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Optimal doping for d-wave superconducting ground
states within the generalized Hubbard model
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A single-band generalized Hubbard model that describes two-dimensional superconductivity with d-wave symmetry on a square lattice
within the BCS formalism is considered. For a set of Hamiltonian parameters and varying the ratio between nearest-neighbor and next-
nearest neighbor hoppings(t′/t); an optimal electron density (nop) can be found for eacht′/t value, where the temperature is maximum
(Tc-max). After calculating the superconducting gap at T=0 K and the corresponding ground state energy (Eg) for all the carrier concentrations,
a ground state energy minimum (Eg-min) is found close to half filling. SinceTc-max is the highest critical temperature for a given ratiot′/t,
the minimum of all theTc-max values defines a supreme for this set of temperatures, named asTc-max-sup. The corresponding optimal doping
for Tc-max-sup will be callednop-sup, and the results show thatEg-min is located atnop-sup. The Fermi surface (FS) is analyzed for carrier
concentrations close tonop-supand it is suggested that the location for over (OD) and under (UD) doping regimes (nOD > nop-sup > nUD)
could define a pseudogap zone for high critical temperature superconductors.
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1. Introduction

Anisotropic superconductivity has been subject of study
since the discovery of high critical temperature supercon-
ductors (HTSC) in 1986 by Bednorz and Müller. d-wave
symmetry appears in phase sensitive experiments [1] for sev-
eral hole- and electron-doped cuprates. Three-band Hubbard
models have been proposed to describe the dynamics of the
carriers on the CuO2 planes [2] and the electronic states close
to the Fermi energy (EF ) can be reasonably well described
by a single-band tight-binding model on a square lattice with
second neighbor hoppings [3]. In this work, a generalized
Hubbard model that describes d-wave superconductivity on a
square lattice within the BCS formalism is considered [4,5].
This model contains nearest-neighbor (∆t) and next-nearest-
neighbor (∆t3) correlated hoppings, in addition to on-site
(U ) and inter-site (V ) coulombic repulsions. The mean-field
electronic dispersion relation (εMF ) in the studied square
lattice includes mean-field single-particle hoppings that are
functions of the electron density (n). To clarify the impor-
tance of these mean-field hoppings, a systematic study of the
superconducting critical temperature (Tc) versusn was per-
formed for a set of Hamiltonian parameters with fixed∆t
and∆t3. It is important to mention thatU does not affect the
shape ofεMF , since it only modifies the electron self-energy
(EMF ) and shifts the superconducting chemical potential (µ)
without changing the superconducting critical temperature.
ThereforeU can be taken equal to zero. On the other hand,

as shown below, to obtain a solution for the superconducting
gap equation [Eq. (12)], (V −4∆t3) should to be negative and
therefore the conditionV < 4∆t3 must be satisfied. In order
to keep a minimum set of parameters but keeping the d-wave
symmetry that arises from∆t3, V will be set to zero too. In
this work, we determine the optimal electron density (nop)
and the corresponding ground state energy for each value of
the ratio between next- and next-nearest-neighbor hoppings
(t′/t). Since a supreme is the least upper bound of a set of
high bound values, we expect that the supreme ofTc−max

corresponds to that with minimal energy at T=0 K. This sce-
nario has been verified numerically for two different sets of
Hamiltonian parameters that can be applied to superconduct-
ing systems.

2. The model

We consider a single-band Hubbard model in a square lat-
tice with first- (∆t) and second-neighbor (∆t3) correlated
hoppings, in addition to on site (U ) and first-neighbor (V )
Coulombic repulsions. The corresponding Hamiltonian (Ĥ)
is [6]:

Ĥ = Ht + Ht′ + HU + HV + H∆t + H∆t3 (1)

with

Ht = t
∑

<i,j>,σ

c†iσcjσ (2)
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Ht′ = t′
∑

¿i,jÀ,σ

c†iσcjσ (3)

HU = U
∑

i

ni↑ni↓ (4)

HV =
V

2

∑

<i,j>

ninj (5)

H∆t = ∆t
∑

<i,j>,σ

c†iσcjσ(ni,−σ + nj,−σ) (6)

H∆t3 = ∆t3
∑

c†iσcjσnl (7)

whereni = ni,↑ + ni,↓, ni,σ = c†i,σci,σ, andc†i,σ(ci,σ), is
the creation (annihilation) operator with spinσ =↓ or ↑ at
site i. < i, j > and¿ i, j À denote nearest-neighbour and
next-nearest neighbour sites, respectively.

The expressions for model parameters, in terms of the
Wannier functions[ϕ(r − Ri)], centred at the lattice siteRi,
are given in the Table I.

After a Fourier transformationc†k,σ = 1/Ns

∑
j exp(ik ·

Rj)c
†
j,σ, Eq. (1) becomes:

Ĥ =
∑

k,σ

ε(k)c†k,σck,σ

+
1

NS

∑

k,k′,q,σ

Vk,k’,q c†k+q,↑c
†
−k+q,↓c−k′+q,↓ck′+q,↑ (8)

whereε(k) is the dispersion relation andNs is the total num-
ber of lattice sites. The interaction potential (Vk,k′,q) consid-
ers only Cooper pairs with antiparallel spins and it can be
written as:

Vk,k′,q = U + V β(k − k′) + ∆t[β(k + q) + β(−k + q)

+ β(k′ + q) + β(−k′ + q)] + ∆t3[γ(k + q, k′ + q)

+ γ(−k + q,−k′ + q)] (9)

with

β(k) = 2[cos(kxa) + cos(kya)] (10)

γ(k · k′)=4 cos(kxa) cos(k′ya)+4 cos(kxa) cos(kya) (11)

wherea is the lattice parameter. The chemical potential (µ)
and superconducting gap [∆(k)] can be obtained from the
mean-field BCS coupled equations for d-wave superconduc-
tors [7]:

1 = − (V − 4∆t3)a2

4π2

∫∫

1Bz

{
[cos(kxa− cos(kya)]2

2E(k)

× tanh
(

E(k)
2kBT

)}
dkxdky (12)

n− 1 = − a2

4π2

∫∫

1Bz

ε(k)− µ

E(k)

× tanh
(

E(k)
2kBT

)
dkxdky (13)

where 1BZ refers to the first Brillouin zone, defined as[ −π
a , π

a

] ⊗ [ −π
a , π

a

]
the quasi-particle energy [E(k)] is

given by:

E(k) =
√

(εMF − µ)2 + ∆2(k) (14)

and the mean field dispersion relation is

εMF (k) = EMF + tMF [cos(kxa) + cos(kya)]

+ 4t′MF [cos(kxa) cos(kya)] (15)

with

EMF =
(

U

2
+ 4V

)
n (16)

t′MF = t′ + 2n∆t3 (17)

tMF = t + n∆t (18)

wheren is the electron density.
The d-wave symmetry superconducting gap is given

by [7]:

∆(k) = ∆d[cos(kxa)− cos(kya)] (19)

where∆d is the gap amplitude. The critical temperature can
be determined from Eq. (12) by considering that∆d(T =
Tc) = 0. On the other hand, the ground state energy (Eg) per
site can be obtained from the following equation [8]:

Eg =
1

Ns

∑

k

[εMF (k)− E(k)] +
∆2

d

4∆t3 − V

+ (n− 1)µ−
(

U

4
+ 2V

)
n2. (20)

3. Results

We fixed∆t3 = 0.05 eV as in Ref. 4, and then we consider
two cases:∆t = 0.1 eV, which givesTc-max-sup ≈ 40 K;
and∆t = 0.5 eV which givesTc-max-sup≈ 100 K. The first
case can be applied to La2−xSrxCuO4 (LSCO) [9], while the
second one to Bi2Sr2Cam−1 Cum O4+2m+δ (BSCO), where
m is the number of superconductors planes,m = 2,3 for
Tc-max = 85, 110 K, respectively [10]. Figure 1(a) shows the
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FIGURE 1. (a) The maximum critical temperature (Tc-max) ver-
sus the optimal electronic density (nop) and the ratio−t′/t for
U = V = 0, ∆t = 0.1 eV, and∆t3 = 0.05 eV. (b) Tc-max ver-
sus chemical potential (µop) at the optimal electron density for the
same parameters as in (a).

maximum critical temperature (Tc−max) versus the elec-
tronic density (n) and the ratio−t′/t for ∆t = 0.1 eV.
Around half filling, atnop-sup= 0.975 and(−t′)/t = −0.07,
the supreme value ofTc is Tc-max-sup = 37 K. Notice that
for nop close to the band filling extremes, 0 and 2, a higher
Tc−max is found. Likewise, Fig. 1(b) showsTc-maxversus the
superconducting chemical potential (µop) at the optimal dop-
ing or optimal electronic density (nop) for the same parame-
ters as in Fig. 1(a). Moreover, Fig. 2 shows the Fermi surface
(FS) for the model parameters leading toTc-max-sup= 37 K.
Notice that the FS is electron-like and similar to the FS of a
square lattice with first-neighbor hopping only at half-filling.

The superconducting properties, such as the supercon-
ducting gap amplitude (∆d), the Fermi energy (EF ), i.e., the
chemical potential atT = 0 K, and the condensation energy
(Econd), for electron densities close tonop-sup = 0.975, are
summarized in Table II. Observe thatEcond attains a mini-
mum value atnop-sup = 0.975. Figure 3 shows the ground
state energy versus botht′/t and the optimal electronic den-
sity (nop). Notice the match of the minimum energyEg-min

FIGURE 2. Fermi surface for the same parameters as in Fig. 1 and
−t′/t = −0.07, nop−sup = 0.975 andEF−sup = −0.1101 eV.

FIGURE 3. Ground state energy (Eg) versus−t′/t andnop for
∆t = 0.1 eV and∆t3 = 0.05 eV.

at nop-sup = 0.975 for -t′/t = −0.07. The location of the
minimum energy close to the half filled band agrees with
the experimental results reported in Ref. 11. Moreover, it
is worth mentioning that a ratio oft′/t = 0.1 has been esti-
mated for the LSCO systems [12] which is very close to the
value of 0.07 obtained at the optimal doping.

Figure 3 shows the ground state energy versus botht′/t
and the optimal electronic density (nop). Notice the match of
the minimum energyEg-min at nop-sup) = 0.975 for −t′/t =
−0.07. The location of the minimum energy close to the half
filled band agrees with the experimental results reported in
Ref. 11. Moreover, it is worth mentioning that a ratio of
t′/t = 0.1 has been estimated for the LSCO systems [12]
which is very close to the value of 0.07 obtained at the opti-
mal doping.
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FIGURE 4. a) Maximun critical temperature (Tc) versus the opi-
mal electron density (n) and−t′/t for U = V = 0, ∆t = 0.5|t|,
∆t3 = 0.05|t|. b) Tc−max versust′/t and the optimal chemical
potential (µop), at the optimal electron density for the same set of
parameters as in Fig. 4(a).

We also analyzed the case with∆t = 0.5 eV which leads
to a Tc-max-supclose to 100 K. Figure 4(a) showsTc versus
t′/t andn. Notice that the minimum ofTc-max corresponds to
−t′/t = 0.06 andnop = 0.805, henceTc-max-sup= 99.8 K.
The projection on the planenop − t′/t (solid circles) shows
an inflection point fornop close to half filling. Figure 4(b)

FIGURE 5. Fermi surface for−t′/t = 0.06, ∆t = 0.5 eV, and
nop−sup = 0.805.

depictsTc-max versus botht′/t and the optimal chemical po-
tential (µop) where an almost linear dependence ofµop with
respect tot′/t ∈ [0.4,−0.2] is observed. Moreover, for
carrier densities close to full band filling, the band width is
reduced to [-2.0,0.6] eV and the critical temperature is en-
hanced. Moreover, it has been verified that for−t′/t →
−0.45, there is no Fermi surface. In order to understand
this, we recall that the mean-field single-electron band width
is proportional to the single-electron mean-field hopping pa-
rameters (tMF , t′MF ) given by Eqs. (17) and (18). For cer-
tain values of electron density (n) and correlated hoppings
(∆t,∆t3), the effective or mean-field hopping parameters are
almost zero and also the corresponding effective band width.
When this occurs, the superconducting chemical potential
µop lies outside the single-electron band, and then there is
no single-electron energy that satisfiesεMF (k) = µop. For
the parameters used in this work, this band-width shrinking
occurs for−t′/t ∈ [−0.2,−0.45], where we also found that
µop is the same for differentt′/t ratios. This regime could be
related to the pseudogap one, which is characterized by the
disappearance of the Fermi surface and a suppression of the
excited states above the superconducting critical temperature
Tc and below a characteristic temperatureT ∗, for a given in-

TABLE I. Expressions for the Hubbard model parameters.

Single-particle parameters

ti,j =
∫

d3rϕ∗(r − Rj)

∣∣∣∣− ~2∇2

2m
+ u(r)

∣∣∣∣ϕ(r − Rj); u(r) is the lattice periodic potential

t = ti,j with < i, j >

t′ = ti,j with ¿ i, j À
Electron-electron interaction parameters

Ukl
ij =

∫
d3rd3r′ϕ ∗ (r − Rj)ϕ ∗ (r ′ − Rj)v(r − r ′)ϕ(r − Rk)ϕ(r ′ − Rl);

v(r − r ′) is the interaction potential between two electrons in the lattice

U = U ii
ii ; ∆t = U ij

ii with < i, j >; ∆t3 = U lj
il with < i, l >, < j, l > and¿ i, j À
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TABLE II. Superconducting physical properties close toTc-max-supfor ∆t = 0.1 eV and∆t3 = 0.05 eV.

−t′/t n Tc(K) Eg (eV) ∆d (eV) Econd (eV) EF (eV)

-0.02 0.933750 37.37 -1.4567774678 0.0029534054 0.0000076362 -0.2935801622

-0.07 0.975 37.00 -1.4612415658 0.0029192932 0.0000074563 -0.1101008940

-0.10 1.0 37.13 -1.4590325950 0.0031720718 0.0000075504 0.0000008715

TABLE III. Superconducting physical properties close toTc-max-supfor ∆t = 0.5 eV and∆t3 = 0.05 eV.

−t′/t nop Tc-max (K) Eg (eV) ∆d (eV) Econd (eV) EF (eV)

0.04 0.825 100.27 -0.8952952 0.00869208 0.000075024 -0.487767611

0.06 0.805 99.8 -0.8963881 0.00863401 0.000070351 -0.555325242

0.07 0.790 101.27 -0.8973170 0.00865858 0.000073722 -0.592148720

terval of electron density [11]. The origin of this pseudo-
gap phase is not yet understood and it could be due to the
formation of another electronic phase competing with the su-
perconducting one.

FIGURE 6. (a). Ground state (Eg) as a function of−t′/t and op-
timal electron density (nop). (b). Ground state energy (Eg) as a
function of electron density (n) for −t′/t = 0.06. (c). Con-
densation energy (Econ) as a function of electron density (n) for
−t′/t = 0.06 with ∆t = 0.5 eV (squares), and−t′/t = −0.07
with ∆t = 0.1 eV (circles).

Figure 5 shows the FS for−t′/t = 0.06, nop-sup= 0.805,
and∆t = 0.5 eV. Notice that the FS is hole-like in contrast
with that shown in Fig. 2, corresponding to−t′/t = 0.06,
nop-sup= 0.975 and∆t = 0.1 eV, which is electron-like.

In contrast with previous studies where the first-neighbor
correlated hopping (∆t) only leads tos∗-wave superconduc-
tivity [13], in our case, d-wave superconductivity is driven by
the second-neighbor correlated hopping (∆t3) and the value
of t′/t strongly affects the superconducting properties. More-
over, the more appropriatet′/t ratio will be that which mini-
mizes the ground state energy for a given set of other model
parameters.

Figure 6(a) shows the ground state energy (Eg) versus
botht′/t andnop. Likewise, Fig. 6(b) showsEg versusn for
−t′/t = 0.06. Notice the linear dependence ofEg(n) sat-
isfying the conditionEg−UD > Eg−OP > Eg−OD, where
UD, OP and OD denotes underdoped, optimal doped and
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FIGURE 7. The single excitation energy gap (∆0) as a function of
polar angleϕ = tan−1(ky/kx) for ∆t = 0.1 eV (light gray) and
∆t = 0.5 eV (dark gray).

overdoped regimes, respectively. This inequality indicates
that the underdoped regime is not the most stable, since its
energy is higher than the optimal doped one. Moreover, if
t′/t is fixed, the largest condensation energy (Econ), defined
as the difference between the ground state energiesEg at
T = Tc and T=0 K, is achieved atnop, in agreement with
experimental results [14]. Figure 6(c) showsEcon(n) for
both cases,−t′/t = 0.06 with ∆t = 0.5 eV (squares), and
−t′/t = −0.07 with ∆t = 0.1 eV (circles).

In practice, as occurs in LSCO and BSCO systems, the
electronic dopingn can be modified by atomic substitution,
which in turn changes the value oft′/t due to the variations in
atomic sizes and the corresponding modification of the lattice
parameter. It is important to mention that, for d-wave super-
conductors,U only shifts the mean-field self-energy,EMF

(Eq. (16)) whereas a positiveV could affect the supercon-
ducting state by diminishing the effect of∆t3. In fact, the
latter interaction parameter is the more important one for d-
wave superconductivity, although all of them are present in
transition metals with narrow bands [15].

On the other hand, the superconducting properties ob-
tained for ∆t = 0.5 eV and ∆t3 = 0.05 eV are sum-
marized in Table III. Observe that the minimum energy,
Eg-min = −0.89731704 eV, occurs atnop = 0.790 with
Tc-max = 101.27 K, i.e., as one could expect, the maxi-
mumTc is attained for the most stable superconducting sys-
tem. It is important to mention that the chemical potential
(µ) is a function of temperature, therefore, for a fixed set
of model parameters, they are somewhat different atT = 0
K and T = Tc. For this case,∆t = 0.5 eV, which leads
to a largerTc, this difference is also larger and then there
is a slight discrepancy between the location ofEg-min and
Tc-max-sup= 99.8 K.

Figure 7 shows the single-excitation energy gap (∆0),
defined as the minimum value ofE(k) along theϕ =
tan−1(ky/kx) direction, for the parameter values where the
supreme value ofTc is reached with∆t = 0.1 eV (light
gray line) and∆t = 0.5 eV (dark gray line). For the lat-

ter case, notice the sharp feature at the antinodal points0◦,
90◦, etc., or at the corresponding points (π, 0),(0, π), etc., of
the first Brillouin zone which could be detected by ARPES
technique [16].

4. Discussion

A discussion has already been done along the paper, how-
ever, it is important to emphasize that it is possible to define
a supreme value for the set of maximum critical temperatures
which occurs at the minimum of the ground state energy. The
results presented in this work give an alternative way to look
for the appropriate set of Hamiltonian parameters to fit the
experimental data by studying the supreme value ofTc-max as
a function oft′/t. From this point of view, the mean field
treatment can be considered as a first good approximation to
describe the superconductivity for a great variety of super-
conductors reported in the literature.

5. Conclusions

In summary, we have studied the d-wave superconducting
ground state as a function of the ratiot′/t within the gener-
alized Hubbard model, where a second neighbor correlated-
hopping term is included. Within the BCS formalism, the su-
perconducting properties are calculated by solving two cou-
pled integral equations (12) and (13), where the integrals in-
volved can be efficiently calculated by isolating the region
around the Fermi surface. The ground state energy (Eg) was
obtained for all the optimal electron concentrations whereTc

is maximum, for both∆t = 0.1 eV and∆t = 0.5 eV, with
∆t3 = 0.05 eV. For the second case, the critical temperature
is considerably enhanced and there is a doping regime where
the single-electron band width is reduced and the supercon-
ducting chemical potential lies out of this band. In this case,
the Fermi surface disappears, opening the question about the
pseudogap regime experimentally found for superconductors
with carrier concentrations close to half-filling. It is sug-
gested that this pseudogap could be found fornop > nop-sup.
It is worth mentioning that the difference of 0.4 eV between
the two values of∆t studied, leads to a critical temperature
enhancement of 60 K for d-wave superconductors, even if
the d-wave superconductivity is originated from the∆t3 in-
teraction. This effect is lower than that found fors∗-wave
superconductors, where only∆t is considered [13]. The re-
sults reported in this work suggest a possible semi-analytical
approach to Eqs. (12) and (13), where the length and shape
of the FS should be considered. Since the computing time
needed to obtainnop-sup is large, it is necessary a comple-
mentary numerical method to fit the set of Hamiltonian pa-
rameters with a real superconductor system, and this will be
the subject of future works. Finally, references [4,5] consider
other approaches to fit the model parameters from experimen-
tal results, but now it is also suggested to consider that super-
conductivity occurs at some optimal doping with maximum
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critical temperature and minimum ground state energy within
the parameters space.
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