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Weyl invariance in metric f(R) gravity
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We aim to derive the most generalf(R) gravity theory, including the matter, so that it be Weyl invariant. Making use of the mathematical
equivalence of these theories with an type of scalar-tensor theory (which includes a scalar degree of freedom,φ) and by imposing the Weyl
invariance for the pure gravity (under this label, we understand the part that does not involve fields of matter although it could include kinetic
terms linked toφ) as well as for the matter sector, we obtain the fundamental equation that restricts the form ofV

.
= Rφ − f(R) (and,

accordingly, off(R)) so that the resulting action to be Weyl invariant in the Jordan frame. We show that this action is not other than the
so-called gravity-dilaton action with one scalar field,Φ, which effective mass isR andΦ dependent. In the Einstein frame, the action becomes
the Einstein-Hilbert action with the Ricci scalar being constant due to that the effective mass of scalar field in this frame vanish. So, we
can assume that the Ricci scalar, in the Einstein frame, is the true Cosmological Constant. Therefore, is not preposterous to guess that, at
least mathematically, all Weyl invariant metricf(R) theory in the Jordan frame is equivalent, at classical level, to the Einstein gravity, in
the Einstein frame, with a constant Ricci scalar. At quantum level, as it is known, both theories are not equivalent due to the presence of
anomalies in one of the frames.
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1. Introduction

Thef(R) gravity [1,2] is a modification of the Einstein grav-
itational theory and it is essentially based on a generalization
of the Einstein-Hilbert action:

SEH ∼
∫

d4x
√−gR −→

∫
d4x

√−gf(R) (1)

wheref(R) is a function of the Ricci scalar curvatureR. Per-
haps the more knownf(R) theory is the model of Starobin-
sky wheref(R) = R + (a/m2)R2 [3]. The reasons for this
(and others) modification of the Einstein General Relativity
(GR) arise from diverse motivations and these are of different
nature: astrophysical, cosmological [4-6], coming from high-
energy physics, from the need to obtain a Quantum Gravity
Theory [7] and so on (see [8,9]) for instance).

It is well known that there are three versions off(R)
gravity, according to the variational principle used to derive
the field equations: themetric f(R) gravity [10] if the ac-
tion is extreme with respect to the variation of the metric; the
Palatini f(R) gravity [11] if the action varies with respect
to the metric and the connection, where both are considered
as independent variables; finallythe metric-affinef(R) grav-
ity [12] if the mechanism of Palatini is used but the action
of matter is considered dependent of connection. For the
Einstein-Hilbert action (f(R) = R)), the Palatini formula-
tion and the metric gravity formulation are equivalent but this
is not true for af(R) general theory.

Besides, both the Palatini action and the metric gravity
action, can be written in the so-called Jordan framei, in which
the scalar field is non-minimally coupled to the metric ten-
sor, or in the so-called Einstein frame, in which it is mini-
mally coupled to the metric tensor. The passage from one

frame to the other is given by a conformal transformation
gµν −→ ḡµν = f ′(R)gµν = φgµν where the prime denote
the derivative.

The issue of distinguishing if the Einstein frame and the
Jordan frame are not but two different representations of the
same physical theory or, contrary, they are two truly differ-
ent theories, still has not been resolved. According to some
authors, the Jordan frame is the physical frame [13]. For oth-
ers [14,10] it is the Einstein frame because of its resemblance
to General Relativity. There is also a third group integrated
by the authors who claim the physical equivalence of both
frames, at least at the classical level, since the conformal
transformations do not change the mass ratios of elementary
particles; therefore, those does not alter physics [15].

However, some authors claim a true physical difference
between both frames, [16-18]. At the quantum level, the is-
sue is still more complicated (see [19] for a very interesting
general discussion).

On the other hand, from its birth, the local scale (con-
formal) invariant theories [20,21] have been considered in
diverse contexts and to address different problems: cosmo-
logical [22-24] in the framework of the particle physics [25]
or in quantum gravity [26,27].

In this paper, we consider the Weyl invariance (under-
stood as a locally conformal symmetryii) of a generalf(R)
theory and we establish the shape that their action must to
have to be Weyl invariant. We show that this Weyl invariant
actionf(R), in the Jordan frame, is equivalent mathemati-
cally to the so-called gravity-dilaton action. Given that, as
it was said before, the passage from Jordan’s frame to Ein-
stein’s frame is made by means of a particular conformal
transformation in which a scalar field takes part, we ask our-
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selves if, for anyf(R) theory, it is possible to maintain the
Weyl invariance (and, consequently, the conformal invariant
because the Weyl invariance implies conformal invariance) in
both frames or, on the contrary, the passage from a frame to
another one implies to resign explicitly to her. We show that
the latter is what actually happens due that actionsf(R) Weyl
invariant in the Jordan frame are equivalent, in the Einstein
frame, to the Einstein-Hilbert action with the Ricci scalar be-
ing constant.

2. The metric f(R) gravity

Let us consider the covariant pure gravitational action, in the
Jordan frame, for the n-dimensionalf(R) gravity theories:

Sg =
1

2κ2

∫
dnx

√−gf(R) (2)

where κ2 = M
−(n−2)
P = 8πGn, being MP the n-

dimensional Planck mass (c = ~ = 1), Gn the n-dimensional
gravitational constant,g = det(gµν) andR the Ricci scalar:

=
1√−g

gµν∂λ(
√−gΓλ

µν)− ∂2ln
√−g − gµνΓλ

µαΓα
λν (3)

Obviously, for f(R) = R, the action (2) becomes the n-
dimensional Einstein-Hilbert action.

It is well known (see [28,10,29]) that a Legendre trans-
formation allows us to express the action (2) in another dy-
namically equivalent form in which the Lagrangian is linear
in the scalar curvature and where an auxiliary dimensionless
scalar degree of freedom (not matter field ),φ, is added:

φ(R) =
df(R)
dR

=⇒ df(R) = d (Rφ(R))− dV̂ (φ(R)) (4)

being:

R(φ) =
dV̂ (φ)

dφ
(5)

and where the conditionφ(R) 6= Constant, that is to say
(d2f(R)/dR2) 6= 0, is assumed. Also, as it is usual, and
due to diverse reasons (see [10], for example), we assume the
conditionφ > 0.

In fact, V̂ (φ) is the Legendre transform off(R). There-
fore the action (2) becomes:

Sg =
1

2κ2

∫
dnx

√−g
[
Rφ− V̂ (φ)

]
(6)

Fromφ we can define a scalar field (with[Φ] = Mn−2/2)
as:=

φ = (κΦ)2 V (Φ) =
1
κ2

V̂ (κ2Φ2) (7)

and, therefore, the action (6)(from now onf(R) = RΦ2 −
V (Φ)) is:

Sg =
1
2

∫
dnx

√−g
[
RΦ2 − V (Φ)

]
(8)

being:

Φ2 =
∂f(R)

∂R
V (Φ) = Φ2

(
R− f

f ′

)

R(Φ) =
1

2Φ
dV (Φ)

dΦ
(9)

The equivalent Lagrangian of the action (8) is named
Helmholtz Lagrangian by analogy with the classic mechanic.
We look for an action so that (8), and, accordingly the ac-
tion (2), becomes invariant under the conformal transforma-
tion:

gµν −→ g̃µν = e2σ(x)gµν

=⇒ g̃ = e2nσ(x)g =⇒ σ =
1
2n

log
g̃

g
(10)

The purpose is to determine the form thatV (Φ), and accord-
ingly f(R), must to have for to make it possible.

3. Weyl invariance

Under the conformal transformation (10), the connection and
the Ricci scalar do it as:

Γλ
µν −→ Γ̃λ

µν = Γλ
µν + δλ

µ∇νσ + δλ
ν∇µσ − gµν∇λσ (11)

Γ̃λ
µν −→ Γλ

µν = Γ̃λ
µν − δλ

µ∇νσ − δλ
ν∇µσ + g̃µν∇λσ (12)

and:

R −→ R̃ = e−2σ

[
R− 2(n− 1)∇2σ

− (n− 1)(n− 2)(∇σ)2
]

(13)

where the tilde refers to the metric̃gµν and we denote
∇2σ = gµν∇µ∇νσ ≡ σ2 and(∇σ)2 = gµν∇µσ∇νσ ≡ σ2

1 .
Therefore:

R̃ = e−2σ
[
R− (n− 1)

(
2σ2 + (n− 2)σ2

1

)]
(14)

or if n Â 2:

R̃ = e−2σ

[
R− 4(n− 1)

n− 2
e−

(n−2)σ
2 ∇2

(
e

(n−2)σ
2

)]
(15)

So, for the action (8) to be Weyl invariant,f(R) should be
transformed under (10) as:

f(R) −→f̃(R̃) =
(
R̃Φ̃2 − Ṽ (Φ̃)

)

= e−nσf(R) = e−nσ
[
RΦ2 − V (Φ)

]
(16)

In other words, under the Weyl transformation (10),f(R)
should be homogeneously transformed.

In a analogue manner, from the above equation and mak-
ing use of (9) and (15), we get the way such thatΦ andV (Φ)
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should be transformed in order to get one Weyl invariant ac-
tion:

Φ̃2 =
∂f̃(R̃)

∂R̃
= e−nσ ∂f(R)

∂R

∂R

∂R̃

= e−(n−2)σΦ2 =⇒ Φ̃ = e−
(n−2)σ

2 Φ (17)

and

Ṽ (Φ̃) = e−nσV (Φ)− 4(n− 1)
n− 2

× e−
(3n−2)σ

2 Φ2∇2
(
e

(n−2)σ
2

)
(18)

This equation provides restrictions for the shape of the scalar
functionV (Φ). After of some algebra (see the appendix),(18)
can be rewritten in the form:

Ṽ (Φ̃)− 4(n− 1)
n− 2

Φ̃∇̃2Φ̃

= e−nσ

[
V (Φ)− 4(n− 1)

n− 2
Φ∇2Φ

]
(19)

being∇̃2Φ̃ = g̃µν(∂µ∂νΦ̃− Γ̃λ
µν∂λΦ̃)

The Eq. (19) claims thatV (Φ)−(4(n− 1)/n− 2)Φ∇2Φ
should be some functionχ(Φ) of such way that, under a Weyl
transformation, it is transformed as:

χ(Φ)
Weyl−→ χ̃(Φ̃) = e−nσχ(Φ) (20)

That is to say:

RΦ2 − f(R)− 4(n− 1)
n− 2

Φ∇2Φ = χ(Φ) (21)

should be transformed homogeneously.

4. Solutions

Taking into account dimensional arguments forχ(Φ)
([χ(Φ)] = Mn), the most general polynomial expression
which verifies (20) is:

χ(Φ) =
n∑

k=0

CkmkΦ
2(n−k)

n−2 (22)

beingCk a dimensionless constant (Ck → C̃k = Ck) and
mk → m̃k = e−kσmk

If we defineξ
.= (4(n− 1)/n− 2)) and by using of the

identity:
∫

dnx
√−gΦ∇2Φ = −

∫
dnx

√−g∂µΦ∂µΦ (23)

then, the most general Weyl invariant action becomes:

Sg =
1
2

∫
dnx

√−g
[
ξ∂µΦ∂µΦ + RΦ2 − χ(Φ)

]
(24)

For n = 4, by considering only the terms that are invariant
underΦ → −Φ, and so (24) is finally:

Sg =
∫

d4x
√−g

[
1
2
∂µΦ∂µΦ

+
1
12

RΦ2 − α

2
m2Φ2 − ω

4!
Φ4 − βm4

]
(25)

whereα
.= (C2/6), β

.= (C4/2) andω
.= (C0/3)

This action (except factors) was already considered
in [32]. This action is the mathematical solution of (20).
However, in order for make the whole theory self-consistent
(that is to say, so that pure gravity plus the matter to be Weyl
invariant), not all the terms are physically acceptable. If the
Weyl invariance condition for matter is assumed also, as it
will be seen below, the field equation ofΦ along with the
constraint of tracelessness of the energy-momentum tensor,
imposed by the Weyl invariance, strongly reduces the num-
ber of allowed terms. In particular, the mass terms are re-
moved. The same happens if there is no present matter (in
the vacuum).

5. Fields equations

Let us consider the matter action:

Smatt =
∫

dnx
√−gLmatt(ψi, gµν) (26)

beingψi the matter fields. The matter action is not generi-
cally Weyl invariant. Nevertheless we will assume as a work-
ing hypothesis that the matter (exotica or not) action of our
model of the universe effectively is it. It is to say, it is invari-
ant under the transformations:

gµν −→ g̃µν = e2σ(x)gµν

ψi −→ ψ̃i = e−λiσ(x)ψi (27)

From the actionSg +Smatt and by using (24),(26) and the
identity

∇2Φ2 = 2(∂λΦ∂λΦ + Φ∇2Φ) (28)

it is straightforward to derive the field equation forgµν :
(

Rµν − 1
2
gµνR

)
Φ2 + gµν

(
2Φ∇2Φ− 2

n− 2
∂%Φ∂%Φ

+
1
2
χ(Φ)

)
+

2n

(n− 2)
∂µΦ∂νΦ

− 2Φ∇µ∇νΦ = T matt
µν (29)

whereχ(Φ) is given by (22) and being

T matt
µν = − 2√−g

δSmatt

δgµν

Weyl−→ T̃ matt
µν = e−(n−2)σT matt

µν .

By taking the trace in (29), one gets:

−RΦ2 + ξΦ∇2Φ +
n

n− 2
χ(Φ) =

2
n− 2

T matt (30)
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On the other hand, by varying the action (24) with respect to
Φ, we obtain the field equation :

(
ξ∇2 −R +

1
2Φ

χ′(Φ)
)

Φ = 0 (31)

where the prime denote the derivative w.r.t.Φ.
Putting together (30) and (31), the following equation is

derived:

(2− n)Φχ′(Φ) + 2nχ(Φ) = 4T matt (32)

It is well known (see [31], for example) that one im-
portant features of the Weyl invariance of any actionS is
that the trace of their associated energy-momentum tensor
Tµν = (2/

√−g)(δS/δgµν) is identically zero, on the equa-
tions of motions (on shell). It is to say,gµνTµν = 0. Indeed
because of the assumed invariance ofSmatt under the trans-
formation (27):

δW Smatt = −2σgµν δSmatt

δgµν
− λiσ

δSmatt

δψi
ψi = 0 (33)

For any matter field (it is to say, for all i) its field equa-
tion is (δSmatt/δψi) = 0, and thenT matt

µν gµν = 0. Obviously
for the case in which there are not matter (the vacuum ) also
T matt = 0.

In any case, wheneverT matt = 0, the solution of (32)
is χ(Φ) ∼ Φ(2n/n−2). In this case, the scalar field equa-
tion, (31), is simply the trace of the gravitational field equa-
tion (29), as it is well known.

Therefore, the most general Weyl invariant pure gravity
action,(24), physically plausible, namely compatible with the
Weyl invariance ofSmatt, finally, is given by the expression:

Sg =
1
2

∫
dnx

√−g
[
ξ∂µΦ∂µΦ + RΦ2 − CnΦ

2n
n−2

]
(34)

This action describes the so-called dilaton gravity and, was
already considered in [27,19,23] and, forn = 4, derived
in [21].

The (31) is the one of an scalar field:
(∇2 + m2

eff

)
Φ = 0

Weyl−→

× e−
n+2

2 σ
(
∇̃2 + m̃2

eff

)
Φ̃ = 0 (35)

with the effective mass squared:

m2
eff(Φ) =

1
ξ

(
n

n− 2
CnΦ

4
n−2

−R

)
n=4−→ 1

6
(2C4Φ2 −R) (36)

6. Einstein frame

The action (34), in which the scalar field is non-minimally
coupled to the metric, is named Jordan frame action. By car-
rying out the following transformation:

gµν → ḡµν = (κΦ)
4

n−2 gµν (37)

this action turns into other one in which the scalar field
appears minimally coupled to the metric. Making use of
(37,15), we arrive at the Ricci scalar in Einstein frame :

R̄ = (κΦ)−
4

n−2
[
R− ξΦ−1∇2Φ

]
(38)

The resultant action in the so-called Einstein frame (the bar
refers to Einstein frame) is finally:

Sḡ =
1

2κ2

∫
dnx

√−ḡ

[
R̄− Cn

κ
4

n−2

]
(39)

where the identity (23) was used. As it is seen from (39),
the scalar field does not appear in the action when this is ex-
pressed in the Einstein frame. What happens truly is that the
transformation (17) is verified and then the fieldΦ is fixed:

Φ −→ Φ̄ = (κΦ)−1Φ =
1
κ

(40)

Given that (35) should be verify too,m2
eff(Φ̄) = 0 and then

R̄ =
n

n− 2
Cn

κ
4

n−2
(41)

Therefore, the action in Einstein frame finally becomes :

Sḡ =
1

nκ2

∫
dnx

√−ḡR̄ (42)

beingR̄ constant.
Making use of the (39) and (41), (29) becomes:

R̄µν =
R̄

n
ḡµν (43)

This is the field equation of a maximally symmetric space-
time of constant curvature:

K =
R̄

n(n− 1)
=

1
κ2

Cn

(n− 2)(n− 1)
. (44)

It to say,R̄ seems the true cosmological constant.

7. Conclusions

We have considered the behavior of metricf(R) gravity
(with matter added) under Weyl transformations. Taking into
account the well known property that states the mathemati-
cal equivalence of this theory with a scalar-tensor theory, we
studied the behavior under the Weyl transformation of the ac-
tion ∫

dnx
√−g[RΦ2 − V (Φ)]

and we derived the necessary condition for the action to be
Weyl invariant. The most general Weyl invariant action, in
the Jordan frame, includes both the degrees of freedom of
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the gravitational field as well as the scalar field whose ef-
fective mass (by this we understand the parameter that is in-
volved in the Klein-Gordon equation) consists of two com-
ponents: a term of self-interaction of the scalar field and the
scalar curvature of the space-time. The Weyl invariant ac-
tion for the metricf(R) theory we obtained is the so-called
dilaton gravity action. When we carry out the transformation
ḡµν ∼ Φ2gµν , going from Jordan frame to Einstein frame,
the scalar field becomes massless and thenR̄ turns out to be
constant and it arise as the true cosmological constant. In
this way, the symmetry is broken and the action, in Einstein
frame, is the Einstein- Hilbert action with a pure cosmologi-
cal term. All this gives us reasons to assume that, despite how
surprising it may seem, every invariant Weyl metricf(R)
gravity theory in Jordan frame is mathematically equivalent
to a theory of type Einstein-Hilbert, in the Einstein frame,
with only one cosmological term where the Ricci scalar is
the cosmological constant.

If the physical equivalence is given too, it is something
that should be studied in depth.

Appendix

A.

Starting from (18), we can see that the Weyl invariance con-
dition is given by (19).

The (18) can be expressed as:

Ṽ (Φ̃) = e−nσ
[
V (Φ)− 4(n− 1)

n− 2
Φ̃Φ∇2

(
ΦΦ̃−1

) ]
(A.1)

∇2
(
ΦΦ̃−1

)
= Φ̃−1∇2Φ− 2Φ̃−2∇Φ∇Φ̃

+ 2Φ̃−3Φ∇Φ̃∇Φ̃− Φ̃−2Φ∇2Φ̃ (A.2)

and:

ΦΦ̃∇2
(
ΦΦ̃−1

)
= Φ∇2Φ + 2Φ̃−1Φ∇Φ̃

×
(
Φ̃−1Φ∇Φ̃−∇Φ

)
− Φ̃−1Φ2∇2Φ̃ (A.3)

Φ̃−1Φ∇Φ̃ = −n− 2
2

Φ∇σ +∇Φ (A.4)

and therefore:

2Φ̃−1Φ∇Φ̃
(
Φ̃−1Φ∇Φ̃−∇Φ

)
=

(n− 2)2

2

× (∇σ)2Φ2 − (n− 2)Φ∇σ∇Φ (A.5)

On the other hand:

−Φ̃−1Φ2∇2Φ̃ = −enσΦ̃∇̃2Φ̃

− (n− 2)2

2
(∇σ)2Φ2 + (n− 2)Φ∇σ∇Φ (A.6)

Finally:

ΦΦ̃∇2
(
ΦΦ̃−1

)
= Φ∇2Φ− enσΦ̃∇̃2Φ̃ (A.7)

Therefore (29) become:

Ṽ (Φ̃) = e−nσ

[
V (Φ)− 4(n− 1)

n− 2

×
(
Φ∇2Φ− enσΦ̃∇̃2Φ̃

) ]
(A.8)

which is no other than (19).

i. Here,the word “frame” denotes a choice of dynamical variables,
not a choice of a reference frame in space-time.

ii. On the difference between Weyl and conformal invariance, see
[31].
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