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Newton’s law of cooling with fractional conformable derivative
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The fractional conformable derivative and its properties have been introduced recently. Using this derivative we obtain a new class of smooth
solutions for the Newton’s law of cooling in terms of a stretched exponential function depending on the fractional order parameter0 < γ ≤ 1.
In addition, the convection coefficient of fractional orderk(γ) can be calculated easily. Also, it is shown, that in the particular caseγ = 1

these solutions become the ordinary ones.
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1. Introduction

Fractional calculus (FC) is the natural generalization of the
ordinary calculus involving derivatives and integrals of non-
integer order. During the thirties or so, FC has attracted
much attention due to its powerful and widely used tool for
better modelling and control of processes in many areas of
science and engineering [1-3]. Nowadays, there are several
definitions of fractional derivatives and integrals [4]. These
definitions include Riemann-Liouville, Grunwald-Letnikov,
Caputo, Weyl [5-6] and, more recently, Caputo-Fabrizio [7]
and Atangana-Baleanu [8]. The most used definitions are
the Riemann-Liouville and the Caputo fractional derivatives.
There are classical applications where FC has shown its great
capabilities, such as: the tautochrone problem [9], models
based on memory mechanism [10], fractional diffusion equa-
tion [11], new linear capacitor theory [12], the non-local de-
scription of quantum dynamics like Brownian motion and
anomalous diffusion [13], to name a few.

All definitions of fractional derivatives satisfy the prop-
erty of linearity. However, properties, such as the product
rule, quotient rule, chain rule, Rolle’s theorem, mean value
theorem and composition rule and so on, they are lacking in
almost all fractional derivatives. To avoid these difficulties,
in [14] it was proposed an interesting idea that extends the or-
dinary limit definitions of the derivatives of a function, called
conformable fractional derivative. This definition allows for
many extensions of some classical theorems in calculus, for
which the applications are essential in the fractional differ-
ential models that existing definitions do not permit. It has
attracted the interest of researchers, as it seems to satisfy all
the requirements of the standard derivative. Also, the com-
puting using this new derivative is much easier than using
other definitions of fractional derivative. Therefore, there is
a large number of works carried out using this new definition
and its generalization, [15-24].

Motivated by this new conformable derivative, we apply
it to obtain new class of smooth solutions for the Newton’s

law of cooling. In addition, the convection coefficient of frac-
tional orderk(γ) is found.

2. Basic results on fractional conformable
derivative

In the paper [14], a new definition of fractional derivative is
given, it is calledconformable fractional derivative, defined
as: Letf : [0,∞) → < a given function, then, the con-
formable fractional derivative of the orderγ is defined by

Tγ(f)(t)=
dγf(t)

dtγ
=fγ(t)= lim

ε→0

f(t + εt1−γ)− f(t)
ε

, (1)

for all t > 0 and0 < γ ≤ 1. This expression is a possible
generalization of the standard definition of derivative. When
γ = 1 from (1), we obtain

f ′ = lim
ε→0

f(t + ε)− f(t)
ε

.

Although the fractional conformable derivative is easily com-
puted, it is not conformable atγ = 0, namelylimγ→0 Tγ 6=
f . If f is γ−differentiable in some(0, a), a > 0, and
limt→0+ fγ(t) exists, then,fγ(0) = limt→0+ fγ(t) holds.
The most important properties of this conformable fractional
derivative are given as theorem in [14].

Theorem:Let γ ∈ (0, 1] andf andg beγ-differentiable
at a pointt > 0, then

1. Tγ(af + bg) = aTγ(f) + bTγ(g), for all a, b ∈ <.

2. Tγ(tp) = ptp−γ , for all p ∈ <.

3. Tγ(λ) = 0, for all constant functionf(t) = λ.

4. Tγ(fg) = fTγ(g) + gTγ(f).

5. Tγ

(
f
g

)
=

gTγ(f)− fTγ(g)
g2

.

6. Tγ(f)(t) = tn+1−γ dn+1

dtn+1
, γ ∈ [n, n+1]. If f(t) is

(n + 1) differentiable att > 0.
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3. Newton law of cooling

Temperature difference in any situation results from energy
flow into a system or energy flow from a system to surround-
ings. The former leads to heating, whereas the latter leads to
cooling.

Newton’s law of cooling states that the rate of change of
temperature of the body is proportional to the difference be-
tween the temperature of the body and that of the surrounding
medium [25],

dT

dt
= −k(T − Tm), T (0) = T0, (2)

whereT0 is the initial temperature of the body att = 0, Tm

is the temperature of the medium, which is considered to be
constant, andk is the cooling coefficient (or convective) de-
fined as

k =
αA

mC
, (3)

whereα is the heat transfer coefficient for convection,A is
the heat transfer surface area,m is the mass of the body,C
is the specific heat. The coefficientk is measured in inverse
unity of time,s−1. Equation (2) predicts that the difference
between the initial temperatureT0 and surrounding medium
temperatureTm drops exponentially

T (t) = Tm + (T0 − Tm)e−kt. (4)

Many experiments seem to support the applicability of this
simplified theory for temperature difference [25]. From this
equation we have that ift → 0, thenT → T0, and if t →∞,
thenT → Tm, the body and the surrounding are in the ther-
mal equilibrium.

Now, suppose that after some given timeτ , the tempera-
ture changes fromT to T1, with these conditions we can find
the value ofk from (4),

k =
1
τ

ln
(T0 − Tm

T1 − Tm

)
. (5)

This result is well known and can be found in any physical
textbook.

The question here is; what happens in the case of frac-
tional conformable calculus. Which of the two models gives
the best result for the convective coefficientk and therefore,
for the behaviour of the Newton’s law of cooling? The an-
swer is the main result of this short communication which is
given in the next section.

4. Newton fractional conformable cooling law

Usually, authors replace integer derivative operators with
fractional ones on a purely mathematical basis. However,
from the physical and engineering point of view, this is not
completely correct, and some dimensional corrections in the
new equation are required. Having this in mind, in [26] we

proposed a systematic way to construct fractional differen-
tial equations using the fractional Caputo derivative, which
consists of the following:

d

dt
=

1
σ1−γ

t

dγ

dtγ
, (6)

whereγ is an arbitrary parameter, which represents the order
of the derivative,0 < γ ≤ 1, σt is a parameter representing
the fractional time components in the system, its dimension-
ality is of times [26]. It is interesting to note, that depending
on the system theσt may be done in terms of the physical
parameters of the system, for example, in our case it is con-
venient to takeσt = 1/k, because[k] = [s−1]. Then, in our
particular case, to obtain a fractional derivative we must re-
place the ordinary derivative by the fractional one as follows:

d

dt
= k1−γ dγ

dtγ
, 0 < γ ≤ 1. (7)

So, substituting this expression in the ordinary differential
equation (2), we have the corresponding fractional differen-
tial equation of orderγ,

dγT

dtγ
= −kγ(T − Tm), T (0) = T0, 0 < γ ≤ 1. (8)

This equation has been solved in the case of the fractional
derivative of Caputo, having as a solution the Mittag-Leffler
function [27-28]. However, using the Caputo procedure it
is not easy to calculate the convective coefficientk. Due to
this, in this work we apply the recently introduced fractional
conformable derivative [14].

For this, we take into account the expression (7) and the
formula 6 of the above theorem, whenn = 0, we have

d

dt
= k1−γ dγ

dtγ
= k1−γt1−γ d

dt
. (9)

Recalling that[k] = s−1 and [t] = s, thenk1−γt1−γ is di-
mensionless. Substituting thistime fractional conformable
transformin (8), we obtain an ordinary differential equation

dT

dt
= −kγtγ−1(T − Tm),

T (0) = T0, 0 < γ ≤ 1. (10)

This equation has the particular solution

T (t; γ) = Tm + (T0 − Tm)e−
kγ

γ tγ

, 0 < γ ≤ 1. (11)

Observe that in the caseγ = 1, the Eq. (11) transforms in (4).
Suppose now, that after a timeτ we have a temperatureT1,
then, from (11) we have

T1 = Tm + (T0 − Tm)e−
kγ

γ τγ

. (12)

From here we can calculate the fractional convective coeffi-
cient easily,

k(γ) =
[ γ

τγ
ln

(T0 − Tm

T1 − Tm

)] 1
γ

, 0 < γ ≤ 1. (13)

Figure 1 shows howk(γ) depends on the values ofγ.
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FIGURE 1. Shows the behaviour of cooling coefficientk(γ) for
different values ofγ, whereT0 = 100◦C, T1 = 60◦C, Tm = 5◦C
andτ = 600s.

FIGURE 2. Shows the behaviour of the fractional Newton’s law of
cooling (11) for different values ofγ.

Figure 2 shows that asγ decreases the steady state so-
lution is reached at longer times. Besides, in the case of
fractional conformable differential equations (10) we have
a stretched exponential functions as solutions, unlike the
Mittag-Leffler solutions obtained using the Caputo deriva-
tives. On the other hand, the Caputo fractional derivatives
are non-local, whereas the fractional conformable derivatives

are local. However, the behaviour of the system, in general,
is similar [27-28].

5. Conclusions

In this short communication we started with the ordinary dif-
ferential equation for the Newton’s law of cooling, then, we
used the method given in [26] to obtain the corresponding
fractional differential equation. After that, we applied the
conformable fractional derivative to obtain a first-ordinary
homogeneous differential equation with non-integer power
variable coefficients. When solving this equation we obtain a
new class of smooth solutions for the Newton’s law of cool-
ing given by stretched exponential functions. In addition, the
convection coefficient of fractional orderk(γ) is found easily.
This conformable fractional derivative definition is a conve-
nient definition in the exact solution procedure of fractional
differential equations. Conformable fractional derivatives are
easier to use when compared to the other fractional deriva-
tives, as its derivative definition does not include any integral
term.

Newton’s law of cooling is invoked in a wide range of
contexts in applied science, for example, in materials sci-
ence, high temperature superconductivity and atmospheric
physics [29-30]. We hope that the way of analysing the frac-
tional differential equations using the conformable fractional
transform (9) will be of great help in solving fractional equa-
tions that represent more complex systems. Of course, it will
be interesting to compare the theoretical results with some
experimental data.
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