole with constant velocity, equation for the joint distribution function after incorporating
Thus, the solution),, ,(x, p) might perhaps also be approx- the action of the vacuum stochastic forces. The study of the
imately represented by a wave packet solving KG equationyy sjits scattering on such configurations is expected to be
but with a momenta distribution showing non vanishing val-considered elsewhere. The clear limitations of the above dis-
ues only in a small neighborhood of the momenta componentyssijon for pure free solutions could be solved by the noted
p1 = mw/v1 —v?, inorder that the packet shows a constantconsideration of the stochastic forces. They have the chance
velocity. If this idea is valid (in spite of its very rough nature) of converting, the uniformly moving point like distribution
then functions in sorts of solitonic stochastic wavepackets show-

ing similar properties as the Couder’s droplets.
v (o) = [ a7 f(?)exp<—w7+m2t+7.?i) g simiar prop P
7.2. Remarks on the Olavo analysis

N — . P +m?
~ [ dpidpadps f(p)exp | —ip Tt—ml In the discussion given in [9, 12] it was obtained the general

relation
+ @ pax2 +ip3303) ) 0?In Z(z, 0z, t)
— B p(z,t) (6(536)2 )5 .
=
~ /dp1dp2dp3 f(P) 0%In R(x;t)?
= —#2p(a, TR (110)
x exp(—ip(vt— 1)+ i paxo + i p3xs). (209) )
0
However, it should be noted that the singular solution is = /dp (p - agﬂﬂ%ﬂ) F(x,p;t). (111)

localized within region of the size of a Compton associated

to the free mass parameter. This is a small quantity for between the characteristic functidghand its inverse Fourier
usual particles as, by example electrons. Thus, in order thatansform, the joint coordinate momentum distribution func-
the representatiori(9) could be valid, the momentum band- tion F'.

width of the integral in {09) should be larger than one over We intend to underline here that this exact equation (only
the spatial width of the singular solutio: ~ (1/m), that  assuming the product structure fai(z, dx,t) = ¥*(z +

is, larger thanmn. In the relativistic limitp; >> m, this condi-  (dz/2), x — (d=/2)) ) implies a strong link between the sign
tion can be satisfied. However, for mass parametefarger  of the second derivativie-9% In R(z;t)?/ 022) and the strict
than the electron’s one, and in the non relativistic limit, thispositivity of the joint distributionZ’(x, p; t). This connection
rule can not be imposed. Thus, we expect that the parameteetermines that whe(®? In R(z;t)?/ dx?) in some spacial
m should have a small value in order to allow implementingpoints turns to be negative, théf{(z, p, t) can not be strictly
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positive. But, it can be noted that it is possible to give ini- §z, for small intervals in which the second order approxima-
tial conditions at some time, to defining arbitrary values tion gives a good approximation, the use of (115) is allowed.
for the spatial dependence of the wavefunctions. This propHowever, the obtaining of the expression for the joint distri-
erty allows fixing the spatial dependence of the coordinates bution function in [9] rests in evaluating the Fourier inverse
for the density function in an arbitrary form. Therefore, thetransformation

relation oo
2 1n R(z: )2 2 N L2 . 0s(w;t)
C0PInR(z;t)* 1 (_ 0%p(x,t) F(z,p;t)=R(x;t) / d(dx) exp (z 5:z:<p>
Ox? ~ p(a,t) Ox? o h Oz
1 9p(x,t) Op(x, t)> (112) (02)% 92 In R(x;t)?
plet) 0x oz 8 07 )
can be always made negative, at a some tignand some ((p _ 8;(;;#))2)
point z,,, by fixing a minimum of the density at, and z,. XD | T R
This conclusion means that solutions will always exist show- = R(z;t)*/7 2 922 . (116)
ing a non positive joint distribution function. Therefore, since 0%In R(z;t)?
this result is determined by the characteristic function up to B 8 2

second order iMz, that is in the limit considered in the ) . . . )

Olavo's discussion, it is concluded that this approach stilWhich again is a positive definite expression only
present a difficulty in consistently predict an always positive'©" ) the spgual 2c|ass of wavefunctions  having
definite joint distribution function. —(0°In R(x;1)*/8 92%) > 0, as argued before.

The above conclusion seems contradictory with the fact ~1hatis, even after assuming the modified expression for
the in references [9, 12], it was argued the positivity of thethe characteristic function (115) as valid for finite values of

joint distribution function. Let us remark on this point. In ox, (as required to evaluate the inverse Fourier transform) the

the notation of these works (in which the discussion was nofieSulting expression can result as a non positive definite quan-
relativistic), the characteristic function for infinitesimal val- tity for existing special wavefunctions.

ues of the conjugate variable to the momefitawas firstly
obtained up to second order in the expansion éwein the

form Summary

, 0w ,0s(z;t) We have presented a generalization of the non-relativistic
Zq(x,015t) = R(x;)” + TR(x? t) (113)  stochastic quantum mechanics introduced by de fearRad
(62)? [R(Jc;t)Q 02 In R(z:1)? Cetto [1]. The discussion_ starts form the o!escription of_ t_he
random motions of a particle under the action of a relativis-
2 4 Oz tically invariant stochastic force defined in reference [5]. It
R(x;t)? [0S (z; ) 2 is checked that in the non relativistic limit the starting equa-
> ( B ) } (114)  tions reduce to the ones employed in [1]. Then, the set of
equations for the joint distribution is expanded as a series
wherep(z,t) = R(z;t)? is the particle density of the derived of the particle charge. The free approximation, that is, the
Schrodinger equation expressed as the absolute value of tieguation following in the zero order of the expansion in the
wave functionR(z,t) andp(z,t) = 0S(x;t)/0x is the gra-  charge is solved by considering the ansatz for the distribu-
dient of the phase of the wavefunctisfiz,¢). In a central ~ tion adopted in [1]. After this, it is argued that the space-
step in the discussion in Ref. 9, after employing the assumetime probability distribution of the stochastic process:)
differential character obz, the above expression was substi- and a phase functia$i(x) which gradient determines the mo-

+

tuted by the following one. mentum mean value at a definite space-time point, define a
) complex scalar function satisfying the KG equation through
Zo(x,6a;t) = R(z;t)% exp {%— i 0z 9s(;1) o(x) = /p(x)exp(i S(z)). Itis argued that the total num-
h Oz ber of particlesN = [dz" p(z) determined by the space-
(62)? 8% In R(x;t)? time distribution conserves ir_1 time, _if the KG _solutions_ con-
3 02 } (115)  sidered for determining the distributions are either positive or

negative energy modes.
This is a valid transformation up to the assumed second order It is also addressed the fact that above mentioned ansatz
in dz. In other words, a series of terms "completing” the ap-solution, is associated to a joint distribution function possi-
pearing exponential function were added. Note that all suclbly giving negative values. In this sense, it is remarked that
terms have at least a cubic dependenceeirf the furtheruse there are special circumstances that could help to overcome
of the form of the characteristic function is reduced to evalu-this limitations. One of them is the following, the KG equa-
ate its derivatives up to second ordewin or integrals over tion, when seen as theory of particles shows the interesting
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effect that it lacks a standard definition for the position op-positive definite joint distribution function. They identify
erator eigenfunction as the Dirac’s Delta function. In placesome estimated limitations of the approach in connection
of it, the appropriate position operator for this theory has awith the central question of defining a positive result for this
Gaussian like appearance showing non vanishing values iguantity.
spatial regions of the size of the Compton wavelength of the Finally, assumed that the identified difficulties with posi-
particles [17]. Therefore, it looks reasonable that the propetive condition of the joint distribution (the one adopted in [1])
interpretation of the’(x,p) as describing particles with a can be properly solved, the discussion opens possibilities for
well defined positionz can show difficulties. This leads to the extension of the SQED analysis. Of particular interest is:
the idea that a proper modification of the kinetic equationsThe possibility of generalize the discussion to describe the
to take account of this extensive nature of the particles ocstochastic evolution of two sets of particles: one described
casionally could still lead to a consistent equivalence of théby the positive energy solutions and the other by the nega-
SQED with QM and QFT. tive energy ones. After to also including the presence of an

The work is also presenting solutions for the joint distri- external electromagnetic fields, this construction seem to of-
bution functions which obey the positive conditions requiredfer opportunities for describing the creation and annihilation
by a proper classical distribution. Such solutions in a senseqarticles by the electromagnetic field. The interaction terms,
seems that can be more natural (in the zeroth order in theould result to be sources of the variation in the total num-
coupling with the stochastic forces) than the ansatz considbers of positive or negative charged particles generated by
ered in [1]. It is also argued that these solutions could bdhe annihilation or creation of particles due to the action of
related with systems of particles showing the Couder’s experthe electromagnetic field. The search for the connection of
imental results, if the localized solutions employed for theirthis construction with the quantum field theory of the com-
construction can be approximately represented as Couderex scalar field is a further question of interest to explore.
like wavepackets after including the effects of the stochastic
forces [19]. The invgstigation of this particular possibility is Acknowledgments
expected to be considered elsewhere.
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