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The motion of a relativistic charged particle in a homogeneous
electromagnetic field in De-Sitter space
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We discuss the geometric characterization of the trajectory of a moving charged particle, for the case of a homogeneous electromagnetic
field, in De-Sitter space when the motion is governed by the Lorentz equation. We employ totally relativistic approach during the discussion
and it is based on a systematic use of the four-dimensional Frenet-Serret formulae, which is adapted to the De-Sitter space to determine the
worldline geometry of the electromagnetic field acting on the particle in De-Sitter space, and of the Faraday antisymmetric tensor properties.
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1. Introduction

Principal least action governs the dynamics of a mechanical
system between the timesa andb. It is defined by the follow-
ing integral and it takes the least possible value.

Q =

b∫

a

Ldt,

whereL is used to describe positions and velocities of the
system. The action is defined, for a free relativistic particle,
by

Q = −mc2

b∫

a

√
1− v2

c2
dt,

wherem is a mass,v is a velocity, andc is the speed of light in
a vacuum. The dynamics of the relativistic particle has been
studied intensively in Minkowski spacetime for a long time.
In Minkowski spacetime, an event is described by the point
particle motion whose collection creates the worldline of the
particle. The generalization of the action of the relativistic
particle can be given by the curvatures(e1, e2, ..., en) of the
worldline of the particle in(n + 1) dimensional Minkowski
spacetime in the following manner.

Q [X ] =
∫
L (e1, e2, ..., en) dτ.

Here X γ is embedding function of the particle given by
X γ = (ct, x, y, z), γ = 0, 1, 2, 3 such that

dτ =
√
−θ,

where

θ =

√
ηγα

DX γ

ds

DXα

ds

[1]. This approach has been effectively used to determine
the dynamics of a system even though its internal form is

not fully solved. For example, in the bosonic theory, the ac-
tion and evolving of a supersymmetric particle can be under-
stood via curvature dependent action of the relativistic parti-
cle [2]. It was proved by Polyakov in[3] that explicit solutions
of the dynamics of a rigid body are divided into three types:
tachyonic, massless, and massive depending on the value
of the invariant of the particle. Kuznetsov and Plyushchay
in [4,5,6,7] investigated the curvature and torsion dependent
model of the action of the relativistic particle linearly. The
relationship between the equation of the motion of the rela-
tivistic charged particle in the homogeneous electromagnetic
field and the equation of the motion of the particle contain-
ing a linear term on the torsion of the trajectory are demon-
strated by Plyushchay in[8] . It was proved by the authors
in [9,10,11] that the correspondence between the dynamics
of a relativistic charged particle and the geometry of a world-
line described by the Frenet-Serret equations can be given by
using the invariants of the electromagnetic field and the cur-
vatures of the worldline.

Static solutions of the gravitational field equations were
obtained with the help of the cosmological constant, which
is introduced firstly by Einstein. The fundamental solu-
tion of the equations of Einstein is the Lorentz metric of
Minkowski spacetime. In a vacuum, with a positive cos-
mological constant, the solutions of the modified equations
of Einstein are the De-Sitter metrics. The introduction of
the positive cosmological constant is responsible for replac-
ing Minkowski spacetime by a De-Sitter spacetime for sym-
bolizing absence of matter. There are many experimental
and theoretical suggestions on the non-vanishing, positive or
negative value of the cosmological constant. For instance,
it was considered by Narlikar in[12] that a very high pos-
itive cosmological constant is required to the rapid growth
at the early period of the evolution of the universe. Further,
according to recent measurements and observations, it was
presented by Ohanian and Ruffini in[13] that the positive
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cosmological constant is required to be at action to generate
the observed proportion of expansion. Therefore, the interest
in the formulations and characterizations of the kinematics
and dynamics of a relativistic particle in De-Sitter space has
grown [14,15,16]. Some formalisms of the electromagnetic
field in non-static spherically-symmetric coordinates in ex-
tending De-Sitter universe was also investigated by Vekoet
al. in [17].

The main goal of the present study is to investigate the
motion of a relativistic charged particle in a homogeneous
(uniform and constant) electromagnetic field by emphasiz-
ing on the invariant geometric description of its trajectory in
De-Sitter spacetime. We also aim to clarify the nature of the
Frenet-Serret equations on the basis of a given physical sys-
tem. This is achieved through the use of the Lorentz equation
together with the Frenet-Serret formalism. We also establish
a connection between the intrinsic scalars of the worldline of
the curve and field invariants of the electromagnetic field in
De-Sitter space.

2. Frenet-Serret equations for a timelike
worldline in De-Sitter space

The intrinsic geometric features of a moving particle in space
is determined mostly by using the Frenet-Serret formulae.
These formulations are obtained by the Frenet-Serret (FS)
tetrad, which is constructed by the tangent vector of the
worldline, normal and binormal vectors together with a num-
ber of associated curvatures of the curve depending on a di-
mension of a space. In this work, the particle is assumed to
follow a timelike worldline in De-Sitter spacetime. Thus, as
a result of this motion, it is obtained a curve, which has a
timelike tangent vector and spacelike normal and binormal
vectors. Here, the arc-length parameter is also described to
compute the distance traveled by the particle along its time-
like worldline. When the main tetrad is stated initially and the
associated curvatures are defined in terms of the functions of
the arc-length parameter on the path, then the trajectory is
found thanks to the FS relations. By the assumption, we re-
strict ourselves to a timelike curveβγ = βγ(s), which cor-
responds to a moving timelike particle in special relativity. In
this theory, the complete coordinate system for any event is
defined by

(βγ) = (ct, x, y, z), γ = 0, 1, 2, 3. (1)

The distance between two distinct events is computed by

ds2 = dx2 + dy2 + dz2 − c2dt2, (2)

wherec is the velocity of light in the vacuum. Thus, for a
timelike curve, we have

ηγα

(
Dβγ

ds

)(
Dβα

ds

)
= −1, (3)

whereηγα is a metric tensor ands is the arc-length parameter.
If we choose components of the unit speed timelike tangent
vector as

Tγ =
dβγ

ds
, ηbcTbTc = TγTγ = −1, (4)

then we have following normal and binormal vectorsE
γ=1,2

defined along the curve. So far it is described three orthog-
onal vectors along the worldline. However, De-Sitter space-
time is a four-dimensional space. Thus, there must be a fourth
vector in addition to the tangent, normal, and binormal vec-
tors for the complete framework construction. Therefore, it
is considered that the curveβ itself is a vector to establish
FS equation system in De-Sitter spacetime. Finally, the main
tetrad(Tγ ,E

γ

1
,Eγ

2
,Eγ

3
) is defined by FS frame in the fol-

lowing manner.

TkE
γ

k = 0, Ek
γ

Ek

γ
= 1, γ = 1, 2, 3. (5)

Here we exchange the timelike curveβ with Ek

3
for the sim-

plicity purpose of the notation. This construction also obeys
the following FS equation system [18,19].

DTγ

ds
= e1E

1

γ + E
3

γ ,

DE
1

γ

ds
= e1Tγ + e2E

2

γ , (6)

DE
2

γ

ds
= −e2E

1

γ ,

DE
3

γ

ds
= Tγ .

wheree1 is the curvature ande2 is the torsion of the timelike
curve along the worldline.

3. Faraday Antisymmetric Tensor in De-Sitter
space

In the previous section, we introduce prerequisite information
to determine kinematical properties of the moving particle
along the timelike worldline by using FS frame construction
in De-Sitter spacetime. If we also assume that the particle is
charged byq and it has a massm, then it produces an electro-
magnetic field. This field can be seen as the combination of
a magnetic field and an electric field. Faraday antisymmetric
tensorFuv represents the electromagnetic field of a physical
mechanism in the given spacetime. This tensor is written in
the complete coordinate systemβγ = βγ(s) and following
form of representation is obtained.

[Fuv] =




0 Sx Sy Sz

−Sx 0 −Rz Ry

−Sy Rz 0 −Rx

−Sz −Ry Rx 0


 , (7)
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[Fuv] =




0 −Sx −Sy −Sz

Sx 0 −Rz Ry

Sy Rz 0 −Rx

Sz −Ry Rx 0


 , (8)

where S = (Sx, Sy, Sz) is an electric field 3-vectors and
R = (Rx, Ry, Rz) is a magnetic field 3-vectors.

Dual of the antisymmetric Faraday tensorFuv is com-
puted by considering totally antisymmetric tensorσ of Levi-
Civita. Its value depends on the number of permutationuvab
of 0123.

i. If it has an even number of permutation, thenσ = 1,

ii. If it has an odd number of permutation, thenσ = −1.

Thus, simple dual of the antisymmetric Faraday tensor
Fuv is computed by

[∗Fuv] =
1
2
σuvabF

ab, (9)

which has the following matrix representation

[∗Fuv] =




0 −Rx −Ry −Rz

Rx 0 −Sz Sy

Ry Sz 0 −Sx

Rz −Sy Sx 0


 . (10)

Lorentz invariant of the electromagnetic field is expressed by
using the identities given in Eqs.(7, 8, 10) as the following.

FuvFuv = 2
(
R2 − S2

)
, (11)

∗FuvFuv = 4 (S ·R) ,

whereS is the magnitude of the electric field andR is the
magnitude of the magnetic field.

Now, we adapt given FS frame construction of the De-
Sitter spacetime to investigate the motion of the accelerated
charged particle within the context of general and special rel-
ativity in that space. This leads us to determine intrinsic ge-
ometric features of the trajectory of the moving charged par-
ticle in the electromagnetic field, ultimately. The first step in
that process is to observe the behavior of theFuv in the main
tetrad.

We firstly writeFuv in terms of its bases, which are the
class of antisymmetric tensors at each point of the timelike
curve.

C
γ

uv = TuEv

γ
−TvEu

γ
, γ = 1, 2, 3,

C
4

uv = E
1

uEv

2
−E

1

vEu

2
, (12)

C
5

uv = E
1

uEv

3
−E

1

vEu

3
,

C
6

uv = E
2

uEv

3
−E

2

vEu

3
.

Thus, we have

Fuv =
6∑

γ=1

bγC
γ

uv, (13)

wherebγ are some sufficiently smooth functions along the
worldline of the timelike curve. Using simple algebraic prop-
erties and FS frame construction given in Eqs. (4-6) we reach
following equalities.

Cuv
γ

C
γ

uv = −2, when γ = 1, 2, 3,

Cuv
γ

C
γ

uv = 2, when γ = 4, 5, 6, (14)

Cuv
γ

C
α

uv = 0, when γ 6= α.

Further, we are allowed to write

FuvFuv =
6∑

γ=1

bγCuv
γ

6∑
γ=1

bγC
γ

uv.

If we also use Eqs.(12, 14) , the first part of the Eq.(11) is
induced to

(
R2 − S2

)
=

(−b2
1 − b2

2 − b2
3 + b2

4 + b2
5 + b2

6

)
. (15)

With the aid of the Eq.(9) we can also define the dual of
each Cuv

γ=1,...,6
in the following manner.

∗Cuv
γ=1,...,6

=
1
2
σuvab Cab

γ=1,...,6
. (16)

Here we assume that the FS tetrad(Tγ ,E
γ

1
,Eγ

2
,Eγ

3
) is posi-

tively oriented when

σuvabTuEv

1
Ea

2
Eb

3
= 1. (17)

Hence, we obtain that

∗FuvFuv =
6∑

γ=1

bγ
∗Cuv

γ

6∑
γ=1

bγC
γ

uv. (18)

To expand the Eq.(18) we firsly need to give the following
equalities, which are obtained by Eqs.(16, 17).

∗Cuv
γ

C
γ

uv = 0, when γ = 1, ...6,

∗Cuv
1

C
6

uv = −∗Cuv
2

C
5

uv = ∗Cuv
3

C
4

uv = 2, (19)

∗Cuv
γ

C
α

uv = 0 for other cases.

Now, if we follow Eqs. (18, 19) , the second part of the
Eq. (11) is induced to

(S ·R) = b1b6 − b2b5 + b3b4. (20)

As a consequence, Eqs. (15,20) give the invariant of the elec-
tromagnetic field in terms of arbitrary functions defined along
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the worldline of the curve. To observe the behavior of the
Fuv along the timelike worldline we also need to compute

DFuv

ds
=

6∑
γ=1

D

ds
(bγC

γ

uv). (21)

By using Eqs. (6,12) differential properties of the tensor
Cuv

γ=1,...,6
is calculated as

D

ds
C
1

uv = e2C
2

uv − C
5

uv,

D

ds
C
2

uv = e1C
4

uv − C
6

uv − e2C
1

uv,

D

ds
C
3

uv = e1C
5

uv,
D

ds
C
4

uv = e1C
2

uv, (22)

D

ds
C
5

uv = e1C
3

uv + e2C
6

uv − C
1

uv,

D

ds
C
6

uv = −e2C
5

uv − C
2

uv.

Thus, the evolution ofFuv on the timelike worldline is stated
by using Eqs.(21, 22) as

DFuv

ds
=

(
Db1

ds
− b2e2 − b5

)
C
1

uv

+
(

Db2

ds
+ b1e2 + b4e1 − b6

)
C
2

uv

+
(

Db3

ds
+b5e1

)
C
3

uv+
(

Db4

ds
+b2e1

)
C
4

uv (23)

+
(

Db5

ds
− b1 + b3e1 − b6e2

)
C
5

uv

+
(

Db6

ds
− b2 + b5e2

)
C
6

uv.

4. Lorentz equation of homogeneous electro-
magnetic field in De-Sitter space

Lorentz equation is effectively used in an electromagnetic
field to govern the motion of a charged particle having a pos-
itive massm and chargeq. It is described by

DTγ

ds
= tF γαTα, where t =

q

mc2
. (24)

If Faraday electromagnetic tensor is constant and uniform,
we can investigate the relation between FS scalars and the in-
variants of the electromagnetic field. If we consider the FS
formalism given by the Eq. (6), then we can write the above
statement as

e1E
1

γ + E
3

γ = tF γαTα. (25)

If we also use the Eq. (13), we obtain that

e1E
1

γ + E
3

γ = t

6∑
u=1

buC
u

γαTα. (26)

By using the above equality and the Eq. (13), we have

b1 =
e1

t
, b2 = 0, b3 =

1
t
. (27)

By the assumption of constancy and uniformity of the Fara-
day tensor, we know that each statement in the parenthesis of
the Eq. (23), must be equal to zero. Using this fact together
with the equalities given by the Eq. (27), we find that

Db4

ds
= b5 = b6 = 0. (28)

We improve another formula to demonstrate the invariants
given from Eqs. (11,15,20), by using the FS scalars. If we
plug each component found in Eqs. (27,28), into Eqs. (15,20),
then we get that

(
R2 − S2

)
=b2

4 −
1
t2

(1 + e2
1), (29)

(S ·R) =
b4

t
, (30)

whereb4 is constant ande1 is the curvature of the worldline.
Corollary 1. The worldline of the moving charged par-

ticle in the homogeneous electromagnetic field is a circular
helix in De-Sitter spacetime.

Proof. From Eqs. (23,27,28) we have

De1

ds
=

De2

ds
= 0.

The rest is evident from the Lancret theorem [20].
Corollary 2. If each FS vector satisfies the Lorentz equa-

tion in the homogeneous electromagnetic field then the FS
scalars are written in terms ofFγα as follows.

e1 =± i(1 + t2(F 2)γαTγTα)
1
2 , (31)

e2 =± it((F 2)γαEγ
2

Eα
2

)
1
2 , (32)

wherei2 = −1.
Proof. We should first remind that for a given arbitrary

vectorAγ , if we defineBγ = (Fn)γαAα, then we have

BγBγ = (−1)n(F 2n)γαAγAα, (33)

where(Fn)γ
α = F γ

u Fu
v ...F v

α. By the assumption

e1E
1

γ + E
3

γ = tF γαTα, t =
q

mc2
.

If we square both sides of the above statement by using the
Eq. (33) ; then it leads to

e2
1 + 1 = −t2(F 2)γαTγTα.

This implies that

e2
1 = −1− t2(F 2)γαTγTα.
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Since Lorentz equation is assumed to satisfy each FS vector,
we are allowed to write

DE
2

γ

ds
= tF γαEα

2
.

Again using the Eq.(6) we observe that

−e2E
1

γ = tF γαEα
2

.

Squaring both sides of the statement we find that

e2
2 = −t2(F 2)γαEγ

2

Eα
2

.

Considering the similar argument it can also be obtained that

1 = t2(F 2)γαEγ
3

Eα
3

. (34)

Corollary 3. The invariant of the homogeneous electro-
magnetic field is defined by the antisymmetric Faraday tensor
and FS vectors as the following.

(
R2 − S2

)
= b2

4 − (F 2)γαEγ
3

Eα
3

(−t2(F 2)γαTγTα),

(S ·R) = ±b4((F 2)γαEγ
3

Eα
3

)
1
2 .

Proof. It is evident if we follow the Eqs. (29,30) first and
then the Eqs. (31,32,34) latter.

5. Conclusion

In the present paper, we introduce a geometric approach to
investigate the motion of a timelike relativistic charged parti-
cle subjected to a homogeneous electromagnetic field in De-
Sitter space. Aside from the geometric characterization of the
timelike wordline of the charged particle in De-Sitter space
we also correlate the intrinsic scalars of the worldline of the
charged particle and field invariants of the electromagnetic
field in De-Sitter space.

This study will also lead up to further research on the in-
vestigation of the dynamics of the moving charged particles
when they are experienced some well-known external forces
beside the electromagnetic fieldi.e. the frictional force, the
gravitational force, the normal force, and the resultant force
in De-Sitter space. Consequently, we aim to obtain more ap-
plicable and widely acceptable results to comprehend the ex-
act movement of the charged particle in a given homogeneous
electromagnetic field in De-Sitter space when the motion is
governed by the Lorentz equation.
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