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Optimal doping for d-wave superconducting ground
states within the generalized Hubbard model
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A single-band generalized Hubbard model that describes two-dimensional superconductivity with d-wave symmetry on a square lattice
within the BCS formalism is considered. For a set of Hamiltonian parameters and varying the ratio between nearest-neighbor and next-
nearest neighbor hoppingg /t); an optimal electron density:§,) can be found for eacH /¢ value, where the temperature is maximum
(Te-max). After calculating the superconducting gap at T=0 K and the corresponding ground state &h@ifgy &ll the carrier concentrations,

a ground state energy minimuniidmin) is found close to half filling. Sinc&t.maxis the highest critical temperature for a given ratig,

the minimum of all thel;.max values defines a supreme for this set of temperatures, nan®dwassup The corresponding optimal doping

for Te-max-sup Will be called nop.sup @nd the results show thdy.min is located atigpsyp The Fermi surface (FS) is analyzed for carrier
concentrations close top-supand it is suggested that the location for over (OD) and under (UD) doping regitags & nop-sup > nup)

could define a pseudogap zone for high critical temperature superconductors.

Keywords: Theories and models of superconducting state; pairing symmetries (other than s-wave); pseudogap regime.

PACS: 74.20.-z; 74.20.Rp; 74.72.Kf

1. Introduction as shown below, to obtain a solution for the superconducting
gap equation [Eq. (12)]{—4At3) should to be negative and
therefore the conditioly < 4At3 must be satisfied. In order

Amsottrﬁ plzlsupercon?u;tnﬁty _k;asl lt)een Su?JeCt of StUdyto keep a minimum set of parameters but keeping the d-wave
since the discovery of Tigh critical temperature Suloercor]'symmetry that arises fromts, V will be set to zero too. In

ductors (HTSC) in 1986 by Bednorz andiller. d-wave this work, we determine the optimal electron density,,|

symmetry appears in phase sensitive experiments [1] for sey; d the corresponding ground state energy for each value of

eral hole- and electron-doped cuprates. Three-band Hubba[#e ratio between next- and next-nearest-neighbor hoppings

models have been proposed to describe the dynamics of tf(g/t). Since a supreme is the least upper bound of a set of
carriers on the Cu@planes [2] and the electronic states closehigh bound values, we expect that the suprem@,of

to the.Ferml energyEp)_ can be reasonably well despnbed corresponds to that with minimal energy at T=0 K. This sce-
by a single-band tight-binding model on a square lattice Wltal

. . X . ario has been verified numerically for two different sets of
second neighbor hopplng_s [3]. In this work, a gen_er_allze amiltonian parameters that can be applied to superconduct-
Hubbard model that describes d-wave superconductivity on ﬁ‘ng systems.
square lattice within the BCS formalism is considered [4,5].

This model contains nearest-neighbart) and next-nearest-
neighbor (\¢;) correlated hoppings, in addition to on-site 2. The model

U) and inter-site {) coulombic repulsions. The mean-field . : :
) 0 P We consider a single-band Hubbard model in a square lat-

electronic dispersion relatioref;r) in the studied square L .
lattice includes mean-field single-particle hoppings that an%ce V_V'th f'TSt' (At) and secopd-nelghbqﬂ(tg) _correlated
oppings, in addition to on sitdJ{) and first-neighbor ()

functions of the electron density.). To clarify the impor- lombi Isi Th ding Hamiltonia
tance of these mean-field hoppings, a systematic study of th((j:‘Ou ombic repulsions. The corresponding Hamiltonia) (

superconducting critical temperaturE.) versusn was per- IS [6]:
formed for a set of Hamiltonian parameters with fixad H=H,+ Hy + Hy + Hy + Hay + Hay, (1)
andAts. Itis important to mention thdl does not affectthe

shape ot ), , since it only modifies the electron self-energy with

(EMF) and shifts the superconductin_g che_rr_lical potential ( H, =1 Z c,fgcjg )
without changing the superconducting critical temperature.

<i,j>,0
ThereforeU can be taken equal to zero. On the other hand,
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Hy=t > i ®3)
<Li,j>,0 L V 4At3 //{ cos(kza — cos(k a)l?
Hy = UzniTnil (4) )
E(k)
14
<i,j>
M= A Y et € "T1=ia //
it 1Bz
Hap, = At Z Cjacjanl ) x tanh (i(k%) dhadky 13)
B

where 1BZ refers to the first Brillouin zone, defined as
[ ==, 2 | ® [ =&, % ] the quasi-particle energy [E(K)] is

_ _ T ;
wheren, = n; 1 +n; |, Niy = € oCior andcw(ci,g), is given by:

the creation (annihilation) operator with spin=] or 1 at
sitei. < i,j > and< i, j > denote nearest-neighbour and E(K) = +/(z 3 3
’ ) o , = - + A2(k 14
next-nearest neighbour sites, respectively. (k) = Verrr — ) (k) (14)
The expressions for model parameters, in terms of th&nd the mean field dispersion relation is
Wannier functiongeo(r — R;)], centred at the lattice sitg;, enr(K) = Enir + tarrlcos(kea) + cos(kya)]

are given in the Table I.
+ 4th g lcos(kya) cos(kya)] (15)

After a Fourier transformanoaL o =1/Ns>_, exp(ik -

R]) o Ed. (1) becomes: with
U
. Epmr = 7+ 4V | n (16)
H= Z‘g(k)cl}gck,a
k.o thrp =t +2nAts (17)
1 —
N Y Vkkathiq g ckralckrar (8) tur =1t +nAt (18)
k,k’,q,0

wheren is the electron density.
The d-wave symmetry superconducting gap is given
wherez (k) is the dispersion relation an, is the total num- by [7]:
ber of lattice sites. The interaction potenti& ¢ 4) consid-
ers only Cooper pairs with antiparallel spins and it can be A(k) = Ag[cos(kza) — cos(kya)] (19)

written as: whereA is the gap amplitude. The critical temperature can

be determined from Eq. (12) by considering tiaf(7" =
Vo o= U+ VB(k — K + Atl3(k K T.) = 0. On the other hand, the ground state enefgy) per
ok VA ) F Atk a)+ A=k +a) site can be obtained from the following equation [8]:
+ 8K +a) + B(=K' +a)] + Ats[y(k + . k" +q)

1 A2
(k4 g, K+ q) (©) Ba =, 2lenr() ~ BO)+ gty
with +(n—1Dp- (Z - 2V> n?. (20)
B(k) = 2[cos(kya) + cos(kya)] (10) 3. Results

(K - K')=4 cos(k,a) cos(k, a)+4 cos(kya) cos(kya) (11) We fixedAts = 0.05 eV as in Ref. 4, and then we consider
) two cases:At = 0.1 eV, which givesT¢ maxsup = 40 K;
andAt = 0.5 eV which givesIc max.sup~ 100 K. The first
whereq is the lattice parameter. The chemical potentigl ( case can be applied to 4 a,Sr, CuO, (LSCO) [9], while the
and superconducting gag\[k)] can be obtained from the second one to BB Ca,,—1 Cu,, Os12/m+s5 (BSCO), where
mean-field BCS coupled equations for d-wave superconduan is the number of superconductors planes,= 2,3 for
tors [7]: Te-max = 85, 110 K, respectively [10]. Figure 1(a) shows the
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FIGURE 2. Fermi surface for the same parameters as in Fig. 1 and
100 ] —t'/t = —0.07, Nop—sup = 0.975 and Ep_ sy, = —0.1101 eV.
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FIGURE 1. (a) The maximum critical temperatur@i(may) ver-
sus the optimal electronic density.4,) and the ratio—t'/t for
U=V =0,At = 0.1eV, andAt; = 0.05 eV. (b) Tt-max ver-
sus chemical potentialp) at the optimal electron density for the
same parameters as in (a).

maximum critical temperatureT}_,,..) versus the elec-
tronic density ) and the ratio—t'/¢ for At = 0.1 eV.

Around half filling, atnopsup=0.975 and(—t')/t = =0.07,  Eigyre 3. Ground state energy,) versus—' /¢ andno, for
the supreme value df;, is Tcmaxsup = 37 K. Notice that

L : At =0.1eVandAtz = 0.05eV.
for nep close to the band filling extremes, 0 and 2, a higher

T.—maz is found. Likewise, Fig. 1(b) Show&.maxversusthe  at ngp.syp = 0.975 for -t'/t = —0.07. The location of the
superconducting chemical potentiahg) at the optimal dop- minimum energy close to the half filled band agrees with
ing or optimal electronic density:(,) for the same parame- the experimental results reported in Ref. 11. Moreover, it
ters as in Fig. 1(a). Moreover, Fig. 2 shows the Fermi surfacés worth mentioning that a ratio @f /¢t = 0.1 has been esti-
(FS) for the model parameters leadingfigmax-sup= 37 K. mated for the LSCO systems [12] which is very close to the
Notice that the FS is electron-like and similar to the FS of avalue of 0.07 obtained at the optimal doping.
square lattice with first-neighbor hopping only at half-filling. Figure 3 shows the ground state energy versus Hgth
The superconducting properties, such as the supercond the optimal electronic densityd,). Notice the match of
ducting gap amplitude,), the Fermi energyKr), i.e, the  the minimum energysy.min at nep.syy = 0.975 for —t'/t =
chemical potential af’ = 0 K, and the condensation energy —0.07. The location of the minimum energy close to the half
(Econd), for electron densities close tay,p.sup = 0.975, are  filled band agrees with the experimental results reported in
summarized in Table Il. Observe that,nq attains a mini- Ref. 11. Moreover, it is worth mentioning that a ratio of
mum value atop-sup = 0.975. Figure 3 shows the ground t'/t = 0.1 has been estimated for the LSCO systems [12]

state energy versus bottyt and the optimal electronic den- which is very close to the value of 0.07 obtained at the opti-
sity (nop). Notice the match of the minimum energy.-min mal doping.
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FIGURE 4. a) Maximun critical temperaturel}) versus the opi-
mal electron density{) and—t'/t for U = V = 0, At = 0.5,
Ats = 0.05|t|. b) To—mae versust’/t and the optimal chemical
potential {u,,), at the optimal electron density for the same set of
parameters as in Fig. 4(a).

We also analyzed the case witit = 0.5 eV which leads
t0 a Temax-supClose to 100 K. Figure 4(a) shovis. versus
t'/t andn. Notice that the minimum dft_ax corresponds to
—t'/t = 0.06 andn,, = 0.805, hencelc.maxsup= 99.8 K.
The projection on the plane,, — ¢’ /¢ (solid circles) shows
an inflection point forn,,, close to half filling. Figure 4(b)
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FIGURE 5. Fermi surface for-t'/t = 0.06, At
Nop—sup = 0.805.

0.5 eV, and

depictsTc.max Versus botht’ /t and the optimal chemical po-
tential (uop) Where an almost linear dependenceugf with
respect tot'/t € [0.4,—0.2] is observed. Moreover, for
carrier densities close to full band filling, the band width is
reduced to [-2.0,0.6] eV and the critical temperature is en-
hanced. Moreover, it has been verified that fet' /t —
—0.45, there is no Fermi surface. In order to understand
this, we recall that the mean-field single-electron band width
is proportional to the single-electron mean-field hopping pa-
rameters iy, , ), ) given by Egs. (17) and (18). For cer-
tain values of electron density: and correlated hoppings
(At, At3), the effective or mean-field hopping parameters are
almost zero and also the corresponding effective band width.
When this occurs, the superconducting chemical potential
op lies outside the single-electron band, and then there is
no single-electron energy that satisfiegr (k) = pop. FoOr

the parameters used in this work, this band-width shrinking
occurs for—t'/t € [—0.2, —0.45], where we also found that
Lop is the same for differentt /¢ ratios. This regime could be
related to the pseudogap one, which is characterized by the
disappearance of the Fermi surface and a suppression of the
excited states above the superconducting critical temperature
T. and below a characteristic temperatiite for a given in-

TABLE |. Expressions for the Hubbard model parameters.

Single-particle parameters

h2v2
2m

tig = [ d’re*(r = Ry)

+ u(r)

o(r — R;); u(r) is the lattice periodic potential

t=1;; with < 4,5 >
t = ti,j with <« 1,7 >

Electron-electron interaction parameters

Ul = [drd® o (1 —Rj)p = (' = Rj)v(r — r')o(r — Re)o(r' — Ry);
v(r —r’) is the interaction potential between two electrons in the lattice
U = Ui At = U with < i,§ >; Aty = U with < i,1 >, < j,1 > and< 4,j >
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TABLE II. Superconducting physical properties clos@#ax-supfor At = 0.1 eV andAts = 0.05 eV.

—t'/t n To(K) E, (eV) Ag (eV) Eeona (6V) Er (eV)

-0.02 0.933750 37.37 -1.4567774678 0.0029534054 0.0000076362 -0.2935801622
-0.07 0.975 37.00 -1.4612415658 0.0029192932 0.0000074563 -0.1101008940
-0.10 1.0 37.13 -1.4590325950 0.0031720718 0.0000075504 0.0000008715

TABLE Ill. Superconducting physical properties clos@§eax-supfor At = 0.5 eV andAts = 0.05 eV.

—t'/t Top Te-max (K) Eg (eV) Ag (eV) FEcond (V) Er (eV)

0.04 0.825 100.27 -0.8952952 0.00869208 0.000075024 -0.487767611
0.06 0.805 99.8 -0.8963881 0.00863401 0.000070351 -0.555325242
0.07 0.790 101.27 -0.8973170 0.00865858 0.000073722 -0.592148720

terval of electron density [11]. The origin of this pseudo-
gap phase is not yet understood and it could be due to the
formation of another electronic phase competing with the su-

perconducting one.

C) NS

FIGURE 6. (a). Ground stateK,) as a function of-¢' /¢ and op-
timal electron densityr(,,). (b). Ground state energyeg) as a
function of electron densityn) for —¢'/t = 0.06. (c). Con-
densation energyH_..») as a function of electron density.) for
—t'/t = 0.06 with At = 0.5 eV (squares), and-t'/t = —0.07
with At = 0.1 eV (circles).

Figure 5 shows the FS fort’ /t = 0.06, nop-sup= 0.805,
andAt¢ = 0.5 eV. Notice that the FS is hole-like in contrast
with that shown in Fig. 2, corresponding te’/t = 0.06,
nop-sup= 0.975 andAt = 0.1 eV, which is electron-like.

In contrast with previous studies where the first-neighbor
correlated hoppingXt) only leads tosx-wave superconduc-
tivity [13], in our case, d-wave superconductivity is driven by
the second-neighbor correlated hoppidg{) and the value
of t’ /t strongly affects the superconducting properties. More-
over, the more appropriaté/t ratio will be that which mini-
mizes the ground state energy for a given set of other model
parameters.

Figure 6(a) shows the ground state energjy)(versus
botht’/t andngp. Likewise, Fig. 6(b) show#, versusn for
—t’/t = 0.06. Notice the linear dependence Bf,(n) sat-
isfying the condition®,_yp > Ey_op > E4s_op, Where
UD, OP and OD denotes underdoped, optimal doped and
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ter case, notice the sharp feature at the antinodal pomts

0.020 ] 90°, etc., or at the corresponding points (),(0, ), etc., of
0.015 - the first Brillouin zone which could be detected by ARPES
0.010 technique [16].

~~ - f

> 0005 _ )

s ] 4. Discussion

~Z 0000 -

N 0.005 | A discussion has already been done along the paper, how-

1 ever, it is important to emphasize that it is possible to define

0.010 - B . a supreme value for the set of maximum critical temperatures
0.015 4 VA W / which occurs at the minimum of the ground state energy. The
oisg | o404 Y 300 results presented in this work give an alternative way to look

270 for the appropriate set of Hamiltonian parameters to fit the
experimental data by studying the supreme valug&.gf.x as
FIGURE 7. The single excitation energy gap¢) as a function of 5 fynction of#/t. From this point of view, the mean field
polar anglep = tan~" (k, /k.) for At = 0.1 eV (light gray) and  reatment can be considered as a first good approximation to
At =0.5eV (dark gray). describe the superconductivity for a great variety of super-

overdoped regimes, respectively. This inequality indicateé:OnOIUCtorS reported in the literature.

that the underdoped regime is not the most stable, since its
energy is higher than the optimal doped one. Moreover, it Conclusions
t'/t is fixed, the largest condensation ener@iq), defined
as the difference between the ground state enefieat  |n summary, we have studied the d-wave superconducting
T = T, and T=0 K, is achieved atop, in agreement with  ground state as a function of the ratigt within the gener-
experimental results [14]. Figure 6(c) shodon(n) for  alized Hubbard model, where a second neighbor correlated-
both cases;-t'/t = 0.06 with At = 0.5 eV (squares), and hopping term is included. Within the BCS formalism, the su-
—t'/t = —0.07 with At = 0.1 eV (circles). perconducting properties are calculated by solving two cou-
In practice, as occurs in LSCO and BSCO systems, theled integral equations (12) and (13), where the integrals in-
electronic doping: can be modified by atomic substitution, volved can be efficiently calculated by isolating the region
which in turn changes the valuetft due to the variationsin  around the Fermi surface. The ground state enelyyy was
atomic sizes and the corresponding modification of the latticebtained for all the optimal electron concentrations wigre
parameter. It is important to mention that, for d-wave superis maximum, for bottAt = 0.1 eV andAt = 0.5 eV, with
conductorsU only shifts the mean-field self-energiiy;»  Ats = 0.05 eV. For the second case, the critical temperature
(Eq. (16)) whereas a positivie could affect the supercon- is considerably enhanced and there is a doping regime where
ducting state by diminishing the effect d&ft;. In fact, the the single-electron band width is reduced and the supercon-
latter interaction parameter is the more important one for dducting chemical potential lies out of this band. In this case,
wave superconductivity, although all of them are present irthe Fermi surface disappears, opening the question about the
transition metals with narrow bands [15]. pseudogap regime experimentally found for superconductors
On the other hand, the superconducting properties obwith carrier concentrations close to half-filling. It is sug-
tained forAt = 0.5 eV and Atz = 0.05 eV are sum- gested that this pseudogap could be foundigr> rnop-sup
marized in Table lll. Observe that the minimum energy,lt is worth mentioning that the difference of 0.4 eV between
Egmin = —0.89731704 eV, occurs atr,, = 0.790 with  the two values ofAt studied, leads to a critical temperature
Temax = 101.27 K, i.e., as one could expect, the maxi- enhancement of 60 K for d-wave superconductors, even if
mum7 is attained for the most stable superconducting systhe d-wave superconductivity is originated from the; in-
tem. It is important to mention that the chemical potentialteraction. This effect is lower than that found fer-wave
(1) is a function of temperature, therefore, for a fixed setsuperconductors, where ondyt is considered [13]. The re-
of model parameters, they are somewhat differerft at 0  sults reported in this work suggest a possible semi-analytical
KandT = T.. For this caseAt = 0.5 eV, which leads approach to Egs. (12) and (13), where the length and shape
to a largerT,, this difference is also larger and then thereof the FS should be considered. Since the computing time
is a slight discrepancy between the locationfgfmin and  needed to obtaimop.syp iS large, it is necessary a comple-

Te-max-sup= 99.8 K. mentary numerical method to fit the set of Hamiltonian pa-
Figure 7 shows the single-excitation energy gam) rameters with a real superconductor system, and this will be
defined as the minimum value df'(k) along they = the subject of future works. Finally, references [4,5] consider

tan~!(k,/k,) direction, for the parameter values where theother approaches to fit the model parameters from experimen-
supreme value of, is reached withAt = 0.1 eV (light tal results, but now it is also suggested to consider that super-
gray line) andAt = 0.5 eV (dark gray line). For the lat- conductivity occurs at some optimal doping with maximum
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critical temperature and minimum ground state energy withirAcknowledgments
the parameters space.
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