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The classical central field is analyzed within the Hammond theory of radiation reaction force. For the attractive Coulomb field, the trajectories
deduced from Ford and Hammond equations are numerically obtained. Ford and Hammond equations are rewritten by using a recen
correction to the non-relativistic equations for charged point particles which include a radiation reaction force term. Also, for the attractive
Coulomb case, the trajectories are numerically obtained for both corrected equations. A comparison between all these trajectories is made. |
is proved that Hammond equation satisfies the constraint proposed by Dirac of getting an equation of motion which should make the electron
in the hydrogen atom spiralling inwards and ultimately falling into the nucleus. A further analysis of the applicability of such a theory

is described for experiments particularly in Plasma Physics and some comments are made for the generalization of Hammond equation tc
General Relativity.
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1. Introduction character of the equation. Second, a Landau-Lifshitz-like
equation [23] in General Relativity has been proposed sup-
The first non-relativistic attempts to find the self-effects of porting the validity of the Landau-Lifshitz equation in Spe-
radiation of the charged particle on its motion were madecial Relativity. Third, considering the point nature of a charge
in the 19th century by Lorentz [1,2] and few years lateras a limit, which permits avoiding the black hole behavior
by Planck [3-5] and by Abraham [6,7]. A relativistic pro- of a point particle [24], a structure must be assigned to the
posal was made by Dirac [8] in 1938 such that its non-charge. In this order of ideas, considering a charged particle
relativistic limit coincides with the Abraham-Lorentz equa- with structure, Ford and O’Connell [25-27] by using quantum
tion. Nevertheless, the Lorentz-Dirac equation [8] pre-arguments and a Langevin equation, deduced an equation of
dicts some unphysical results such as the runaway solunotion for the non-relativistic case, known as the Ford equa-
tions and the preaccelerations. As a consequence, matipn which can be physically generalized to Special Relativ-
different proposals appeared in literature trying to avoidity giving the Eliezer equation [27]. Fourth, within the Shen
such inconsistencies [9,10]. The most famous approachesne [28] where a classical trajectory can be defined for a
were made by Eliezer [11], Wheeler and Feynman [12,13]charged particle and quantum effects may be neglected, al-
Caldirola [14], Mo and Papas [15], Landau and Lifshitz [16] though the Landau-Lifshitz equation and the Eliezer equation
and Yaghjian [17]. However, in the past few years, theare mathematical different, the solutions for both equations
Landau-Lifshitz equation [16] and the Eliezer equation [11]are similar and the differences cannot be detected [29-31].
have been considered as the best equations for describing tté course, the non-relativistic Landau-Lifshitz equation and
motion of a charged point particle within Classical Electro-the non-relativistic Eliezer equation (Ford equation) [29] are
dynamics. This is based on many distinct reasons. Firsgquivalent. Fifth, and perhaps the most important argument
the mathematical analysis made by Spohn [18,19] shows thad support the Landau-Lifshitz equation has been done by
in a perturbation theory the Landau-Lifshitz equation is ob-KrivitskiT et al [32] by showing that the radiation reaction
tained if the Lorentz-Dirac equation is restricted to its criticalterm represents an average radiation reaction force in Quan-
surface. Therefore, the approximations made obtaining th&um Electrodynamics.
Lorentz-Dirac equation are of the same order of magnitude The Landau-Lifshitz and the Eliezer equations predict the
as those in the deduction of the the Landau-Lifshitz equationvanishing of the damping force when a constant electric field
Moreover, Rohrlich [20-22] supports the Landau-Lifshitz is applied to a charged patrticle [33]; that is, the motion of
equation by showing that the physical inconveniences of théhe particle corresponds to the Lorentz equation of motion
Lorentz-Dirac equation disappear when the Landau-Lifshitan such a case. This apparent paradox is explained by other
equation is considered due to the second order differentiaduthors by noticing that the radiation exits at the infinite;
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that is, the energy radiated to infinite is taken from the atfield. If such a result is proved, the Hammond theory will be
tached fields (The Scott term or the acceleration energy) anstrongly supported as long as the degree of energy loss is ac-
consequently even if the total radiation reaction term in theceptable and comparable to the Larmor formula. It has to be
equation of motion vanishes, the radiation to infinite (the ir-noted that Hammond already gave a simple example showing
reversible emission of radiation) exists [34-37]. Moreover,the falling of a charge in a special central field; for example
by using similar arguments, DeWitt and Brehme explain thisn Hammond’s paper in 2010 [43], it is stated that “To show
phenomenon in his generalization to General Relativity ofthis makes sense, we consider yet another simple problem:
the damping term [38,39]. This explanation is not acceptech charged mass rotating in a circle of radig@sconfined by
by many authors [40,37] and they have reached the conclwa circular collar that provides the inward normal force. We
sion that the rest mass of the charge is not conserved. Mor@ssume it has an initial velocity, and initial angular veloc-
over, Sorkin [41] says that this phenomenon raises a paradaty w. Once again, to order,, the analysis is elementary
which we will call the constant electric field paradox. Re-and we find thatf = mr,w?R andv = vy — m7,w>Rt.
cently, Hammond [42-47] has proposed a new method whicfThis yields for example, the change in kinetic enerfg¥
avoids this paradox and practically coincides with the soluper periodT is AEy /T = m7,w?R* (in Hammond equa-
tions of the Landau-Lifshitz and Eliezer equations in manytion f is accompanied by minus sign). The right hand side is
cases. Indeed, if we make a comparison of the solutions aéxactly what the Larmor formula predicts”. However, the in-
both, Landau-Lifshitz equation and Hammond equation, foward force proportional ta/r? has not been analyzed and it
the constant magnetic field and low electromagnetic pulses necessary to prove the falling of the charge into the center
we will notice that within the approximations made for the of the central field for such physical important case.
levels of energy where the damping force is important, the re-  In the analysis of the non-relativistic motion of a charged
sults are similar. However, Hammond claims that for high in-particle including the radiation reaction damping force it is
tense electromagnetic pulses the differences between the mgecessary to consider a term due to a relativistic correction
tions predicted by the Eliezer equation (denoted sometimes aghich is larger than the radiation reaction force in a central
the relativistic Ford equation), the Landau-Lifshitz equationfield [48]. Therefore, in Sec. 2, the solution of the attractive
and the Hammond equation are important. Such differenceSoulomb central field will be briefly shown for the modified
appear within the Shen’s zone [28] where quantum effects arBord equation [48]. The falling of an electron to the nucleus
not important and an equation of motion is meaningful for awill be shown. In Sec. 3, the Hammond theory of radiation
physical description. Moreover, Hammond argues that theeaction force will be explained and a short description of its
results obtained by using Ford or Landau-Lifshitz equationssuccess will be exposed. In Sec. 4, by applying the Ham-
do not accomplish a balance of energy [46]. In counterpartmond model, the attractive Coulomb central field case for a
these last equations are founded in different expressions fefon relativistic motion will be solved to see if the falling of
the radiated energy at the infinite; that is: the Larmor formulahe particle is predicted. The term due to a relativistic correc-
does not represent the radiation power at the infinite in thesgon will be considered. In Sec. 5, in concluding remarks, the
theories [47,35]. All these points of view make the study ofapplicability of Hammond proposal is described for experi-
Hammond proposal more interesting. ments particularly in Plasma Physics and its generalization
On the other hand, if we study the work done by Dirac [8],to General Relativity is analyzed.
we will notice the necessity of considering a plus sign in the
term of the damping force corresponding to the irreversible
emission of radiation in order the total damping term is or-2. Corrected Ford Equation for a Central
thogonal to thet—velocity and also that the motion of the Field
electron in the hydrogen atom should make a spiralling in-
wards and ultimately falling into the nucleus (page 155 afterin the last decade of the 20th century, by using quantum argu-
Eq. (24) and page 157 after Eq. (30) of Dirac’s paper [8]).ments and a Langevin equation, Ford and O’Connell [25-27]
The interesting fact consists in noticing thatin Hammond thededuced a non-relativistic equation representing the non-
ory the damping force contains a contrary sign. Thereforetelativistic limit of the Eliezer equation [29]. Without con-
an analysis of the central field, in particular for the attractivesidering the paradox of the vanishing of the radiation reac-
Coulomb case, is necessary in order to certify that in such sition force in the case of a constant electric force, this equa-
uation the Hammond equation predicts a falling of the election does not present incovenient physical solutions. In this
tron into the nucleus of an hydrogen atom with a rate of demodel, it has to be remembered that the Larmor formula is
cay of energy consistent with the Larmor formula. Althoughsubstituted by another expression for the radiation power at
as mentioned by Hammond [45-47], the damping force is imthe infinite [27]. Nevertheless, this equation neglects some
portant for high energy and relativistic situations in particularterms that come from Special Relativity which are bigger
for high intensity pulses, we will analyze the Coulomb casethan the radiation reaction terms. Before analyzing the cor-
from a non-relativistic point of view since the purpose of therections that have to be made to the Ford equation [48], let us
article just consists of noticing that Hammond equation pre-describe the method that can be used to solve such an equa-
dicts the falling of the charge into the center of the centrattion in the attractive Coulomb case.
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2.1. Ford equation for an attractive Coulomb electric r
field ‘

300 -
The Ford equation is written as

md = F + 7,F, (1)

where the dot " represents the derivative with respect to the 200}
time, 7, = 2¢2/3mc? is the characteristic time of the charge
g (in cgs units) and is the applied force. Let us consider sol]
a negative point charge-¢) which is subject to the electric
Coulomb forceF = gV ¢ with the potentiakp = ¢/r due
to a positive electric charge(the attractive case). The Ford
equation can be written as

50+

d [ . 0¢ 22 0o
Bl —rg—| == i 2
dt {mr qu@r} r3 +q6r7 @ i i ; i ;
20rm 407 60 80w 100 7
beingf = m# x ¥ the angular momentum. Definiflg = FIGURE 1. In this figure, we show vs 6 by using Ford equation
—(qp/m) = K/mr (K < 0 for the attractive case with for a charge in an attractive Coulomb field without considering the
K = —kq?; this notation is used to follow Rajeev’s arti- relativistic correction.

cle [49]), U, = dU/0r andl = 7 x & = {/m. We arrive
to

y

I =-ul and U = —%, A3)
T mr
and consequently,
d 2
%(7" +7,U,) = i U,. (4)
Definingy as )
y =1, (5)

and after some algebra [49], one obtains

By dy 2K qu

T

=0, (6) ~150

o FIGURE 2. The charge trajectory by using Ford equation for an
whered represents the polar angle and the orbit is given by attractive Coulomb field without considering the relativistic cor-

rection.
1 1 dyy
— = 7i 7)
r(@) Kr, df
2.2. Modified Ford equation for the attractive Coulomb
Taking the natural units for this equatiorjg( = 7, = 1), electric field
we arrive to . . L
Without considering the constant electric field paradox
3y dy 2 d\/y [37,40-42,46] explained in the introduction, as we mentioned

1
a3 Tan T 7 0 and 0) " o (8)  before for many authors [25,26,18-22,35] the Ford equation
represents the best choice to describe the motion of a charged

This equation can be numerica”y solved and gives a VerPartide in the non-relativistic case. However, as we will see
congruent result about the falling of the charge into the cenbelow, in the Ford equation, a term-k*q*/c*mr?®) due to
ter of the Coulomb electric field (see Rajeev [49] and Ares de relativistic correction must be added since its magnitude is
Pargaet al[48], see Figs. (1) and (2)). It must be noted thatlarger than the radiation reaction damping for@eﬁ(). Let
there is no precession in the charge trajectory because the mas make a summary of why this term must be kept. First,
jor axis of the decaying elliptical orbit does not change withinconsider just the Lorentz force for the Coulomb field, the rel-
its orbital plane. ativistic equation for the component in polar coordinates is

Rev. Mex. Fis64(2018) 187-196



190

G. ARES DE PARGA, S. DONNGUEZ-HERNANDEZ, AND E. SALINAS-HERNANDEZ

We arrive to

l d [ dr 12 k2q* 1 k¢’E 1

L e @y i — (9 - 2-K?%/? K

r2 df <mr2 d9> mr3  mc?r3 me? r?’ © 7+ 27'QKL3 = 73/6 —- (16)

r T
wherel = mr2?df/dr with 7 the proper time and’ repre- _
sents the total energy of the particle. The térfg* /mc28  Therefore, by putting
can be neglected in the non-relativistic case leading to closed _p (17)
orbits. However, if a radiation reaction term is adde,dﬁo y==r
to the Lorentz equation in the non relativistic case, the term )
(k2q* /mc2r®) must be kept because it is bigger than the radi-Ve obtain
ation reaction term. Indeed, the modified Ford equation turns
out to be Py dy 1 dy  2krg 0 (18)
) . 12q dec  do 2y db NG
mr=——T— —5—=T
Tk , meer . ) with
q .~ q- i
T g 3T T Ta g, s 99. (10) 1 LM (19)
r(0) Kry df

This is because if we compare the radiation reaction force

with the k2¢*/mc?r® term, we notice that the last one is
larger; that is: (taking: = 1 in cgs units)

qu27'.
2 . .

3 ToMCT 2r
L= F— =<1,
q q 3c

c2mr3
or (12)
quzé . .
r2 Tyme?r  2rf

= 5 =— <1

q q 3c
c2mr3

Applying the same numerical method and equal natural units
as in the case of the usual Ford equation, we can see the dif-
ference between the Rajeev result [49] and the result obtained
from the modified Ford equation in Figs. (1), (2), (3) and (4).
An interesting aspect should be highlighted. If we solve the
equation of motion without considering the radiation reac-
tion term but keeping the ternk{q*/mc*r3), a precession
appears in the charge trajectory since the major axis of the
elliptical orbit precesses within its orbital plane. Such pre-
cession causes non-closed orbits similar to rosettes as it is
shown in Figs. (5) and (6). However, when the radiation re-
action term is taken into account, the precession is reduced
as can be seen in Figs. (3) and (4). Nevertheless, a slight

Therefore, by looking to the central field case in Special Relchange in the major axis can be observed in the trajectory

ativity, Eq. (9), itis obvious that an effective angular momen-(see Fig. (4)).
tum due to a relativistic correction has to be incorporated in
the equation of motion in the non-relativistic case [48]. This

means that even if in the Ford equation the terms proportional
to v?/c? are neglected, not all the others terms which are
proportional tol/c? have to be neglected. Indeed, in order

to heuristically recover the precession coming from Special . |
Relativity, an effective force,

kq® 200
7"2

k2q4 R
230"
cemr

Fofp = — (12)
must be considered in the equation of motion as is describec ™[
in Eq. (10) and it corresponds to intercharigdoy L?; that
is:

100 H

d .. 2

pn [F+ 71U = o U,, (13) .
where X2

2 _ g2 - ) ) ) )
L*=r- 2’ (14) 20 201 607 8o ¢

being, FIGURE 3. In this figure, we show- vs 6 by using Ford equa-

Tq K tion for a charge in an attractive Coulomb field by considering the

I = —7Url7 and U, = — s (15)  relativistic correction (the modified Ford equation).
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FIGURE 4. The charge trajectory by using Ford equation for an
attractive Coulomb field by considering the relativistic correction
(the modified Ford equation).

FIGURE 6. The charge trajectory by using Lorentz equation for an
A ‘ attractive Coulomb field by considering the relativistic correction.
The non-closed orbit effect is shown.

2001 where ¢ represents a potential which has to be deduced in

50 each case. It has to be noted that due to the forift‘of

100 | o, =0, (22)
50 Consequently, the radiation reaction force is orthogona,to
‘ ‘ ‘ ‘ ‘ o and Eq. (20) satisfies the balance of energy. Moreover, in or-
107 207 307 407 507 o

der to make this system compatible with Physics, a constraint

FIGURE 5. In this figure, we show vs @ by using Lorentz equa- is required; that is 0o 7
tion for a charge in an attractive Coulomb field by considering the = ZP’ (23)

relativistic correction. with P = —71,a,a*. Equations (20), (21) and (23) represent

a complete system. Of course, this is not a covariant state-

ment but it holds for a particular frame where we measure the
3. Hammond Relativistic Proposal field. This method has been used to solve the magnetic and

electric constant field cases, pulses etc [42-47]. The results
In order to avoid the constant electric field paradox [37,40-27€ quite physical and they support the Hammond proposal
42,33] and as Hammond mentioned [46] “to obviate all of@S an mtere_stmg theory to substitute all the otht_er gquanons
the problems outlined above by assuming energy is conservé’&h'Ch try to include the self-effects due to the radiation reac-
without assuming some of it in wondrously stored in an im-tion force of the charge. It has to be noted that the equation
measurable field”, based on the fact that radiation represenfi€s not possess any physical inconveniences. In the non-
an irreversible process, Hammond [42-47] proposed that afflativistic case, the equation may be written as
equation of motio_n for a c_harged particle which includes a mi = Fog — f, (24)
self-force due to its radiation itself cannot be expressed in
an usual form; that is: the method to obtain the self-force iSNhereFeﬁ represents the external force plus the relativistic
described as follows: consider an equation of motion with acorrection that has to be deduced and added for each external

radiation reaction forcg#* such that force as in the case of the central force in Eq. (12) ﬁmkie
. radiation reaction force. The constraint is
v Lppv, -
ma cF vo = %, (20) f-7=1,ma* (25)
with Therefore, by using Egs. (24) and (25), a complete descrip-
p_ o VMdo tion is obtained which permits to propose the value of the
=gt — —=—, (21) . . -
c? dr radiation reaction forc¢ in each case.
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4. Non Relativistic Modified Hammond Pro- t
posal for the Attractive Coulomb Case ‘

300 +

In the central field case, the radiation reaction force can be

proposed as 250l

(26)

- v
f= Toma2—2.
v

. . . o e . 200 H
With this expression of the radiation reaction force, we are
assuring the concordance with the Larmor formula, we arrive
to 150 H
k> . K% g 7

T — T,ma”— . 27)

mr = —
02

2 szr:sr 100 4
It has to be noticed that the force is antiparallel to the motion
of the charge as Hammond requires. Since we are intereste so+
in describing the motion of the charge and due to the fact that
T, IS very small, for obtaining a numerical solution we can ‘ : i ‘ ‘
substitute the acceleration in Eq. (26) by W A0m 60 80r 100w
9 FIGURE 7. In this figure, we show vs 6 by using the Hammond
ki. (28) proposal for a charge in an attractive Coulomb field without con-
mr? sidering the relativistic correction.

> 0

Then, we have

mr = ——— 29
r2 czmrs m rt v? (29)
. 100,
Now, knowing that
P =7+ 60, (30)
we obtain x
: :
. LQZA K2q* E/€2q4 (rr+r90) a1
T T 2med T m T (2, e\ (31)
(7“ + r26 )
Therefore, e
m (r — T92> = 7]{77(]2 — 7]4:2(]4 iy
2 2 3
r comr FIGURE 8. The charge trajectory by using the Hammond proposal
To k2q* (7) for an attractive Coulomb field without considering the relativistic
m 4 (7;2 N r292) J correction.

To k2q4 <T0)
m (7;2 T 7429'2) '

m (2f 0+ ré) _ (32) 5. Comparison Between Equations

The objective of this section consists of showing the differ-
These previous equations are very difficult to analyticallyences between the Ford equation and the Hammond equation
solve and a numerical method must be used to make a conmn the case of an attractive Coulomb field by considering the
parison with the modified Ford equation. When the veloc-relativistic correction or not. Let us first consider the Ford
ity vanishes, the radiation reaction force diverges and thequation and the Hammond equation without the relativis-
equation of motion for this case may present some difficultic case. At first glance, in Figs. (1), (2), (7) and (8), it is
ties. Accordingly, we will just analyze cases where the ve-not trivial to notice the differences. However, if we make a
locity does not vanish. Figures (7) and (8) describe the sosuperposition of Figs. (1) and (7), we can notice that a dif-
lution of the Hammond proposal for the attractive Coulombference exists in Fig. (11). Indeed, a rapid analysis shows
case without considering the precession correction due to thbat the Hammond orbit falls into the center of the attractive
term (:2q* /mc?r3). Figures (9) and (10) are the solution of Coulomb center slower than the Ford orbit.
the modified Hammond proposal for the attractive Coulomb  On the other hand, looking at Fig. (12), which describes
case, Eq. (32). the orbits predicted by Ford equation and Hammond equation
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250 +

250+
200 H

200
150 H

150 H

100 H

|
501 100 H |

I I I I I 2] sol | M
207 40 60 80 1007 : ! v

FIGURE 9. In this figure, we show vs 6 by using the Hammond
proposal for a charge in an attractive Coulomb field considering the i e = e
relativistic correction (the modified Hammond equation). -

FIGURE 11. Superposition of Figs. (1) and (7); the blue and red
y lines correspond to Ford and Hammond lines, respectively.

FIGURE 10. The charge trajectory by using the Hammond proposal
for an attractive Coulomb field and by considering the relativistic
correction (the modified Hammond equation).

by using a superposition and by making a zoom, we can ob- \\
serve that as in the previous figure, the Hammond orbit falls @
into the center slower but it can be noticed that the eccentric-
ity of the Hammond orbit decreases faster than the Ford orbitFicURE 12. Superposition and zoom of Figs. (2) and (8); the blue
This means that Hammond predicts a falling to the center buand red orbits correspond to the Ford and Hammond orbits, respec-
with a bigger tendency to convert into a circle with respect totively.
the Ford equation.
When we analyze the modified Ford orbit and the modi-that should cause the electron in the hydrogen atom to spiral
fied Hammond orbit we can look at Figs. (13) and (14). Al-inward and finally to fall into the nucleus.
though in both orbits a precession appears, the differences Finally, if a comparison between the solutions of the mod-
are similar to those obtained in the usual equations (not modfied Hammond and the modified Ford equations is made,
ified). the similarities are obvious. Therefore, it can be concluded
Notwithstanding some differences can be detected bethat the Hammond proposal is a consistent model which can
tween the solutions of the equations the differences are neglbe considered as an acceptable theory to describe the ra-
gible. It has to be remembered that one of the purposes of thiation reaction force. The differences between the Ham-
paper was to demonstrate that the Hammond equation satisrond equation with the Landau-Lifshitz and the Eliezer-
fies the Dirac constraint of obtaining an equation of motion Ford-O’Connell equations are fundamentally two: the elec-
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: tion fall into the center of the attractive Coulomb field (see
| Figs. (8) and (10)). Then, the objective of the present work
was achieved.
i1) In the solution of the modified Hammond equation
20 a precession is observed in the decaying orbit as in the so-
lution of the modified Ford equation. Although there is a
slight difference between the results obtained from Ford and
Hammond equations since in the case of Hammond the de-
cay is slightly smaller and the eccentricity of the orbits tends
1k more rapidly to zero, the differences are negligible. More-
over, Quantum mechanics is predominant for energies that
100l L], generate orbits and the above study may loss sense [28]. In
L, ; fact, we are only analyzing the feasibility of Hammond the-
MM (i, ory
T IR L] 3JM)",\J,,\T‘\J‘)\'N i iii) In fact, the differences between the equations can
V be detected in very special physical conditions. Actually,
‘ ‘ ; ; % Di Piazzaet al [50] described the experiments that have
2z A0 e0 sor been performed to explore the classical regime concerning
FIGURE 13. Superposition of Figs. (3) and (9); the blue and red the interaction of free electrons with intense laser beams.
lines correspond to the modified Ford and modified HammondHammond has also proposed an experiment [46] which in-
lines, respectively. cludes the use of recently reached ultrahigh laser intensities
(1022 Wem=2 [51]), in order to distinguish the differences
y between the predicted results by the Landau-Lifshitz equa-
] ) ) N tion, by the Eliezer-Ford-O’Connell equation and by his own
proposal. In fact in the case of an applied electromagnetic
pulse, unlike the others equations, the solution of the Ham-
mond equation gives a gain of kinetic energy. In the seventies
of the past century, Shen [28] described a zone in a diagram
fields vs energy, where quantum effects are negligible for a
constant magnetic field. For an electric field, following Shen,
the classical radiation theory is an adequate approximation of
the quantum radiation theory when

200

|
U

’}/TO%EO < 1. (33)

If laser intensityl is around ofl022 Wcm~2, the correspond-
ing average electric energy is

\/ 8l
E, = Vérlje ~ 1.5 x 10® statvoltcnt®  (34)
w

Consequently, the kinetic energy of the electrons must be

FIGURE 14. Superposition and zoom Figs. (4) and (10); the blue such that

8
and red orbits correspond to the modified Ford and modified Ham- 7 < 10% (35)
mond orbits, respectively. It can be accomplished for relativistic velocities but not for

. . tthe ultrarelativistic case. The Hammond experiment must be
tric constant paradox in the Hammond proposal does no .
constrained to Eq. (35).

appear since the radiation reaction force does not van- . . .
ish [42-47]; for high intensity pulses, the gain of energy by a, Z.v) Other expen_mgnts havg been proposed, for mstanc_e,
' ' the influence of radiation reaction can be analyzed on multi-

charge is larger in the Hammond theory [46]. photon Thomson scattering by an electron colliding head-on
with a strong laser beam [52]. Di Pizza et al [52] affirmed

6. Concluding Remarks “Radiation Reaction can be experimentally investigated with
currently available laser systems and the underlying widely
Some concluding remarks will be presented: discussed theoretical equations become testable for the first

i) It was demonstrated that the obtained orbits fromtime”. Although this experiment was designed to test the
the Hammond equations with or without relativistic correc-validity of Landau-Lifshitz equation, it can be improved to
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compare the results with the Hammond equation. The Ham- i) In General Relativity, a consistent theory where the

mond equation could be analyzed in other experiments as theork done by the self-force matches the energy radiated away

ones proposed by Harvest al [53] (phase factor), by Zid- by the particle implies the existence of a tail term which in-

hov [54] et al (the radiation reaction damping may restrain cludes all the history of the particle [38,23]. A General Rela-

the maximal energy of relativistic electrons in ultraintense-tivity theory of the motion of the charges within the philoso-

laser-produced plasmas), by Tambusial [55] (on radia-  phy of Hammond has not been achieved and it represents an

tion pressure acceleration of plasma slabs) or by Schéeége important goal to be attained in order to close the Hammond

al [56] (Laser ponderomotive force at superhigh intensitiesproposal. Moreover, a low energy model has been developed

overdense plasmas). by DeWitt and DeWitt [58] which can be used as a model for
v) In Plasma Physics by linearizing the relativistic Vlasov generating a Hammond equation in General Relativity at low

equation and including the Landau-Lifshitz radiation reac-energies.

tion force, Hakim and Mangeney [57] succeeded in obtain-

ing the dispersion relations which include terms proportional

to 7,. A strong damping for high frequencies,(v2/2) ap- Acknowledgments
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